
Locating Faulty Code Using Failure-Inducing Chops ∗

Neelam Gupta Haifeng He Xiangyu Zhang Rajiv Gupta

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

{ngupta, hehf, xyzhang, gupta}@cs.arizona.edu

ABSTRACT
Software debugging is the process of locating and correcting faulty
code. Prior techniques to locate faulty code either use program
analysis techniques such as backward dynamic program slicing or
exclusively use delta debugging to analyze the state changes during
program execution. In this paper, we present a new approach that
integrates the potential of delta debugging algorithm withthe ben-
efit of forward and backward dynamic program slicing to narrow
down the search for faulty code. Our approach is to use delta de-
bugging algorithm to identify a minimal failure-inducing input, use
this input to compute a forward dynamic slice and then intersect
the statements in this forward dynamic slice with the statements
in the backward dynamic slice of the erroneous output to compute
a failure-inducing chop. We implemented our technique and con-
ducted experiments with faulty versions of several programs from
the Siemens suite to evaluate our technique. Our experiments show
that failure-inducing chops can greatly reduce the size of search
space compared to the dynamic slices without significantly com-
promising the capability to locate the faulty code. We also ap-
plied our technique to several programs with known memory re-
lated bugs such as buffer overflow bugs. The failure-inducing chop
in several of these cases contained only 2 to 4 statements which
included the code causing memory corruption.

Categories and Subject Descriptors
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D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Testing tools, Tracing
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1. INTRODUCTION
As Mark Paulk from Carnegie Mellon’s University’s Software

Engineering Institute noted,“A fundamental problem with software
quality is that programmers make mistakes” [15]. Programming
being a primarily human activity, errors creep into software in spite
of the advances made in the areas of programming languages and
software development processes. Locating and correcting errors
in software is a difficult and time consuming activity that requires
understanding of the software. Techniques and tools that can help
software developers in narrowing down the search for faultycode
can greatly reduce the time and resources spent on locating and
correcting software errors.

Delta Debugging. Zeller introduced the termdelta debugging[27]
for the process of determining the causes for program behavior by
looking at the differences (the deltas) between the old and new
configurations of the programs. Zeller and Hildebrandt [28]then
applied the delta debugging approach to simplify and isolate the
failure-inducing input. Tosimplifya failing test case, the delta de-
bugging algorithm finds a minimal test case where removing any
single input entity would cause the failure to disappear. For isolat-
ing a minimal failure-inducing input difference between a failing
and a passing test case, the generalized delta debugging algorithm
can be used. In [26], Zeller further extended this idea to isolate
failure-inducing differences in program states and build acause-
effect chain in terms of relevant state differences. However, as we
show later with an example, it may not always be easy to link the
cause-effect chains (which are in terms of values of variables at dif-
ferent execution points) to the faulty source code. Therefore, it is
still up to the programmer to use these cause-effect chains in terms
of program states to decide where the failure causing code could be
or what the failure causing circumstance could be. Recently, Cleve
and Zeller [7] focus on cause transitions in an effort to linkthe fail-
ures to the program code. The focus of this work is on analyzing
program statetransitions in space and time in order to narrow down
the search for faulty code.

Dynamic Slicing. In contrast to the above techniques that analyze
program statesas they occur during program execution, the tradi-
tional program analysis techniques such as program slicing[1, 2, 3,
4, 6, 9, 17, 18, 24, 29, 30, 31, 32] focus onsource codeanalysis of
the programs. The concept of program slicing was first introduced
by Mark Weiser [24]. Since debugging is usually performed byan-
alyzing the statements of the program when it is executed using a
specific input, Korel and Laski proposed the idea ofdynamic pro-
gram slicing[17]. There are two kinds of dynamic slices: backward
dynamic slices and forward dynamic slices. Thebackward dynamic
sliceof a variable at a point in the execution trace includes all those
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Initial Inputs: input1 : = [1,5,8,2] -×
input2 : = [0,0,0,0] -

√

1-minimal failure-inducing inputs: input3 : = [1,0,8,2] -×
input4 : = [0,0,8,2] -

√

Incorrect outputs at line 24: bitter, sweet, sour

FwdSlice(input3, argv[1]) = {7, 12, 13, 16, 17, 18, 21, 22, 24}

BwdSlice(input3, bitter@24) = {7, 9, 12, 14, 15, 16, 17, 18, 21, 22, 24}
Failure-inducing Chop(input3, argv[1], bitter@24) = {7, 12, 16, 17, 18, 21, 22, 24}

