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Abstract. Programs manipulating data at subword level are growing
in number and importance. Examples are programs running on network
processors, media processors, or general purpose processors with media
extensions. In addition data compression techniques which are vital for
embedded system applications result in code operating on subword level
as well. Performing analysis on word level, however, is too coarse grain
missing opportunities for optimizations. In this paper we introduce a
novel program representation which allows reasoning at subword level.
This is achieved by making accesses to subwords explicit. First in a local
phase statements are analyzed and accesses at subword level identified.
Then in a global phase the control-flow is taken into account and the
accesses are related to one another. As a result various traditional analy-
ses can be performed on our representation at subword level very easily.
We discuss the algorithms for constructing the program representation
in detail and illustrate their application with examples.

1 Introduction

Programs that manipulate data at subword level are growing in number and
importance. The need to operate upon subword data arises if multiple data
items are packed together into a single word of memory. The packing may be a
characteristic of the application domain or it may be carried out automatically
by the compiler. We have identified the following categories of applications.

Network processors are specialized processors that are being designed to effi-
ciently manipulate packets [5]. Since a packet is a stream of bits the individual
fields in the packet get mapped to subword entities within a memory location or
may even be spread across multiple locations.

Media processors are special purpose processors to process media data (e.g.,
TigerSHARC [3]) as well as general purpose processors with multimedia exten-
sions (e.g., Intel’s MMX [1, 6]). The narrow width of media data is exploited by
packing multiple data items in a single word and supporting instructions that
are able to exploit subword parallelism.
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Data compression transformations reduce the data memory footprint of the
program [2,9]. After data compression transformations have been applied, the
resulting code operates on subword entities.

Program analysis, which is the basis of optimization and code generation
phases, is a challenging task for above programs since we need to reason about
entities at subword level. Moreover, accesses at subword level are expressed in
C (commonly used language in those application domains) by means of rather
complex mask and shift operations.

In this paper we introduce a novel program representation that enables rea-
soning about subword entities corresponding to bit sections (a bit section is a
sequence of consecutive bits within a word). This is made possible by explicitly
expressing manipulation of bit sections and relating the flow of values among bit
sections. We present algorithms for constructing this representation. The key
steps in building our representation are as follows:

— By locally examining the bit operations in an expression appearing on the
right hand side of an assignment, we identify the bit sections of interest.
In particular, the word corresponding to the variable on the left hand side
is split into a number of bit sections such that adjacent bit sections are
modified differently by the assignment. The assignment statement is replaced
by multiple bit section assignments.

— By carrying out global analysis, explicit relationships are established among
different bit sections belonging to the same variable. These relationships are
expressed by introducing split and combine nodes. A split node takes a larger
bit section and replaces it by multiple smaller bit sections and a combine
node takes multiple adjacent bit sections and replaces them by a single larger
bit section.

The above representation is appropriate for reasoning about bit sections. For
example, the flow of values among the bit sections can be easily traced in this
representation resulting in definition-use chains at the bit section level. Moreover,
since our representation makes accesses at subword level explicit, processors
with special instructions for packet-level addressing can be supported easily and
efficiently by the code generator and the costly mask and shift operations can
be replaced.

The remainder of the paper is organized as follows. In section 2 we describe
our representation including its form and its important properties. In sections 3
and 4 we present the local and global phases of the algorithm used to construct
the representation. And finally concluding remarks are given in section 5.

2 The Representation

This section presents our representation for bit section based analyses and op-
timizations. Starting point for our extensions are programs modeled as directed
control flow graphs (CFG) G = (N, E, entry, exit) with node set N including
the unique entry and ezit nodes and edge set E. For the ease of presentation we



assume that the nodes represent statements rather than basic blocks'. The con-
struction of our representation is driven by assignment statements of the form
v = t whereby the right hand side term ¢ contains bit operations only, i.e. &
(and), | (or), not (not), << (shift left), and >> (shift right). Since the term on
the right hand side of such an assignment can be arbitrarily long and intricate
and since our goal is to replace those assignments by a sequence of simplified
assignments, we call them complex assignments.

