
A Representation for Bit Se
tion BasedAnalysis and Optimization?Rajiv Gupta1, Eduard Mehofer2, and Youtao Zhang11 Department of Computer S
ien
e, The University of Arizona, Tu
son, Arizona2 Institute for Software S
ien
e, University of Vienna, Vienna, AustriaAbstra
t. Programs manipulating data at subword level are growingin number and importan
e. Examples are programs running on networkpro
essors, media pro
essors, or general purpose pro
essors with mediaextensions. In addition data
ompression te
hniques whi
h are vital forembedded system appli
ations result in
ode operating on subword levelas well. Performing analysis on word level, however, is too
oarse grainmissing opportunities for optimizations. In this paper we introdu
e anovel program representation whi
h allows reasoning at subword level.This is a
hieved by making a

esses to subwords expli
it. First in a lo
alphase statements are analyzed and a

esses at subword level identi�ed.Then in a global phase the
ontrol-
ow is taken into a

ount and thea

esses are related to one another. As a result various traditional analy-ses
an be performed on our representation at subword level very easily.We dis
uss the algorithms for
onstru
ting the program representationin detail and illustrate their appli
ation with examples.1 Introdu
tionPrograms that manipulate data at subword level are growing in number andimportan
e. The need to operate upon subword data arises if multiple dataitems are pa
ked together into a single word of memory. The pa
king may be a
hara
teristi
 of the appli
ation domain or it may be
arried out automati
allyby the
ompiler. We have identi�ed the following
ategories of appli
ations.Network pro
essors are spe
ialized pro
essors that are being designed to eÆ-
iently manipulate pa
kets [5℄. Sin
e a pa
ket is a stream of bits the individual�elds in the pa
ket get mapped to subword entities within a memory lo
ation ormay even be spread a
ross multiple lo
ations.Media pro
essors are spe
ial purpose pro
essors to pro
ess media data (e.g.,TigerSHARC [3℄) as well as general purpose pro
essors with multimedia exten-sions (e.g., Intel's MMX [1, 6℄). The narrow width of media data is exploited bypa
king multiple data items in a single word and supporting instru
tions thatare able to exploit subword parallelism.? Supported by DARPA PAC/C Award. F29601-00-1-0183 and NSF grants CCR-0105355, CCR-0096122, EIA-9806525, and EIA-0080123 to the Univ. of Arizona.

Data
ompression transformations redu
e the data memory footprint of theprogram [2, 9℄. After data
ompression transformations have been applied, theresulting
ode operates on subword entities.Program analysis, whi
h is the basis of optimization and
ode generationphases, is a
hallenging task for above programs sin
e we need to reason aboutentities at subword level. Moreover, a

esses at subword level are expressed inC (
ommonly used language in those appli
ation domains) by means of rather
omplex mask and shift operations.In this paper we introdu
e a novel program representation that enables rea-soning about subword entities
orresponding to bit se
tions (a bit se
tion is asequen
e of
onse
utive bits within a word). This is made possible by expli
itlyexpressing manipulation of bit se
tions and relating the
ow of values among bitse
tions. We present algorithms for
onstru
ting this representation. The keysteps in building our representation are as follows:{ By lo
ally examining the bit operations in an expression appearing on theright hand side of an assignment, we identify the bit se
tions of interest.In parti
ular, the word
orresponding to the variable on the left hand sideis split into a number of bit se
tions su
h that adja
ent bit se
tions aremodi�ed di�erently by the assignment. The assignment statement is repla
edby multiple bit se
tion assignments.{ By
arrying out global analysis, expli
it relationships are established amongdi�erent bit se
tions belonging to the same variable. These relationships areexpressed by introdu
ing split and
ombine nodes. A split node takes a largerbit se
tion and repla
es it by multiple smaller bit se
tions and a
ombinenode takes multiple adja
ent bit se
tions and repla
es them by a single largerbit se
tion.The above representation is appropriate for reasoning about bit se
tions. Forexample, the
ow of values among the bit se
tions
an be easily tra
ed in thisrepresentation resulting in de�nition-use
hains at the bit se
tion level. Moreover,sin
e our representation makes a

esses at subword level expli
it, pro
essorswith spe
ial instru
tions for pa
ket-level addressing
an be supported easily andeÆ
iently by the
ode generator and the
ostly mask and shift operations
anbe repla
ed.The remainder of the paper is organized as follows. In se
tion 2 we des
ribeour representation in
luding its form and its important properties. In se
tions 3and 4 we present the lo
al and global phases of the algorithm used to
onstru
tthe representation. And �nally
on
luding remarks are given in se
tion 5.2 The RepresentationThis se
tion presents our representation for bit se
tion based analyses and op-timizations. Starting point for our extensions are programs modeled as dire
ted
ontrol
ow graphs (CFG) G = (N;E; entry; exit) with node set N in
ludingthe unique entry and exit nodes and edge set E. For the ease of presentation we