BwdSlice(input3, sweet@24) = {7, 9, 12, 13, 24}
Failure-inducing Chop(input3, argv[1], sweet@24)={7, 12, 13, 24}

BwdSlice(input3, sour@24)= {7, 9, 12, 14, 15, 16, 17, 18, 24}
Failure-inducing Chop(input3, argv[1], sour@24)= {7, 12, 16, 17, 18, 24}

Figure 1: An example program.

executed statements which affect the value of the variable at that
point. In contrast, theforward dynamic sliceof a variable at a point
in the execution trace includes all those executed statements that
are affected by the value of the variable at that point. Backward
dynamic slicing has been proposed to guide programmers in the
process of debugging [2, 4, 9, 18, 31] by focusing the attention of
the user on a subset of program statements which are expectedto
contain the faulty code. The effectiveness of backward dynamic
slice in fault location is determined by two factors:How often is
the faulty statement present in the slice?andHow big is the slice,
i.e. how many statements are included in the slice?In our previ-
ous work [31], we have evaluated and compared the effectiveness
of different backward dynamic slicing algorithms in fault location.
For those erroneous statements that are present in the static slices
of the faulty outputs, we observed that dynamic slices are able to
contain the faulty statement in most of the cases and in general dy-
namic slices are quite small compared to the number of executed
statements. In fact results of a study reported in [32] show that
the number of executed statements can range from 2.46 to 56.08
times the number of statements in a backward dynamic slice. How-
ever, we also observed that the number of statements in a backward
dynamic slice could still be large and in addition many of thestate-
ments are apparently unlikely to be related to the fault. Thegoal of
this paper is to further reduce the number of statements thatneed
to be examined to locate faulty code.

Integrating Delta Debugging and Dynamic Slicing. Surpris-
ingly, none of the prior research on delta debugging [27, 28,26, 7]
integrates the potential of dynamic program slicing with the delta
debugging approach in narrowing down the search for faulty code.
In this paper, we propose the following novel approach. First we
use delta debugging to either find a simplified failure-inducing in-
put or isolate a minimal failure-inducing input difference. We sim-
ply refer to this relevant part of the input as the minimal failure-

inducing input. Next, we compute the intersection of the state-
ments in theforward dynamic sliceof the failure-inducing input
and thebackward dynamic sliceof the faulty output to locate the
likely faulty code. We simply refer to the statements in the above
intersection of forward and backward dynamic slices as thefailure-
inducing chop. The failure-inducing chops are expected to be much
smaller than backward dynamic slices since they capture only those
statements of the dynamic slices that are affected by the minimal
failure-inducing input.

Let us consider the example program shown in the left column of
Figure 1 which is taken from the Unravel tool set [22]. Let us intro-
duce an error in this program by modifying the statement at line 12
to red = 5 ∗ red. Inputs for a failed test case and a passed test case
for this program are shown on the right. Starting with these inputs
for the failed and passed runs, we use the delta debugging algorithm
to isolate minimal failure-inducing input difference. Thealgorithm
isolatedargv[1] as the minimal failure-inducing input difference.
The inputs for the failed test case and the correct test case corre-
sponding to the isolated minimal failure-inducing input difference
are [1, 0, 8, 2] and [0, 0, 8, 2]. The three outputsbitter, sweetand
sour are found to have wrong value for input[1, 0, 8, 2]. The for-
ward slice onargv[1] and the backward slices onbitter, sweetand
sour, and the resulting failure-inducing chops are also shown inthe
right column in Figure 1. We can see that the failure-inducing chop
for each of the faulty outputs contains the faulty statement12. In
addition, the failure-inducing chop in each case is smallerthan the
respective backward and forward slices.

Note that in this example, both the failed run as well as success-
ful run contain the error statement. Hence an approach basedon
programdices(i.e., set difference of execution slices of failed and
successful runs) discussed in [4] would not be able to locatethe er-
ror statement in this case. We also used AskIgor [5], the automated
debugging service based on the delta debugging technique, to ob-
tain the cause-effect chains for the example program in Figure 1
with line 12 in error. The cause-effect chains are given below.