Essentially our representation is based on two transformations performed on
the CFG. First we partition the original program variables into bit sections of
interest. The bit sections of interest are identified locally by examining the usage
of these bit sections in a complex assignment. Only complex assignments which
are formed using bit operations are processed by this phase because partitioning
is guided by the special semantics of bit operations. Other assignments are not
partitioned since no useful additional information can be exposed in this way.
Hence, in the remainder of the discussion, only complex assignments are consid-
ered. Second we relate definitions and uses of bit sections belonging to the same
program variable using global analysis. The required program representation is
obtained by making the outcomes of the above steps ezplicit in the CFG. In the
remainder of this section, we illustrate the effects of the above two steps and
describe the resulting representation in detail.

2.1 Identifying bit sections of interest

Definition 1 (Bit Section).

Given a program variable v with the size of ¢ bits, a bit section of v is denoted
by vi.n (1 <1< h<c)and refers to the sequence of bits 1,1 +1,..,h — 1,h.2
The symbol := is used to denote a bit section assignment.

In the following discussion, if nothing is said to the contrary, we assume for
the ease of discussion that variables have a size of 32 bits.

Partitioning a program variable. Given a complex assignment (v = t), the pro-
gram variable v on the left hand side is partitioned into bit sections, if each of
the resulting sections is updated differently from its neighboring bit sections by
the term ¢ on the right hand side of the complex assignment. In particular, the
value of a bit section of the lhs variable v, say v;._p, can be specified in one of
the following ways:

— No Modification: The value of vy, ;, remains unchanged because it is assigned
its own value.

— Constant Assignment: vy, p, is assigned a compile time constant.

— Copy Assignment: The value of another bit section variable is copied into
Vi..h-

— Expression Assignment: The value of v, p is determined by an expression
which is in general simpler than t.

! Handling basic blocks is straightforward.
2 The definition includes 1-bit sections as well as whole variable sections.



The partitioning of variable v is made explicit in the program representation
by replacing the complex assignment by a series of bit section assignments. A
consequence of this transformation is that operands used in ¢ may also have to
be partitioned into compatible bit sections.

Properties. There are two important properties that will be observed by our
choice of bit section partitions:

1. Non-overlapping sections. The sections resulting from such partitioning are
non-overlapping for individual assignments.

2. Maximal sections. Each section is as large as needed to expose the semantic
information that can be extracted from a given complex assignment. In other
words, further partitioning will not provide us with any more information
about the values stored in the individual bits.

Ezample. Consider the complex assignment to variable a shown in Fig. 1. If we
carefully examine this assignment, we observe that this complex assignment is
equivalent to the bit section assignments shown below. Note that each bit section
is updated differently from its neighboring sections. Bit sections a1, 4 and a7, 32
are set to 0, as. g is involved in a copy assignment, and a;3. 16 is not modified at
all (we have placed the assignment below simply for clarity). Bit section ag. .12
is computed using an expression which is simpler than the original expression.
Finally, as a consequence of a’s partitioning, variable b must be partitioned into
compatible bit sections as well.

Complex Assignment

a = (a & 0zff00) | (b & Ozff) << 4)

Bit Section Assignments

ai.q = 0 /* constant assignment */
as..s = bi.a /* copy assignment */
ag.12 = bs.s | ag.12 /* (simpler) expression */
ai13..16 = Q13..16 /* no modification */
air.32 = 0 /* constant assignment */

Fig. 1. Bit Section Assignments.

Note that bit section assignments reveal the information that some bit sec-
tions are set to constant values, others are assigned copies of bit sections, or
some are unchanged. All this information would be lost if we reasoned about the
variable a as a single 32 bit entity.