assume that the nodes represent statements rather than basi
 blo
ks1. The
on-stru
tion of our representation is driven by assignment statements of the formv = t whereby the right hand side term t
ontains bit operations only, i.e. &(and), j (or), not (not), << (shift left), and >> (shift right). Sin
e the term onthe right hand side of su
h an assignment
an be arbitrarily long and intri
ateand sin
e our goal is to repla
e those assignments by a sequen
e of simpli�edassignments, we
all them
omplex assignments.Essentially our representation is based on two transformations performed onthe CFG. First we partition the original program variables into bit se
tions ofinterest. The bit se
tions of interest are identi�ed lo
ally by examining the usageof these bit se
tions in a
omplex assignment. Only
omplex assignments whi
hare formed using bit operations are pro
essed by this phase be
ause partitioningis guided by the spe
ial semanti
s of bit operations. Other assignments are notpartitioned sin
e no useful additional information
an be exposed in this way.Hen
e, in the remainder of the dis
ussion, only
omplex assignments are
onsid-ered. Se
ond we relate de�nitions and uses of bit se
tions belonging to the sameprogram variable using global analysis. The required program representation isobtained by making the out
omes of the above steps expli
it in the CFG. In theremainder of this se
tion, we illustrate the e�e
ts of the above two steps anddes
ribe the resulting representation in detail.2.1 Identifying bit se
tions of interestDe�nition 1 (Bit Se
tion).Given a program variable v with the size of
 bits, a bit se
tion of v is denotedby vl::h (1 � l � h �
) and refers to the sequen
e of bits l; l + 1; ::; h � 1; h.2The symbol := is used to denote a bit se
tion assignment.In the following dis
ussion, if nothing is said to the
ontrary, we assume forthe ease of dis
ussion that variables have a size of 32 bits.Partitioning a program variable. Given a
omplex assignment (v = t), the pro-gram variable v on the left hand side is partitioned into bit se
tions, if ea
h ofthe resulting se
tions is updated di�erently from its neighboring bit se
tions bythe term t on the right hand side of the
omplex assignment. In parti
ular, thevalue of a bit se
tion of the lhs variable v, say vl::h,
an be spe
i�ed in one ofthe following ways:{ No Modi�
ation: The value of vl::h remains un
hanged be
ause it is assignedits own value.{ Constant Assignment: vl::h is assigned a
ompile time
onstant.{ Copy Assignment: The value of another bit se
tion variable is
opied intovl::h.{ Expression Assignment: The value of vl::h is determined by an expressionwhi
h is in general simpler than t.1 Handling basi
 blo
ks is straightforward.2 The de�nition in
ludes 1-bit se
tions as well as whole variable se
tions.

The partitioning of variable v is made expli
it in the program representationby repla
ing the
omplex assignment by a series of bit se
tion assignments. A
onsequen
e of this transformation is that operands used in t may also have tobe partitioned into
ompatible bit se
tions.Properties. There are two important properties that will be observed by our
hoi
e of bit se
tion partitions:1. Non-overlapping se
tions. The se
tions resulting from su
h partitioning arenon-overlapping for individual assignments.2. Maximal se
tions. Ea
h se
tion is as large as needed to expose the semanti
information that
an be extra
ted from a given
omplex assignment. In otherwords, further partitioning will not provide us with any more informationabout the values stored in the individual bits.Example. Consider the
omplex assignment to variable a shown in Fig. 1. If we
arefully examine this assignment, we observe that this
omplex assignment isequivalent to the bit se
tion assignments shown below. Note that ea
h bit se
tionis updated di�erently from its neighboring se
tions. Bit se
tions a1::4 and a17::32are set to 0, a5::8 is involved in a
opy assignment, and a13::16 is not modi�ed atall (we have pla
ed the assignment below simply for
larity). Bit se
tion a9::12is
omputed using an expression whi
h is simpler than the original expression.Finally, as a
onsequen
e of a's partitioning, variable b must be partitioned into
ompatible bit se
tions as well.Complex Assignmenta = (a & 0xff00) j ((b & 0xff) << 4)Bit Se
tion Assignmentsa1::4 := 0 /*
onstant assignment */a5::8 := b1::4 /*
opy assignment */a9::12 := b5::8 j a9::12 /* (simpler) expression */a13::16 := a13::16 /* no modifi
ation */a17::32 := 0 /*
onstant assignment */Fig. 1. Bit Se
tion Assignments.Note that bit se
tion assignments reveal the information that some bit se
-tions are set to
onstant values, others are assigned
opies of bit se
tions, orsome are un
hanged. All this information would be lost if we reasoned about thevariable a as a single 32 bit entity.2.2 Establishing relationships among bit se
tionsAfter introdu
ing bit se
tions for single
omplex assignments, the goal of this stepis to establish relationships among the bit se
tions arising from di�erent
omplexassignments. To illustrate the need for relating bit se
tions, let us
onsider the
omputation of de�nition-use relationships as shown in Fig. 2. The
omputation

of de�nition-use relationships is
ompli
ated by the fa
t that left or right handside o