1. Execution reaches line 14 of testdd.c in main. Since the pro-
gram was invoked as"test dd 1 5 8 2", local variable
sweet is now40.

2. Execution reaches line 21 of testdd.c in main. Sincesweet
was40, local variablesalty is now7.

3. Execution reaches line 22 of testdd.c in main. Sincesalty
was7, local variablesalty is now7.

4. Execution ends. Sincesalty was7, the program exits with
status code 255. The program fails.

From the above cause-effect chains, it is not easy to figure out
that the statement at line 12 in the source code was in error. Also,
the values of the variablesalty at steps 2, 3, and 4 in the cause-
effect chain do not seem to be directly linked with the failure. In
fact, the outputsalty was correct for both the failed and suc-
cessful runs. We would like to point out here that although delta
debugging provides a novel technique to select a set of test cases
that may be highly relevant to the failure, it may not always be
easy to link the cause-effect chains in term of values of variables at
different execution points to the faulty source code.

Our approach attempts to combine the novelty of delta debug-
ging algorithm in selecting relevant test cases, with the benefits of
dynamic source code analysis, to automatically provide informa-
tion to the programmer about which statements are most likely to
be cause of failure. Note that the cause-effect chains may also be
able to capture failures resulting from other circumstances (such as
incorrect environmental settings etc.) besides the failures resulting
from the faulty source code. However, the goal of our work is to
be able to provide more direct source code related help to thepro-
grammers in the cases where failures of programs result fromfaulty
source code. We implemented our approach and evaluated its ef-
fectiveness in locating faulty code for several programs [20, 33, 14,
13]. Our results show the promise of combining dynamic slicing
with delta debugging for locating faulty code. The contributions of
our paper are:

• We propose a novel approach that integrates the delta debug-
ging algorithm with the forward and backward dynamic pro-
gram slicing to narrow down the search for faulty statements
to a failure-inducing chop.

• Prior work on using program slicing for debugging has pro-
posed the use ofbackwarddynamic program slicing. How-
ever, we show how delta debugging enables the use offor-
ward program slicing in locating faulty code.

• We conducted experiments with the Siemens suite of pro-
grams [14, 13] which provides a few faulty versions injected
with faults and the test pools for each program. Our results
show that on average, the faulty statement was present in the
failure-inducing chop in 43% to 100% cases across different
programs. Also, the average size of failure-inducing chop is
64% to 73% of the size of backward dynamic slice and only
7% to 14% of the size of the whole program.

• We applied our technique to several programs with known
memory related bugs. In many cases our technique was able
to locate very few (2 to 4) statements which included the
faulty code.

The rest of the paper is organized as follows. In section 2 we ex-
plain our technique and present the algorithms. We describeour
implementation in section 3 and present experimental results in sec-
tion 4. Related work is presented in section 5 and conclusions are
given in section 6.

2. FAILURE-INDUCING CHOPS
The basic idea of our approach is shown in Figure 2. Figure 2(a)

represents a successful execution which takes a set of inputs, car-
ries out a series of computations and then produces a set of outputs.
Figure 2(b) represents a failing run (faulty output is observed) re-
sulting from the execution of afaulty statement. The figure shows
a case in which the backward dynamic sliceBS on the faulty out-
put includes the faulty statement. By using delta debuggingalgo-
rithm [28], we identify theminimal failure-inducing input∆min

as shown in the figure. Therefore, if we perform forward dynamic
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Figure 2: Failure-inducing chops.

slicing on the∆min, it is reasonable to expect that thefaulty state-
mentwould be present in the failure-inducing chop(FChop)which
is the intersection ofBS and FS. As shown in Figure 2, we can
expect the(FChop) to be much smaller than eitherBSor FS. The
outline of our algorithm is given in Algorithm 1. Next we discuss
each step of our algorithm.

Algorithm 1 Fault location using failure-inducing chops.