2.2 Establishing relationships among bit sections

After introducing bit sections for single complex assignments, the goal of this step
is to establish relationships among the bit sections arising from different complex
assignments. To illustrate the need for relating bit sections, let us consider the
computation of definition-use relationships as shown in Fig. 2. The computation



of definition-use relationships is complicated by the fact that left or right hand
side occurrences of a given program variable may be partitioned differently by
different complex assignments. In Fig. 2a partition vi7. 32 and partition vy 16
are created for variable v in the then-branch and else-branch, respectively. The
conditional is followed by a use of partition v;_ 1. However, the partitions do not
match with each other and the relationships among the bit sections are hidden.
Hence, we introduce special nodes in the program which create and destroy bit
sections and make the relationships between bit sections explicit: A split node
(denoted by @) is introduced to create a set of smaller non-overlapping bit sec-
tions from a larger bit section and a combine node (denoted by @) is introduced
to coalesce smaller adjacent bit sections into a single longer bit section. The
introduction of split and combine nodes as shown in Fig. 2b ensures that each
section name exists before it is referenced. The edges show the flow of values to
the use of v1 14 at the end of the code fragment. By traversing these edges we
can easily determine that if the then-branch is executed, the value reaching the
use of vy 16 at line 7 is defined by the assignment at line 1. On the other hand,
if the else-branch is executed, the values of bits 1 through 3 defined at line 1 and
values of bits 4 to 16 defined at line 5 reach the use of v1 16 at line 7. Thus an
important consequence of appropriately introducing split and combine nodes is
that definition-use relationships can now be established among bit sections.

(1) V1..32 = ... cond

(2) if (cond) then ' Vo -
(3) vi7.32 = .. (v *‘;V" 32*):@\’* < | (V%S'V4 ;6"’17 2l OV
) else [vee - | [z ]
(5) V4.16 = ... 3

(6) endif

¢p) e = U116

(a) Bit section assignments.

(b) Def-use chains.
Fig. 2. Using Split and Combine Nodes.

Definition 2 (Split and Combine Nodes).
A split node that partitions a bit section vy, j, into n non-overlapping bit sections
Ul..s1,Us1+41..505 - Us, _1+1..h 45 written as:

(Uz..sl;vsl+1..S2;---;Usn,1+1..h) = QUui.p

Conversely a combine node that merges adjacent bit Sections vy, s, ,Us,+1..s55 -+
Us, _1+1..n into a single larger contiguous bit section vy p is written as:

Vi.h = 69(’Ul..S17’US1+1..327"'7’Usn_1+1..h,)

Properties. The rules for inserting split and combine nodes are derived from the
following properties which shall hold for our representation.



1. Non-overlapping sections. While at different program points a variable may
be partitioned differently, at each program point we associate a unique par-
titioning with a program variable into non-overlapping sections.

2. Create-before-use. Along all program paths, each right-hand side appearance
of a bit section must be preceded by a left-hand side appearance of the same
section.

The split and combine nodes act as transition points where non-overlapping
partitioning of variable is changed from one partitioning to another. Given a pro-
gram point where a split or combine node is placed, the node makes explicit the
relationship among bit sections that existed immediately preceding the program
point and following the program point.

Minimal representation. The properties described above which are essential for
our representation can be realized by different placements of split and combine
nodes. Of course, our goal is to meet the required properties with minimal in-
sertions of split and combine nodes which leads to the following two minimality
criteria:

1. The number of split and combine nodes introduced along some path shall
be minimal. This can be achieved by ensuring that if a bit section is used
repeatedly along a path, it is created once before its first reference and
destroyed only after its last reference.

2. The lifetime of a bit section, i.e. the period during which the section name
exists, shall be minimal (under the above criterion). This can be achieved
by creating a section at the latest program point where it is needed and
destroying it at the earliest program point where it is no longer needed.

The lifetime of a bit section starts and ends at a split or a combine node.
More specifically, the appearance of a bit section on the left hand side of a
split or combine node represents the start point of the bit section’s lifetime. The
appearance of a bit section on the right hand side of a split or combine node
represents the end point of the bit section’s lifetime.

The two minimality criteria mentioned above imply that the lifetimes of the
bit sections are chosen such that they are long enough to reduce the need for
split and combine nodes but not any longer. These criteria result in the following
placement strategy for split and combine nodes.

Earliest point placement of combine nodes. A combine node that destroys a bit
section name is inserted at the earliest program point where the bit section
is not (partially) anticipable, that is, it is known that an appearance of the
bit section will no longer be encountered and therefore the bit section is no
longer needed.

Latest point placement of split nodes. A split node that creates a bit section
name is inserted at the latest program point at which the bit section is live
but not (partially) available, that is, it does not already exist.