urren
es of a given program variable may be partitioned di�erently bydi�erent
omplex assignments. In Fig. 2a partition v17::32 and partition v4::16are
reated for variable v in the then-bran
h and else-bran
h, respe
tively. The
onditional is followed by a use of partition v1::16. However, the partitions do notmat
h with ea
h other and the relationships among the bit se
tions are hidden.Hen
e, we introdu
e spe
ial nodes in the program whi
h
reate and destroy bitse
tions and make the relationships between bit se
tions expli
it: A split node(denoted by �) is introdu
ed to
reate a set of smaller non-overlapping bit se
-tions from a larger bit se
tion and a
ombine node (denoted by �) is introdu
edto
oales
e smaller adja
ent bit se
tions into a single longer bit se
tion. Theintrodu
tion of split and
ombine nodes as shown in Fig. 2b ensures that ea
hse
tion name exists before it is referen
ed. The edges show the
ow of values tothe use of v1::16 at the end of the
ode fragment. By traversing these edges we
an easily determine that if the then-bran
h is exe
uted, the value rea
hing theuse of v1::16 at line 7 is de�ned by the assignment at line 1. On the other hand,if the else-bran
h is exe
uted, the values of bits 1 through 3 de�ned at line 1 andvalues of bits 4 to 16 de�ned at line 5 rea
h the use of v1::16 at line 7. Thus animportant
onsequen
e of appropriately introdu
ing split and
ombine nodes isthat de�nition-use relationships
an now be established among bit se
tions.(1) v1::32 := :::(2) if (
ond) then(3) v17::32 := :::(4) else(5) v4::16 := :::(6) endif(7) ::: := v1::16(a) Bit se
tion assignments.
 V

1..32
:= ...

cond

 (V
1..16

,V
17..32

):= V
1..32

 (V
1..3
,V
4..16
,V
17..32

):= V
1..32

 V
17..32

 := … V
4..16

 := …

 V
1..16

 := (V
1..3
,V
4..16
)

 … := V
1..16(b) Def-use
hains.Fig. 2. Using Split and Combine Nodes.De�nition 2 (Split and Combine Nodes).A split node that partitions a bit se
tion vl::h into n non-overlapping bit se
tionsvl::s1 ; vs1+1::s2 ; :::; vsn�1+1::h is written as:(vl::s1 ; vs1+1::s2 ; :::; vsn�1+1::h) := �vl::hConversely a
ombine node that merges adja
ent bit se
tions vl::s1 ,vs1+1::s2 ; :::;vsn�1+1::h into a single larger
ontiguous bit se
tion vl::h is written as:vl::h := �(vl::s1 ; vs1+1::s2 ; :::; vsn�1+1::h)Properties. The rules for inserting split and
ombine nodes are derived from thefollowing properties whi
h shall hold for our representation.

1. Non-overlapping se
tions. While at di�erent program points a variable maybe partitioned di�erently, at ea
h program point we asso
iate a unique par-titioning with a program variable into non-overlapping se
tions.2. Create-before-use. Along all program paths, ea
h right-hand side appearan
eof a bit se
tion must be pre
eded by a left-hand side appearan
e of the samese
tion.The split and
ombine nodes a
t as transition points where non-overlappingpartitioning of variable is
hanged from one partitioning to another. Given a pro-gram point where a split or
ombine node is pla
ed, the node makes expli
it therelationship among bit se
tions that existed immediately pre
eding the programpoint and following the program point.Minimal representation. The properties des
ribed above whi
h are essential forour representation
an be realized by di�erent pla
ements of split and
ombinenodes. Of
ourse, our goal is to meet the required properties with minimal in-sertions of split and
ombine nodes whi
h leads to the following two minimality
riteria:1. The number of split and
ombine nodes introdu
ed along some path shallbe minimal. This
an be a
hieved by ensuring that if a bit se
tion is usedrepeatedly along a path, it is
reated on
e before its �rst referen
e anddestroyed only after its last referen
e.2. The lifetime of a bit se
tion, i.e. the period during whi
h the se
tion nameexists, shall be minimal (under the above
riterion). This
an be a
hievedby
reating a se
tion at the latest program point where it is needed anddestroying it at the earliest program point where it is no longer needed.The lifetime of a bit se
tion starts and ends at a split or a
ombine node.More spe
i�
ally, the appearan
e of a bit se
tion on the left hand side of asplit or
ombine node represents the start point of the bit se
tion's lifetime. Theappearan
e of a bit se
tion on the right hand side of a split or
ombine noderepresents the end point of the bit se
tion's lifetime.The two minimality
riteria mentioned above imply that the lifetimes of thebit se
tions are
hosen su
h that they are long enough to redu
e the need forsplit and
ombine nodes but not any longer. These
riteria result in the followingpla
ement strategy for split and
ombine nodes.Earliest point pla
ement of
ombine nodes. A
ombine node that destroys a bitse
tion name is inserted at the earliest program point where the bit se
tionis not (partially) anti
ipable, that is, it is known that an appearan
e of thebit se
tion will no longer be en
ountered and therefore the bit se
tion is nolonger needed.Latest point pla
ement of split nodes. A split node that
reates a bit se
tionname is inserted at the latest program point at whi
h the bit se
tion is livebut not (partially) available, that is, it does not already exist.