1: Step 1: Compute minimal failure-inducing input by:
2: either useddmin to Simplify input [28]:
3: I ′

f = ddmin(If )
4: ∆min = I ′

f

5: or usedd to Isolate input difference [28]:
6: (I ′

s, I ′

f ) = dd(Is, If )
7: ∆min = I ′

s - I ′

f

8: Step 2: Compute forward dynamic slice:
9: FS= FwdSlice(I ′

f , ∆min)
10: Step 3: Compute backward dynamic slice:
11: BS= BwdSlice(I ′

f , failed output)
12: Step 4: Compute failure-inducing chop:
13: FChop= FS∩ BS

Step 1: Finding minimal failure-inducing input. To find a failure-
inducing input, any of the two algorithms given by Zeller andHilde-
brandt in [28] can be used. The first algorithm (ddmin)simplifies
a failing test caseIf to produce a minimal test caseI ′

f such that
removing any single input entity fromI ′

f causes the failure to dis-
appear. Therefore∆min is I ′

f in this case. The second algorithm
(dd) isolatesa minimal failure-inducing input difference between a
failing and a passing test case. Given inputsIf andIs for a failed
run and a successful run respectively, this algorithm returns a pair
of inputs(I ′

f , I ′

s), such thatI ′

s andI ′

f correspond to a successful
run and a failed run respectively and any single part ofI ′

f − I ′

s if
removed fromI ′

f would make the failure disappear or if added toI ′

s

would make the failure occur. Therefore in this case∆min=I ′

f -I ′

s.

Step 2: Compute Forward Dynamic Slice.The minimal failure-
inducing input∆min computed by the first step defines the slicing



criteria for the forward dynamic slicing. In this step, we compute
the forward dynamic sliceFS= FwdSlice(I ′

f , ∆min). We illus-
trate the computation of forward dynamic slice using the example
in Figure 1. In Figure 1, the value ofredat statement 12 is affected
by inputargv[1] because it is data dependent onargv[1]. Therefore
statement 12 is in the forward slice ofargv[1]. Even thoughargv[1]
does not directly contribute to the values computed at statements
17 and 18, it decides the execution of those statements by affecting
the predicate outcome at 16. Therefore statements 17 and 18 are
also in the forward slice ofargv[1]. In other words, given an in-
put and the corresponding execution, the dynamicforward sliceis
the set of statements which are affected by that particular input via
data/control dependences.

While a statement can be statically control dependent upon mul-
tiple predicates, at runtime, each execution instance of a statement
is dynamically control dependent upon a single predicate. The
predicate on which the execution of a statement is control depen-
dent is found as follows. First, a statement executions and its intra-
procedural control ancestorp must correspond to the same function
invocation. Second, the dynamic control dependence of execution
of s is on the most recently executed predicatep on which s is
statically control dependent. Timestamps are associated with exe-
cution instances of statements in order to evaluate the above con-
dition. Third, inter-procedural control dependence is computed by
introducing extra dependence edges between call sites and the cor-
responding function entries.

Algorithm 2 Updating forward slicing information.
ProcedureUpdate(si , stack)
1: IsMarked= 0;
2: for (each usev in Use[si]) do
3: IsMarked= IsMarked| MARKED[v];
4: end for
5: cd = the predicate in CD(s) s.t.stack.ts[cd]is maximum;
6: IsMarked= IsMarked| stack.marked[cd];
7: if (IsMarked== 1) then
8: slice= slice∪ {s}
9: end if

10: if (s is a predicate)then
11: stack.marked[s] = IsMarked;
12: stack.ts[s]=timestamp++;
13: end if
14: for (each definitionv in Def[si]) do
15: MARKED[v] = IsMarked;
16: end for

Next we present a forward computation algorithm [6, 30] for
forward slicing. This algorithm updates the forward slicesof vari-
ables after execution of each statement. The updating of dynamic
forward slice following the execution of statement instance si is
presented in the Algorithm 2. The variables used in the algorithm
are as follows:MARKED[v] denotes whetherv is affected by the
specified input;IsMarkedindicates whether or not statements is to
be included in the slice;slicedenotes the currently computed for-
ward slice for the specified input;timestamp denotes the current
time; andstack is the current stack frame. We store the timestamps
of latest executions of predicates instack.ts[]and the information
about whether these predicates were affected by the specified in-
put in stack.marked[]. This guarantees that when we search for
the predicate instance with largest timestamp in the setCD(s) of
predicates on whichs is statically control dependent, we only con-
sider those instances that have the same stack frame assi. In the
Algorithm 2, lines 2 to 4 setIsMarkedif there is a use of a marked
variablev in si. Lines 5 and 6 setIsMarkedif immediate control
ancestor ofsi is marked. IfIsMarked is set, lines 7 to 9 include

s in the forward slice. Lines 10 to 13 update the information on
the stack ifs is a predicate. Finally, lines 14 to 16 mark each of
the variable defined bysi. To initiate the propagation of marks, we
need to mark the specified input variable.