Ezample. Consider the code fragment of Fig. 3 together with the corresponding
CFG with the inserted split and combine nodes displayed in dark boxes. Split
nodes are placed at the latest program points immediately preceding the refer-
ences to v, .16, V17..32, and vy, 32 at nodes 1, 2, and 5 in order to create those bit
sections, since none of them are partially available. On the other hand, combine
nodes are placed at the earliest program points just after the references to vi7. 32
and vy4. 32 at nodes 3 and 6 in order to destroy those bit sections since both are
not used any more. Finally, since bit sections vy 16 and v17. 32 are referenced in
the then-branch of the second conditional statement but not in the else-branch,
the earliest program point to destroy those bit sections is the very first statement
of the else-branch at node 4.

v =
if () then
= 7V1..16 1 | (Vi1eViz.3)= @ Vi 5 | | ViaeVira2)= @ Vig | 2
else v v
R | <= Ve | | <= Vi, |
= V17..32
if () then
= V1.16 | <= Vi | | Vis= $+(V1..|erv17..3z)| 4
= 1732 | == Vg | | (Vi.29V5030)= @ Vi | E)
else v
. 1= U24..32 3 | Vi = @ ViieVirad) | | = Vo |
endif 5
= U1.32
(a) Sample code. (b) Earliest/latest insertion of

combines/splits.

Fig. 3. Placement of Split and Combine Nodes.

Minimal representation is not unique. In some situations multiple solutions are
equally good under our criteria. As an example consider two consecutive if-
statements with a use of vi 16 in the then-branch and a use of vi 32 in the
else-branch as shown in Fig. 4a. If we decide to preserve bit section v; 16 at the
end of the first if-statement, we get solution Fig. 4b. On the other hand, if we
decide to preserve bit section v, 32, we get solution Fig. 4c. In both solutions
three nodes are inserted, however, taking the left branches of the if-statements
we have one inserted node in the first solution and three nodes in the second
solution. On the other hand, taking the right branches we have two inserted
nodes in the first solution but none in the second one. However, we consider
either choice as equally good since both sections v; 16 and v;. 32 have at the
end of the first if-statement future references and both result in equal number
of split and combine nodes. Note that our algorithm yields solution Fig. 4b.



V1..32 =

-
if O then v
e = [ =V

elsé__ V1..16 |(w|s‘”9 ovia] v | [VeoVirs)= @Vim | = Vg
= 01..32 Ve |(mw"ﬁ V.4 |

endif

if () then ;é
= V1.16

else o Vate Vi
= U1..32

endif
= U1..32

(a) Source code. (b) Preserving v1..16. (c) Preserving v1..32.

Fig. 4. Multiple Minimal Solutions.

3 Local Phase: Identifying Relevant Bit Sections

In this phase the partitioning of left hand side (lhs) variables of complex assign-
ments is determined under the constraint that each adjacent bit section shall be
computed differently. This is done in two steps: First a bottom-up traversal of
the right hand side (rhs) expression is carried out during which the bit sections
required for the lhs variable are determined. Second the bit section assignments
are generated in a top-down traversal of the rhs expression tree.

I. Finding bit sections of the lhs variable. The rhs expression tree is
traversed in a bottom-up order and each node in the expression tree is annotated
with bit sections of the expression’s operands that contribute to the computation
of bit sections of the intermediate value represented by the node. In our algorithm
the intermediate value associated with an expression tree node during evaluation
of the expression is denoted by nval. We also use the following basic notations:

— var : {[(I, h), s]}. Bit section value nval;+s+1..n+s is a function of bit section
varyy1,.p- If s is 0, the bit sections of var and nwval refer to the same bit
positions. Otherwise, a non-zero value of s indicates that the bit sections
refer to different bit positions which is achieved by using left or right shift
(<<, >>).

— 0/1:{[(l,h), s]}. Bit section value nvaljys+1.n+s = 0/1, that is, we have a
constant bit section with all bits being equal 0 or 1.

For the ease of presentation the following short hand notations are used as well:

— war : {[(I,m, h),s]} = var : {[(l,m), s], [(m, k), s]}. Short hand notation for
expressing adjacent bit sections of variable var.