Example. Consider the
ode fragment of Fig. 3 together with the
orrespondingCFG with the inserted split and
ombine nodes displayed in dark boxes. Splitnodes are pla
ed at the latest program points immediately pre
eding the refer-en
es to v1::16, v17::32, and v24::32 at nodes 1, 2, and 5 in order to
reate those bitse
tions, sin
e none of them are partially available. On the other hand,
ombinenodes are pla
ed at the earliest program points just after the referen
es to v17::32and v24::32 at nodes 3 and 6 in order to destroy those bit se
tions sin
e both arenot used any more. Finally, sin
e bit se
tions v1::16 and v17::32 are referen
ed inthe then-bran
h of the se
ond
onditional statement but not in the else-bran
h,the earliest program point to destroy those bit se
tions is the very �rst statementof the else-bran
h at node 4.v1::32 := :::if () then::: := v1::16else::: := v17::32endifif () then::: := v1::16::: := v17::32else::: := v24::32endif::: := v1::32
 V

1..32
:= …

 (V
1..16
,V
17..32

):= V
1..32

 … := V
1..16

 …

 (V
1..16
,V
17..32

):= V
1..32

 … := V
17..32

 (V
1..23
,V
24..32

):= V
1..32

 … := V
24..32

 V
1..32

:= (V
1..16
,V
17..32

) … := V
1..16

 … := V
17..32

 … := V
1..32

 V
1..32
:= (V

1..23
,V
24..32

)

 V
1..32

:= (V
1..16
,V
17..32

)

1 2

3

4

5

6(a) Sample
ode. (b) Earliest/latest insertion of
ombines/splits.Fig. 3. Pla
ement of Split and Combine Nodes.Minimal representation is not unique. In some situations multiple solutions areequally good under our
riteria. As an example
onsider two
onse
utive if-statements with a use of v1::16 in the then-bran
h and a use of v1::32 in theelse-bran
h as shown in Fig. 4a. If we de
ide to preserve bit se
tion v1::16 at theend of the �rst if-statement, we get solution Fig. 4b. On the other hand, if wede
ide to preserve bit se
tion v1::32, we get solution Fig. 4
. In both solutionsthree nodes are inserted, however, taking the left bran
hes of the if-statementswe have one inserted node in the �rst solution and three nodes in the se
ondsolution. On the other hand, taking the right bran
hes we have two insertednodes in the �rst solution but none in the se
ond one. However, we
onsidereither
hoi
e as equally good sin
e both se
tions v1::16 and v1::32 have at theend of the �rst if-statement future referen
es and both result in equal numberof split and
ombine nodes. Note that our algorithm yields solution Fig. 4b.

v1::32 := :::if () then::: := v1::16else::: := v1::32endifif () then::: := v1::16else::: := v1::32endif::: := v1::32
 (V

1..16
,V
17..32

):= V
1..32

 V
1..32

:= …

 … := ... V
1..16

 … := ... V
1..32

 … := ... V
1..16

 … := … V
1..32

 … := ... V
1..32

 V
1..32
:= (V

1..16
,V
17..32

)

 (V
1..16
,V
17..32

):= V
1..32

 V
1..32

:= …

 … := ... V
1..16

 … := ... V
1..32

 … := ... V
1..16

 … := … V
1..32

 … := ... V
1..32

 (V
1..16
,V
17..32

):= V
1..32

 V
1..32
:= (V

1..16
,V
17..32

)

 (V
1..16
,V
17..32

):= V
1..32

(a) Sour
e
ode. (b) Preserving v1::16. (
) Preserving v1::32.Fig. 4. Multiple Minimal Solutions.3 Lo
al Phase: Identifying Relevant Bit Se
tionsIn this phase the partitioning of left hand side (lhs) variables of
omplex assign-ments is determined under the
onstraint that ea
h adja
ent bit se
tion shall be
omputed di�erently. This is done in two steps: First a bottom-up traversal ofthe right hand side (rhs) expression is
arried out during whi
h the bit se
tionsrequired for the lhs variable are determined. Se
ond the bit se
tion assignmentsare generated in a top-down traversal of the rhs expression tree.I. Finding bit se
tions of the lhs variable. The rhs expression tree istraversed in a bottom-up order and ea
h node in the expression tree is annotatedwith bit se
tions of the expression's operands that
ontribute to the
omputationof bit se
tions of the intermediate value represented by the node. In our algorithmthe intermediate value asso
iated with an expression tree node during evaluationof the expression is denoted by nval. We also use the following basi
 notations:{ var : f[(l; h); s℄g. Bit se
tion value nvall+s+1::h+s is a fun
tion of bit se
tionvarl+1::h. If s is 0, the bit se
tions of var and nval refer to the same bitpositions. Otherwise, a non-zero value of s indi
ates that the bit se
tionsrefer to di�erent bit positions whi
h is a
hieved by using left or right shift(<<, >>).{ 0=1 : f[(l; h); s℄g. Bit se
tion value nvall+s+1::h+s = 0=1, that is, we have a
onstant bit se
tion with all bits being equal 0 or 1.For the ease of presentation the following short hand notations are used as well:{ var : f[(l;m; h); s℄g � var : f[(l;m); s℄; [(m;h); s℄g. Short hand notation forexpressing adja
ent bit se
tions of variable var.{ var : f[(l1; h1); s1℄; [(l2; h2); s2℄; :::g or 0=1 : f[(l1; h1); s1℄; [(l2; h2); s2℄; :::g.Short hand notation for multiple non-adja
ent bit se
tions.