Step 3: Compute the backward dynamic slice.In this step the
backward dynamic sliceBS= BwdSlice(I ′

f , failed output) for
the failed output is computed for the failed run corresponding to
the inputI ′

f generated in Step 1. The backward dynamic slice is
computed from the statement instance where the first erroneous
output is generated. When the faulty version generates a segmenta-
tion fault forI ′

f , the backward slicing criterion is the pointer which
caused the segment fault instead of the output. The backwarddy-
namic slicing algorithm we used is thefull slicing algorithm pre-
sented in our prior work [31].

Step 4: Compute the failure-inducing chop.In this step, we com-
pute the statements in the intersection of the forward dynamic slice
FS computed in Step 2 and the backward dynamic sliceBScom-
puted in the Step 3. Our algorithm identifies the set of statements
in this intersection called the failure-inducing chopFChopas the
set of statements that are likely to contain the faulty code.

3. IMPLEMENTATION
We have developed a dynamic slicing tool which was used to

conduct experiments. Our tool executesgcc compiler generated
binaries for Intel x86 and computes dynamic slices based upon for-
ward computation algorithms. Even though our tool works at bi-
nary level, the slices can be mapped back to source code levelusing
the debugging information generated bygcc.
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Figure 3: Slicing infrastructure.

Fig. 3 shows the main components of the tool. Thestatic analy-
siscomponent of our tool computes static control dependence (CD)
required for forward/backward slice computations from thebinary.
The static analysis was implemented using theDiablo [8] retar-
getable link-time binary rewriting framework as this framework al-
ready has the capability of constructing the control flow graph from
x86 binary.

Thedynamic profilingcomponent of our system which is based
upon theValgrind memory debugger and profiler [23] accepts the
samegcc generated binary, instruments it by calling theslicing
instrumenter, and executes the instrumented code with the support
of the slicing runtime. The slicing instrumenter and slicing run-
time were developed by us to enable collection of dynamic infor-
mation and computation of dynamic slices. Valgrind’s kernel is a
dynamic instrumenter which takes the binary and before executing
any new (never instrumented) basic blocks it calls the instrumen-
tation function, which is provided by the slicing instrumenter. The
instrumentation function instruments the provided basic block and
returns the new basic block to the Valgrind kernel. The kernel exe-
cutes the instrumented basic block instead of the original one. The
instrumented basic block is copied to a new code space and thus
it can be reused without calling the instrumenter again. Thein-
strumentation is dynamic in the sense that the user can also enforce
the expiration of any instrumented basic block. Thus, we caneasily



turn off/on the slicing instrumentation for sake of time performance
or for certain code, e.g. library code.

The slicing runtime essentially consists of a set of call back func-
tions for certain events (e.g., entering functions, accessing memory,
binary operations, predicates etc.). We intercept any output system
call ( WRITE etc.) and then augment the original output with their
slices represented byReduced ordered Binary Decision Diagrams
(roBDD)s [30]. More details about why and how we use roBDD in
slicing can be found in our previous work [30, 31]. One of the very
important features of roBDD is that it can represent a uniqueset
by one unique (integer) number and from that number the full set
can be easily retrieved from the roBDD. In other words, by using
roBDD we are able to represent a slice by one integer. This is criti-
cal to our design because now for each variable (memory location)
we only need to store one integer.

The basic idea of forward computation is that when some opera-
tion is performed on operands, the slices/marks of source operands
are fetched and unioned/ored together with the current statement.
The resulting slice is assigned to the destination operand.Since one
slice can be represented as one integer, we need to store one integer
(one mark bit) for each operand which could be memory location,
register, or predicate.

The implementation of delta debugging was carried out sepa-
rately as it mainly involves repeatedly manipulating program in-
puts and executing the program on these inputs. Once the failure-
inducing input has been identified, the above set up is used toexe-
cute the program and compute the chop from the forward and back-
ward dynamic slices.

4. EXPERIMENTAL EVALUATION

4.1 Evaluation for Siemens Suite
Our first experimental study is based upon the programs from

the Siemens suite [14, 13]. For each program, the Siemens suite
provides its test cases and several faulty versions with manually
injected faults.