— var : {[(ll, hl), 81], [(lz, hz), 82], } or 0/]. . {[(ll, hl), 81], [(lz, hz), 82], }
Short hand notation for multiple non-adjacent bit sections.



Finally, we introduce the following operations for value ranges. These operations
are used in the computation of bit sections throughout the paper.

(ll,hl) n (l2,h2) = {¢

{(l,12)
{(l17 l2)7
{{l2, 1)
{(l2, 1)
{(li,

(11, h1) U (I2, hs) =

I2,11), (1, hy)
2

(I1, k1) = (I2, h2)

(maz(ly,12), min(hi, h2)) if maz(li,l2) < min(hy, h2)

otherwise

l1,12), (l2, h2), (h2,h1)} = (I1,l2, ha,h1) if l1 <12 < ha < hy
(I2,h1), (h1,h2)} = (l1,l2,h1, ha) if Iy <12 < h1 < ha
s (I, h2), (e, ha)} = (T2, 1, hey ha) if 1o <l < he < ha
( y(hi,h2)} = (L2, 11, hi,ho) if la <1y < hi < ha
li,h1), (l2,h2)} otherwise
{(ll,lz), (hg,hl)} iflh <lp <hs <hi
(I1,12) if li <lp <hi <hs
= (hg,hl) iflo <li <hs <hi
103 if la <li <hi <he
(I, h1) otherwise

Algorithm. Visit the nodes in the expression tree in a bottom-up order applying
steps 1 and 2 to them. Identify the bit sections of the lhs variable in step 3.

1. Compute node annotations exploiting characteristics of operators

and operands.

— Variable leaf node. Annotate node with = : {[(0,32),0]}, where variable
x is the operand associated with the leaf node (and 32 is the bit width).

Constant leaf node. Annotate node with a set of bit sections each of which

contains only 0’s or 1’s, that is, 0 : {[({01, h01), s01], [(102, h02), s02], ...}
and 1: {[(111, h].l), 811], [(”.2, h].g), 512], }

Bitwise And (&) operator. We exploit the following properties in com-

puting the annotations for the And node: a&1 = a, a&0 = 0.

operand annotations

&’s annotation

var : {[(l1, h1), s1]},
0 : {[(I2, h2),0]}

var : {[(l1, h1), s1]},
L: {[(I2, h2),0]}

0: {[l27h2]70]}7

var : {[(I' — s1,h’ — s1), s1]} where

(I',h")y = (Is +s1,h1 + s1) — (I1 + 51, ha + s1) N (l2, h2)
var . {[(ll,hl),SI]},

1:{[(I2, h2) = (L + 51, b1 +51) N (I2, h2), 0]}

Bitwise Or (|) operator. We exploit the following properties in comput-

ing the annotations for the Or node: a|l =1, a|0 = a.

operand annotations

|’s annotation

var : {[(l1, h1), s1]},
1:{[(I2, h2), 0]}

var : {[(l1, h1), s1]},
0 : {[(I2, h2), 0]}

1: {[l27h2]70]}7

var : {[(I' — s1,h’ — s1), 51]} where

(l’,h’) = (ll + s1,h1 + 51) — (ll + s1,h1 + 51) n (lz,hz)
var . {[(ll,hl),SI]},

0: {[(l2,h2) - (ll + s1,h1 + 81) n (lz, h2),0]}




— Not operation (not nval ). Corresponding to constant bit sections in nval
create constant bit sections for the not node where 0 bit sections are
converted into 1 bit sections and 1 bit sections are converted into O
bit sections. That is, if 0/1 : {[(l, h),0],..} annotates nwval, then 1/0 :
{[(I, k), 0],..} annotates not.