Finally, we introdu
e the following operations for value ranges. These operationsare used in the
omputation of bit se
tions throughout the paper.(l1; h1) \ (l2; h2) = � (max(l1; l2);min(h1; h2)) if max(l1; l2) < min(h1; h2)� otherwise(l1; h1) [(l2; h2) =8>>><>>>:f(l1; l2); (l2; h2); (h2; h1)g = (l1; l2; h2; h1) if l1 < l2 < h2 < h1f(l1; l2); (l2; h1); (h1; h2)g = (l1; l2; h1; h2) if l1 < l2 < h1 < h2f(l2; l1); (l1; h2); (h2; h1)g = (l2; l1; h2; h1) if l2 < l1 < h2 < h1f(l2; l1); (l1; h1); (h1; h2)g = (l2; l1; h1; h2) if l2 < l1 < h1 < h2f(l1; h1); (l2; h2)g otherwise(l1; h1)� (l2; h2) =8>>><>>>:f(l1; l2); (h2; h1)g if l1 < l2 < h2 < h1(l1; l2) if l1 < l2 < h1 < h2(h2; h1) if l2 < l1 < h2 < h1� if l2 < l1 < h1 < h2(l1; h1) otherwiseAlgorithm.Visit the nodes in the expression tree in a bottom-up order applyingsteps 1 and 2 to them. Identify the bit se
tions of the lhs variable in step 3.1. Compute node annotations exploiting
hara
teristi
s of operatorsand operands.{ Variable leaf node. Annotate node with x : f[(0; 32); 0℄g, where variablex is the operand asso
iated with the leaf node (and 32 is the bit width).{ Constant leaf node. Annotate node with a set of bit se
tions ea
h of whi
h
ontains only 0's or 1's, that is, 0 : f[(l01; h01); s01℄; [(l02; h02); s02℄; :::gand 1 : f[(l11; h11); s11℄; [(l12; h12); s12℄; :::g.{ Bitwise And (&) operator. We exploit the following properties in
om-puting the annotations for the And node: a&1 = a, a&0 = 0.operand annotations &'s annotationvar : f[(l1; h1); s1℄g, 0 : f[l2; h2℄; 0℄g,0 : f[(l2; h2); 0℄g var : f[(l0 � s1; h0 � s1); s1℄g where(l0; h0) = (l1 + s1; h1 + s1)� (l1 + s1; h1 + s1) \ (l2; h2)var : f[(l1; h1); s1℄g, var : f[(l1; h1); s1℄g,1 : f[(l2; h2); 0℄g 1 : f[(l2; h2)� (l1 + s1; h1 + s1) \ (l2; h2); 0℄g{ Bitwise Or (j) operator. We exploit the following properties in
omput-ing the annotations for the Or node: aj1 = 1, aj0 = a.operand annotations j's annotationvar : f[(l1; h1); s1℄g, 1 : f[l2; h2℄; 0℄g,1 : f[(l2; h2); 0℄g var : f[(l0 � s1; h0 � s1); s1℄g where(l0; h0) = (l1 + s1; h1 + s1)� (l1 + s1; h1 + s1) \ (l2; h2)var : f[(l1; h1); s1℄g, var : f[(l1; h1); s1℄g,0 : f[(l2; h2); 0℄g 0 : f[(l2; h2)� (l1 + s1; h1 + s1) \ (l2; h2); 0℄g

{ Not operation (not nval). Corresponding to
onstant bit se
tions in nval
reate
onstant bit se
tions for the not node where 0 bit se
tions are
onverted into 1 bit se
tions and 1 bit se
tions are
onverted into 0bit se
tions. That is, if 0=1 : f[(l; h); 0℄; ::g annotates nval, then 1=0 :f[(l; h); 0℄; ::g annotates not.{ Constant left shift (nval <<
 where
 is a
onstant � 32). From a bitse
tion that is an annotation of nval,
ompute bit se
tions that annotatethe << node as follows.nval's annotation <<'s annotationvar=1 : f[(l; h); s℄g 0 : f[(0;
); 0℄g andvar=1 : f[(l0 � s�
; h0 � s�
); s+
℄g,where (l0; h0) = (l+ s+
; h+ s+
) \ (0; 32)0 : f[(l; h); 0℄g 0 : f[(l0; h0); 0℄g, where (l0; h0) = (l+
; h+
) \ (0; 32)and 0 : f[(0;
); 0℄g0 : f[(0; h); 0℄g 0 : f[(0; h+
) \ (0; 32); 0℄g{ Constant right shift (nval >>
). From a bit se
tion that is an annota-tion of nval,
ompute bit se
tions that annotate the >> node as follows.The following is appli
able for shifting of an unsigned value. In
ase ofa signed value, if the sign is known, similar rules
an be derived.nval's annotation >>'s annotationvar=1 : f[(l; h); s℄g 0 : f[(32 �
; 32); 0℄g andvar=1 : f[(l0 � s+
; h0 � s+
); s�
℄g,where (l0; h0) = (l+ s�
; h+ s�
) \ (0; 32)0 : f[(l; h); 0℄g 0 : f[(32 �
; 32); 0℄g and0 : f[(l0; h0); 0℄g, where (l0; h0) = (l�
; h�
) \ (0; 32)0 : f[(l; 32); 0℄g 0 : f[(l �
; 32) \ (0; 32); 0℄g2. Ensure all bits within a se
tion are
omputed identi
ally. Closerexamination of bit se
tions of di�erent operand variables that annotatea given node
an reveal whether further splitting of these bit se
tions isrequired to ensure that ea
h resulting bit se
tion is
omputed by exa
tlyone expression. The bit se
tion var1 : f[(l1; h1); s1℄g is split by bit se
tionvar2 : f[(l2; h2); s2℄g, denoted by var1=var2, at a node in the expression treeby means of the following rule:var1 : f[(l1; h1); s1℄gvar2 : f[(l2; h2); s2℄g =8>>>>>>>><>>>>>>>>:
var1 : f[(l1; l2 + s2 � s1; h2 + s2 � s1; h1); s1℄gif l1 + s1 < l2 + s2 < h2 + s2 < h1 + s1var1 : f[(l1; l2 + s2 � s1; h1℄; s1gif l1 + s1 < l2 + s2 < h1 + s1 < h2 + s2var1 : f[(l1; h2 + s2 � s1; h1); s1℄gif l2 + s2 < l1 + s1 < h2 + s2 < h1 + s1var1 : f[(l1; h1); s1℄gotherwiseThe splitting is performed by
onsidering every ordered pair of bit se
tions.As we
an see, the above bit se
tioning is performed to distinguish between