Table 1: Overview of benchmark programs.
Program Description Versions LOC Tests

print tokens lexical analyzer 5 565 4072
print tokens2 lexical analyzer 7 510 4057

schedule priority scheduler 6 412 2627
schedule2 priority scheduler 2 307 2683
replace pattern replacement 18 563 5542

Table 1 shows the Siemens suite programs used in our exper-
imentation. We excluded the programstcasand tot info because
tcas is too small andtot info has floating point operations, which
are currently not supported by our slicing tool. Since the omitted
statement will not be present in any static or dynamic slice,we ex-
cluded the faulty versions corresponding to errors of code omission
from our experiments. Each faulty version of the program used in
our experiments had exactly one fault injected. Some faultypro-
grams were excluded because they produce no output and thus it
is unclear how a proper slicing criterion should be defined. We in-
strument the faulty programs in minor ways in order to run theex-
periments. For example, we replaced the input functions like fgets,
fgetc, and output functionsfprintf, printf, fputcwith our customized
functions using which it is more convenient for our slicing tool to
find the forward and backward slicing criterion.

Failure-inducing chops. Table 2 lists the programs and their faulty
versions used in our experiments. We used theddmininput simpli-
fication algorithm [28] in these experiments. The number of failed

Table 2: Number and size of original and simplified inputs.

Program Version Number of Avg. Input Size
FTs USIs Orig. Simplified

print v1 5 4 78 3
tokens v2 48 1 240 1

v4 28 1 39 2
v6 186 2 58 1
v7 24 24 53 1

print v4 403 9 128 2
tokens2 v5 172 1 18 1

v6 518 93 33 1
v7 292 1 153 2
v8 256 74 49 2
v9 60 1 76 2
v10 172 1 18 1

schedule v1 7 7 21 6
v2 210 210 64 7
v3 161 148 53 5
v4 294 288 57 8
v6 7 7 21 6
v7 35 29 54 6

schedule2 v5 32 32 30 6
v7 39 33 52 6

replace v1 64 1 59 3
v3 123 87 110 5
v5 267 62 63 10
v6 94 30 49 8
v7 69 1 45 2
v8 53 15 102 3
v9 23 21 64 7
v10 20 19 63 6
v11 23 21 64 7
v12 221 84 88 19
v14 131 72 52 7
v15 59 1 25 1
v16 82 1 38 2
v18 210 70 42 5
v21 2 2 92 3
v23 21 11 55 3
v25 2 2 19 3
v26 93 59 55 11

test cases in the test pool, for each faulty version of each program
used in our experiments, are shown in columnFTs. When we
applied theddmin input simplification algorithm to each of these
failed test cases, the number of unique simplified inputs produced
for each faulty version are given in columnUSIs. The latter number
is smaller than the former because in some cases different failing
inputs produce the same simplified input. The average sizes of in-
puts for failed test cases and the average sizes of simplifiedinputs
are given in columnsOrig. and Simplifiedrespectively. The in-
put sizes are in terms of entities appropriate for the program. For
print tokensandprint tokens2it is the number of tokens, forsched-
ule andschedule2it is the number of commands, and forreplaceit
is the number of characters. As we can see, simplified inputs are
much smaller than original inputs.

Table 3 shows the results for this experiment. The columns la-
beledAvg. BS, Avg. FS, andAvg. FChopshow the average sizes
of backward slices, forward slices, and failure-inducing chops re-
spectively. The averages are computed over the number of unique
simplified inputs (USIs) for each version. The columns labeledIn
BS, In FS, andIn FChoprespectively show thefraction (out of to-
tal number of USIs for each faulty version)of backward dynamic
slices, forward dynamic slices and their failure-inducingchops that
contain the faulty statement. This fraction ranges from 0 to1. How-
ever, in most of the cases the fraction is 1 indicating that faulty
statements are being captured by the failure-inducing chops.



Table 3: Results of fault location using simplified inputs.