— Constant left shift (nval << ¢ where ¢ is a constant < 32). From a bit
section that is an annotation of nval, compute bit sections that annotate
the << node as follows.

nval’s annotation | <<’s annotation

var/1: {[(l, k), s]}| 0:{[(0,c),0]} and

var/1:{{(' = s —c,h’ —s—¢),s+ |},

where (I',h')=(l+s+c,h+s+c)N(0,32)

0: {[(Z,h),0]} 0: {[(,n'),0]}, where (I',h") = (I +¢,h +¢) N (0,32)
and 0 : {[(0, ¢),0]}

0: {[(0,hR),0]} 0:{[(0,h+¢c)N(0,32),0]}

— Constant right shift (nval >> ¢). From a bit section that is an annota-
tion of nval, compute bit sections that annotate the >> node as follows.
The following is applicable for shifting of an unsigned value. In case of
a signed value, if the sign is known, similar rules can be derived.

nval’s annotation | >>’s annotation

var/1 : {[({,h),s]}| 0:{[(32 —¢,32),0]} and

var/1: {{(' = s+c¢,h' —s+c),s — ]|},

where (I',)h') = (I+ s —c,h+5s—c)N(0,32)
0:{[(l,h),0]} 0:{[(32 —¢,32),0]} and

0:{[(I',n"),0]}, where (I',h') = (I —c,h — c) N (0,32)
0: {[(l,32), 0]} 0: {[(l ) 32) n (0:32):0]}

2. Ensure all bits within a section are computed identically. Closer
examination of bit sections of different operand variables that annotate
a given node can reveal whether further splitting of these bit sections is
required to ensure that each resulting bit section is computed by exactly
one expression. The bit section var; : {[(l1,h1), s1]} is split by bit section
vary : {[(l2, h2), s2]}, denoted by var; /vars, at a node in the expression tree
by means of the following rule:

(var : {[(ll,lz + 52 — S1,he + 52 — sl,hl),sl]}
ifli4+s1 <lp+s2<hy+s2<hi+s:
vary {[(ll,l2 + 592 — sl,hl],sl}
vary : {[(l1, h1), s1]} iflh +s1 <la+s2 <hi+s1 <hy+s2

vary : {[(I2, ha), s2]} vary : {[(l1, ha + 52 — s1,h1), 51}
iflo+s2<li+s1 <hy+s2<hi+s1
vary : {[(I1, k1), 511}

L otherwise

The splitting is performed by considering every ordered pair of bit sections.
As we can see, the above bit sectioning is performed to distinguish between



bit sections which are computed differently by both bit sections var; and
vars. More precisely, we distinguish a bit section which is computed from
both var; and vars from one which is computed only from var; .

3. Identify bit sections for the lhs variable. After steps 1 and 2, the
annotations of the root node of the expression tree are used to identify the
bit sections of the variable on the left hand side. Let us assume that the width
of a word is 32 bits, then we split the initial bit section of the lhs variable
varys = {[(0,32),0]} if parts are computed differently. More formally, new
bit sections are obtained by a repeated evaluation of

varyys - section
any : {[(l, h), s]}

for each annotation any : {[({,h), s]} at the root node of the rhs tree.

II. Generating bit section assignments. In this step we generate the bit
section assignments corresponding to the bit sections identified for a lhs variable
of a complex assignment. Given a bit section v;41. , the expression which has to
be assigned to vjy1.p is returned by the function call genexp((l, h), €ro0t), where
€root 1 the root node of the entire expression tree, i.e., for each bit section (I, h)
for a lhs variable v we call

Vl4+1..h = Simplify(genexp((la h): eroot))'

Function simplify is the last step in which trivial patterns like “a|0” or “a&1” are
reduced to “a”. As shown in Fig. 5, genexp() traverses the expression examining
the bit sections that annotate each node in order to find those that contribute to
bits I + 1..h. If only one of the bit sections at a node contributes to bits [ + 1..h,
a traversal of the subtree is not required any more. In this case the operand is a
sequence of h—1 bits belonging to a variable or it consists of constant (0 or 1) bits.
If multiple bit sections contribute to bits [ + 1..h, then the operator represented
by the current node is included in the expression and the subexpressions that are
its operands are identified by recursively applying genexp() to the descendants.

Example. The example in Fig. 6 illustrates how the bit sections of lhs variable
a of Fig. 1 are determined. The nodes are dealt with in a bottom-up manner. At
the leave nodes, variables are initialized with whole bit sections, while constants
are partitioned such that sequences of 0 or 1 are identified by bit sections. The
annotations at the &-nodes indicate that some bits are 0 while others are derived
from bit sections of variables a and b.