bit se
tions whi
h are
omputed di�erently by both bit se
tions var1 andvar2. More pre
isely, we distinguish a bit se
tion whi
h is
omputed fromboth var1 and var2 from one whi
h is
omputed only from var1.3. Identify bit se
tions for the lhs variable. After steps 1 and 2, theannotations of the root node of the expression tree are used to identify thebit se
tions of the variable on the left hand side. Let us assume that the widthof a word is 32 bits, then we split the initial bit se
tion of the lhs variablevarlhs : f[(0; 32); 0℄g if parts are
omputed di�erently. More formally, newbit se
tions are obtained by a repeated evaluation ofvarlhs : se
tionany : f[(l; h); s℄gfor ea
h annotation any : f[(l; h); s℄g at the root node of the rhs tree.II. Generating bit se
tion assignments. In this step we generate the bitse
tion assignments
orresponding to the bit se
tions identi�ed for a lhs variableof a
omplex assignment. Given a bit se
tion vl+1::h, the expression whi
h has tobe assigned to vl+1::h is returned by the fun
tion
all genexp((l; h); eroot), whereeroot is the root node of the entire expression tree, i.e., for ea
h bit se
tion (l; h)for a lhs variable v we
allvl+1::h := simplify(genexp((l; h); eroot)):Fun
tion simplify is the last step in whi
h trivial patterns like \aj0" or \a&1" areredu
ed to \a". As shown in Fig. 5, genexp() traverses the expression examiningthe bit se
tions that annotate ea
h node in order to �nd those that
ontribute tobits l+1::h. If only one of the bit se
tions at a node
ontributes to bits l+1::h,a traversal of the subtree is not required any more. In this
ase the operand is asequen
e of h�l bits belonging to a variable or it
onsists of
onstant (0 or 1) bits.If multiple bit se
tions
ontribute to bits l+1::h, then the operator representedby the
urrent node is in
luded in the expression and the subexpressions that areits operands are identi�ed by re
ursively applying genexp() to the des
endants.Example. The example in Fig. 6 illustrates how the bit se
tions of lhs variablea of Fig. 1 are determined. The nodes are dealt with in a bottom-up manner. Atthe leave nodes, variables are initialized with whole bit se
tions, while
onstantsare partitioned su
h that sequen
es of 0 or 1 are identi�ed by bit se
tions. Theannotations at the &-nodes indi
ate that some bits are 0 while others are derivedfrom bit se
tions of variables a and b.Now let us apply the genexp() algorithm to the example. For bit se
tions a1::4and a17::32 we �nd the
ontributing bit se
tions 0 : [(0; 4); 0℄ and 0 : [(16; 32); 0℄whi
h annotate the root node e1 resulting in an assignment of
onstant 0. Forboth a5::8 and a13::16 we �nd a single
ontributing bit se
tion that annotates e1.From b : [(0; 4); 4℄ we obtain that a5::8 is assigned b1::4 and from a : [(12; 16); 0℄ weget that a13::16 is assigned to itself, that is, it remains un
hanged. Finally, for bitse
tion a9::12 we dete
t that there are two
ontributing bit se
tions, a : [(8; 12); 0℄

genexp((l; h); e) fBS = �for ea
h se
tion any : [(el; eh); es℄ 2 set of annotations of node e doif range (l; h) is
ontained in range (el+ es; eh+ es) thenBS = BS [fany : [(el; eh); es℄gendifendforif BS == fany : [(el; eh); es℄g thenreturn ("anyl�es+1::h�es")elselet e:l
hild and e:r
hild be expression trees for operands of e
ase e:op ofe:op == "not" : return ("not" genexp((l; h); e:l
hild);e:op == " <<
" : return(genexp((l�
; h�
); e:l
hild);e:op == " >>
" : return(genexp((l+
; h+
); e:l
hild);e:op == "&" : return(genexp((l; h); e:l
hild) "&" genexp((l; h); e:r
hild);e:op == "j" : return(genexp((l; h); e:l
hild) "j" genexp((l; h); e:r
hild));end
aseendifg Fig. 5. Generating Bit Se
tion Assignments.

e 3

e
2

e 1

Step 1: Step 1:

Step 1:

Step 2:

a

a

& & 4

<<

|

=

b 0xff0xff00

Step 1:

Step 3:

Step 1:

Step 1:

Step 1:
Step 1:

a:{[(0,32),0]}

a:{[(8,16),0]}

0:{[(0,8),0],
[(16,32),0]}

a:{[(0,4,8,12,16,32),0]}

1:{[(8,16),0],
0:{[(0,8),0],

[(16,32),0]} b:{[(0,32),0]}
1:{[(0,8),0]}
0:{[(8,32),0]}

b:{[(0,8),0]}

0:{[(8,32),0]}

b:{[(0,8),4]}

0:{[(0,4),0],

[(12,32),0]}

a:{[(8,12,16),0]}
b:{[(0,4,8),4]}
0:{[(0,4),0],

[(16,32),0]}[(16,32),0]}
0:{[(0,4),0],
b:{[(0,8),4]}
a:{[(8,16),0]}

Fig. 6. Identifying Relevant Bit Se
tions for a Complex Assignment.

and b : [(4; 8); 4℄. Therefore the operator j at node e1 is part of the expression andwe must traverse the des
endant nodes to lo
ate the operands. In this
ase we�nd the operands a9::12 and b5::8 at the left and right nodes e2 and e3 respe
tively.4 Global Phase: Pla
ement of Split and Combine NodesIn this phase global analysis is performed to relate the bit se
tions introdu
edin the lo
al phase to ea
h other by inserting split and
ombine nodes. Note thatthe analysis for insertion of splits and
ombines of one variable is independentof other variables.Ba
kward and forward propagation of bit se
tions. In order to determinewhether an existing bit se
tion should be eliminated using a
ombine node at agiven program point, we must know whether the bit se
tion is used later on in theprogram. This is a

omplished by
omputing anti
ipable bit se
tion referen
es ina ba
kward analysis. Similarly for determining whether a bit se
tion should be
reated using a split node at a program point, we must know if the bit se
tionalready exists. This is a

omplished by
omputing available bit se
tions in aforward analysis.The values of data
ow variables involved in this analysis are a set of bit se
-tions belonging to a program variable. As before, ea
h bit se
tion is representedby a range (l; h) whi
h denotes bits l+1 through h. We already de�ned and usedoperations \, [, and � for value ranges. Sin
e the data
ow values are sets ofvalue ranges, we de�ne analogous operations over a set of value ranges wherebythe new set is
omputed by
onsidering every pair. We denote these operationsby T, S, and ��.Given the above operations, the
omputation of anti
ipable (B) and available(F) bit se
tions for node n and variable v is shown below. The B and F sets are
omputed at the beginning (in) and end (out) of ea
h node. Ref [n; v℄ is a lo
alset that represents the bit se
tions of v that are referen
ed on the lhs or rhs atnode n.3Anti
ipable Bit Se
tions : Ba
kward AnalysisInitializeBout[exit; v℄ = �PropagateBout[n; v℄ = Ss 2 su

(n) Bin[s; v℄Bin[n; v℄ = (Bout[n; v℄ �� Ref [n; v℄) S Ref [n; v℄Available Bit Se
tions : Forward AnalysisInitializeFin[entry; v℄ = �PropagateFin[n; v℄ = Sp 2 pred(n) Fout[p; v℄Fout[n; v℄ = (Fin[n; v℄ �� Ref [n; v℄) S Ref [n; v℄3 It should be noted that due to the semanti
s of the operators �� and S, (X ��Ref)SRef is NOT equal to XSRef .

Combine and Split Node Insertion. The insertion points are determined basedon the results of the forward and ba
kward analysis. This is done in three steps.First, we identify all
andidate se
tions at ea
h program point that may beeither eliminated or
reated at that point. We refer to these se
tions as
om-bine
andidates and split
andidates, respe
tively. The
ombine
andidate set,CCin=out(n; v), and the split
andidate set SCin=out(n; v), for a program pointn and variable v are identi�ed as follows.If a bit se
tion of v is available at n's entry (exit) but not anti
ipable atn's entry (exit), then the
ombine node needed to eliminate the bit se
tion is alegal
andidate for insertion at entry (exit) of n. Similarly if a bit se
tion of v isanti
ipable at n's entry (exit) but not available at n's entry (exit), then the splitnode needed to
reate the bit se
tion is a legal
andidate for insertion at entry(exit) of n. In the equations below F �in=out and B�in=out denote the solutions ofthe equation systems. Note that the only se
tions of interest are those that aresmaller than (0; 32) and therefore (0; 32) is never in
luded in the CC and SCsets. This is be
ause
reation of (0; 32) does not require a split as there is nolarger se
tion from whi
h (0; 32)
an be split and elimination of (0; 32) does notrequire a
ombine be
ause there is no larger se
tion into whi
h (0; 32)
an bemerged.Combine and Split CandidatesCCin=out(n; v) = f(l; h) : (l; h) 2 F �in=out(n; v) and (l; h) =2 B�in=out(n; v)g�� f(0; 32)gSCin=out(n; v) = f(l; h) : (l; h) 2 B�in=out(n; v) and (l; h) =2 F �in=out(n; v)g�� f(0; 32)gIn the se
ond step we identify the earliest points for
ombines and latestpoints for splits for insertion of
ombine and split nodes. This
an be done easilyfrom the results of the �rst step by
omparing the CC and SC sets of prede
es-sor and su