Now let us apply the genexp() algorithm to the example. For bit sections a4
and ay7.32 we find the contributing bit sections 0 : [(0,4),0] and 0 : [(16,32), 0]
which annotate the root node e; resulting in an assignment of constant 0. For
both as. g and a;3,16 we find a single contributing bit section that annotates e; .
From b : [(0,4), 4] we obtain that as, s is assigned b;. 4 and from a : [(12, 16), 0] we
get that ai3. 16 is assigned to itself, that is, it remains unchanged. Finally, for bit
section ag. 12 we detect that there are two contributing bit sections, a : [(8,12), 0]



geneap(,h),e) {

BS = ¢

for each section any : [(el,eh),es] € set of annotations of node e do
if range (I,h) is contained in range (el + es,eh + es) then

BS = BS U {any:[(el,eh),es]}

endif

endfor

if BS == {any:[(el,eh), es]} then
return ("anyi—cs+1..h—es”)

else
let e.lchild and e.rchild be expression trees for operands of e
case e.op of

e.op == "not” : return ("not” genexp((l,h),e.lchild);
eop == 7 << " return(genexp((l — ¢, h — ¢), e.lchild);
eop == 7 >> " : return(genexp((l+ ¢, h + ¢),e.lchild);
e.op == "&” : return(genexp((l,h),e.lchild) & genexp((l,h), e.rchild);
eop == 7|7 : return(genexp((l,h),e.lchild) ”|" genexp((l,h), e.rchild));
end case
endif
}
Fig. 5. Generating Bit Section Assignments.
Step 1:
1{[(8,16),0], Step L.
StepL: 0{[(08).0, Step L: L{[(08)0)
a{[(0,32),01} [(16:32),0]} b{[(0.32),0}  0:{[(832).00}
a 0xffo0 Oxff
2t16. \ / Sep L \ /
a{[(8,16),0]} o b:{[(0,8),0}
0{[(0,8),01, & |2 0{[(8,32),00} :
[(16,32),01}

Step 1: \ /

b:{[(0,8).41}

0:{[(0.4),01, << |%s

[(12,32),01}
Step 1: Step 2:
a | a(lee0)  a{l(81216)0)

Step 3: b:{[(0,8),41} b:{[(0.4.8).41}
a{[(0,4,8,12,16,32),0]} 0:{[(0,4),01, 0:{[(0,4),01,

[(16,32),01} [(16,32),01}

Fig. 6. Identifying Relevant Bit Sections for a Complex Assignment.



and b : [(4, 8),4]. Therefore the operator | at node e; is part of the expression and
we must traverse the descendant nodes to locate the operands. In this case we
find the operands ag. 12 and b5 g at the left and right nodes e, and e3 respectively.

4 Global Phase: Placement of Split and Combine Nodes

In this phase global analysis is performed to relate the bit sections introduced
in the local phase to each other by inserting split and combine nodes. Note that
the analysis for insertion of splits and combines of one variable is independent
of other variables.

Backward and forward propagation of bit sections. In order to determine
whether an existing bit section should be eliminated using a combine node at a
given program point, we must know whether the bit section is used later on in the
program. This is accomplished by computing anticipable bit section references in
a backward analysis. Similarly for determining whether a bit section should be
created using a split node at a program point, we must know if the bit section
already exists. This is accomplished by computing available bit sections in a
forward analysis.

The values of data flow variables involved in this analysis are a set of bit sec-
tions belonging to a program variable. As before, each bit section is represented
by a range (I, h) which denotes bits [+ 1 through h. We already defined and used
operations N, U, and — for value ranges. Since the data flow values are sets of
value ranges, we define analogous operations over a set of value ranges whereby
the new set is computed by considering every pair. We denote these operations
by N, U, and —.