essor nodes. For example, if a se
tion is present in the CCin set of anode, but not in any of the CCout sets of its prede
essor nodes, then the entrypoint of the node is the earliest point at whi
h the
ombine
an be pla
ed.Combine and Split Insertion PointsEarliestCCin(n; v) = CCin(n; v) �� Sp2 pred(n) CCout(p; v)EarliestCCout(n; v) = CCout(n; v) �� CCin(n; v)LatestSCin(n; v) = SCin(n; v) �� SCout(n; v)LatestSCout(n; v) = SCout(n; v) �� Ss2 su

(n) SCin(s; v)Finally in the third step we insert
ombine and split nodes. To this end,during ba
kward and forward analysis as well as during
omputation of
ombineand split
andidates, the bit se
tions in the data
ow sets are distinguished tofall into two
ategories: Those whi
h are added to the sets be
ause referen
es tothem are en
ountered and those whi
h are added as a
onsequen
e of adding theones whi
h are referen
ed. Only the bit se
tions that are marked as being di-re
tly referen
ed are
onsidered during insertion of split and
ombine nodes. The

insertion
onditions are given below. After the
ombine nodes the split nodes areinserted. The portions of the
ombine and split nodes whi
h are not spe
i�edand marked by dots are determined by examining the remaining bit se
tionsthat exist at that program point.Combine and Split Insertionif (l; h) 2 EarliestCCin=out(n; v) theninsert
ombine node 'v:::: := � (::::; vl+1::h; ::::)'if (l; h) 2 LatestSCin=out(n; v) theninsert split node '(::::; vl+1::h; ::::) := � v::::'5 Con
luding RemarksWe presented a novel program representation whi
h supports analyses at bitse
tion level. Instead of
oping with subword a

esses for ea
h optimization, ourrepresentation makes those a

esses expli
it enabling to realize traditional anal-ysis on subword level very easily. In a lo
al analysis phase we analyze statementby statement and identify bit se
tions whi
h
ould be of interest for subsequentoptimization phases. Then we relate those bit se
tions to ea
h other by intro-du
ing split and
ombine nodes.Referen
es1. T.M. Conte, P.K. Dubey, M.D. Jennings, R.B. Lee, A. Peleg, S. Rathnam, M.S
hlansker, P. Song, and A. Wolfe, \Challenges of Combining General-Purpose andMultimedia Pro
essors," IEEE Computer, Vol. 30, No. 12, pages 33{37, De
. 1997.2. J. Davidson and S. Jinturkar, \Memory a

ess
oales
ing : a te
hnique for elimi-nating redundant memory a

esses," ACM SIGPLAN Conferen
e on ProgrammingLanguage Design and Implementation (PLDI), pages 186{195, 1994.3. J. Fridman, \Data Alignment for Sub-Word Parallelism in DSP," IEEE Workshopon Signal Pro
essing Systems (SiPS), pages 251-260, 1999.4. S. Larsen and S. Amarasinghe, \Exploiting Superword Level Parallelism with Multi-media Instru
tion Sets," ACM SIGPLAN Conf. on Programming Language Designand Implementation (PLDI), pages 145{156, Van
ouver B.C., Canada, June 2000.5. X. Nie, L. Gazsi, F. Engel, and G. Fettweis, \A New Network Pro
essor Ar
hite
turefor High Speed Communi
ations," IEEE Workshop on Signal Pro
essing Systems(SiPS), pages 548-557, 1999.6. A. Peleg and U. Weiser, \MMX Te
hnology Extension to Intel Ar
hite
ture," IEEEComputer, 16(4):42-50, August 1996.7. M. Stephenson, J. Babb, and S. Amarasinghe, \Bitwidth Analysis with Appli
ationto Sili
on Compilation," ACM SIGPLAN Conf. on Programming Language Designand Implementation (PLDI), pages 108{120, Van
ouver B.C., Canada, June 2000.8. J. Wagner and R. Leupers, \C Compiler Design for an Industrial Network Pro
es-sor," ACM SIGPLAN Workshop on Languages, Compilers, and Tools for EmbeddedSystems (LCTES), pages 155-164, June 2001.9. Y. Zhang and R. Gupta, \Data Compression Transformations for Dynami
ally Allo-
ated Data Stru
tures," International Conferen
e on Compiler Constru
tion (CC),Grenoble, Fran
e, April 2002.