Given the above operations, the computation of anticipable (B) and available
(F) bit sections for node n and variable v is shown below. The B and F' sets are
computed at the beginning (in) and end (out) of each node. Ref[n,v] is a local
set that represents the bit sections of v that are referenced on the lhs or rhs at
node n.3

Anticipable Bit Sections : Backward Analysis

Initialize
Bouiexit,v] = ¢
Propagate
BOUt[n’v] = Us € succ(n) Bi"[s’v]
Bin[n,v] = (Bout[n,v] — Ref[n,v]) |J Ref[n,v]
Available Bit Sections: Forward Analysis
Initialize
Finlentry,v] = ¢
Propagate
Fi"[n’ U] = Up € pred(n) FOUt[p’ 11]
Fout[n,v] = (Fin[n,v] — Ref[n,v]) |J Ref[n,v]

% It should be noted that due to the semantics of the operators — and U, X —
Ref)|J Ref is NOT equal to X |J Ref.



Combine and Split Node Insertion. The insertion points are determined based
on the results of the forward and backward analysis. This is done in three steps.
First, we identify all candidate sections at each program point that may be
either eliminated or created at that point. We refer to these sections as com-
bine candidates and split candidates, respectively. The combine candidate set,
CCinjout(n,v), and the split candidate set SCyy,/out (1, v), for a program point
n and variable v are identified as follows.

If a bit section of v is available at n’s entry (exit) but not anticipable at
n’s entry (exit), then the combine node needed to eliminate the bit section is a
legal candidate for insertion at entry (exit) of n. Similarly if a bit section of v is
anticipable at n’s entry (exit) but not available at n’s entry (exit), then the split
node needed to create the bit section is a legal candidate for insertion at entry
(exit) of n. In the equations below Fy; , , and B}, denote the solutions of
the equation systems. Note that the only sections of interest are those that are
smaller than (0,32) and therefore (0,32) is never included in the CC and SC
sets. This is because creation of (0,32) does not require a split as there is no
larger section from which (0,32) can be split and elimination of (0, 32) does not
require a combine because there is no larger section into which (0,32) can be
merged.

Combine and Split Candidates
CCinjout(n,v) ={(l,h) : (I,h) € F} (n,v) and (I,h) ¢ B; (n,v)}

w {(0, 32)} n/out in/out
Scin/out (’I’l, U) = (l: h) : (l: h) € Bi*n/out(n7 U) and (l: h) ¢ Fil/out(n: U)}
- {(0: 32)}

In the second step we identify the earliest points for combines and latest
points for splits for insertion of combine and split nodes. This can be done easily
from the results of the first step by comparing the CC and SC' sets of predeces-
sor and successor nodes. For example, if a section is present in the C'Cy, set of a
node, but not in any of the C'C,,; sets of its predecessor nodes, then the entry
point of the node is the earliest point at which the combine can be placed.

Combine and Split Insertion Points

EarliestCCin(n,v) = CCin(n,v) — Upe pred(n) CCout(p,v)
EarliestCCoyt(n,v) = CCout(n,v) — CCin(n,v)
LatestSCin(n,v) = SCin(n,v) — SCout(n,v)
LatestSCout(n,v) = SCout(n,v) — Use suce(n) SCin(s,v)

Finally in the third step we insert combine and split nodes. To this end,
during backward and forward analysis as well as during computation of combine
and split candidates, the bit sections in the data flow sets are distinguished to
fall into two categories: Those which are added to the sets because references to
them are encountered and those which are added as a consequence of adding the
ones which are referenced. Only the bit sections that are marked as being di-
rectly referenced are considered during insertion of split and combine nodes. The



insertion conditions are given below. After the combine nodes the split nodes are
inserted. The portions of the combine and split nodes which are not specified
and marked by dots are determined by examining the remaining bit sections
that exist at that program point.

Combine and Split Insertion
if (I,h) € EarliestCCiy oui(n,v) then

insert combine node ’v... = D (coy Vg1, hy.er)’
if (I,h) € LatestSCipjout(n,v) then
insert split node (..., Vi41.hy....) = @ v..°

5 Concluding Remarks

We presented a novel program representation which supports analyses at bit
section level. Instead of coping with subword accesses for each optimization, our
representation makes those accesses explicit enabling to realize traditional anal-
ysis on subword level very easily. In a local analysis phase we analyze statement
by statement and identify bit sections which could be of interest for subsequent
optimization phases. Then we relate those bit sections to each other by intro-
ducing split and combine nodes.
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