Program Version Avg. BS In BS Avg. FS In FS Avg. FChop In FChop
print tokens v1 72 1.00 60 1.00 50 1.00

v2 44 1.00 32 1.00 23 1.00
v4 65 1.00 56 1.00 44 1.00
v6 63 1.00 54 1.00 42 1.00
v7 66 1.00 59 1.00 44 1.00

print tokens2 v4 54 0.00 73 1.00 40 0.00
v5 52 1.00 64 1.00 36 1.00
v6 77 1.00 75 1.00 58 1.00
v7 54 0.00 70 1.00 40 0.00
v8 48 0.00 57 1.00 33 0.00
v9 54 0.00 70 1.00 40 0.00
v10 46 1.00 54 1.00 33 1.00

schedule v1 57 1.00 44 1.00 34 1.00
v2 87 0.15 75 1.00 57 0.15
v3 86 0.61 80 1.00 56 0.61
v4 87 0.24 82 1.00 58 0.24
v6 57 1.00 44 1.00 34 1.00
v7 90 1.00 77 1.00 60 1.00

schedule2 v5 60 1.00 73 1.00 43 1.00
v7 65 1.00 75 1.00 42 1.00

replace v1 42 1.00 52 1.00 27 1.00
v3 111 1.00 112 1.00 80 1.00
v5 84 0.97 96 1.00 56 0.97
v6 110 1.00 106 1.00 79 1.00
v7 42 1.00 38 1.00 27 1.00
v8 59 1.00 55 1.00 36 1.00
v9 81 1.00 94 1.00 53 1.00
v10 93 1.00 96 1.00 65 1.00
v11 81 1.00 94 1.00 53 1.00
v12 68 1.00 59 0.00/1 41/56 0.00/1
v14 98 1.00 98 1.00 68 1.00
v15 39 1.00 36 1.00 24 1.00
v16 42 1.00 38 1.00 27 1.00
v18 94 1.00 95 1.00 61 1.00
v21 55 1.00 57 1.00 34 1.00
v23 69 0.64 81 1.00 42 0.64
v25 92 1.00 96 1.00 60 1.00
v26 85 0.12 99 1.00 57 0.12

Table 4: Average per benchmark: results of fault location using simplified inputs.

Program Avg. BS In BS Avg. FS In FS Avg. FChop In FChop FChop/BS FChop/ALL

print tokens 62 1 52.2 1 40.6 1 0.65 0.07
print tokens2 55 0.43 66.14 1 40 0.43 0.73 0.08

schedule 77.33 0.67 67 1 49.83 0.67 0.64 0.12
schedule2 62.5 1 74 1 42.5 1 0.68 0.14

replace 74.72 0.93 77.89 1 50.78 0.93 0.68 0.09

Table 5: Average time in seconds for simplifying inputs and computing slices.

Program # of failed Test Cases Simplification Time # of Unique Simplified Inputs Average Slicing Time

print tokens 291 1.08 32 7.41
print tokens2 1873 0.75 180 3.23

schedule 714 0.96 689 10.19
schedule2 71 0.58 65 8.11

replace 1557 1.5 559 12.67



Table 6: Potential benefits of failure-inducing input differences.

Program Version Avg. BS In BS Avg.FS In FS Avg. FChop In FChop
print tokens v1 72 1.00 55 1.00 46 1.00

v2 44 1.00 32 1.00 23 1.00
v4 65 1.00 49 1.00 39 1.00
v6 63 1.00 50 1.00 40 1.00
v7 66 1.00 59 1.00 44 1.00

print tokens2 v4 54 0.00 50 0.50 24 0.00
v5 52 1.00 64 1.00 36 1.00
v6 77 1.00 75 1.00 57 1.00
v7 54 0.00 48 1.00 26 0.00
v8 48 0.00 41 1.00 22 0.00
v9 54 0.00 48 1.00 26 0.00
v10 46 1.00 54 1.00 33 1.00

schedule v1 57 1.00 19 0.76 15 0.76
v2 87 0.15 43 0.74 31 0.13
v3 86 0.61 50 0.53 35 0.33
v4 87 0.24 52 0.57 37 0.16
v6 57 1.00 19 0.76 15 0.76
v7 90 1.00 49 0.63 37 0.63

schedule2 v5 59 1.00 49 0.77 29 0.77
v7 64 1.00 46 0.86 26 0.86

replace v1 42 1.00 43 0.67 22 0.67
v3 111 1.00 75 0.83 50 0.83
v5 84 0.97 68 0.67 40 0.66
v6 110 1.00 79 0.88 56 0.88
v7 42 1.00 34 1.00 25 1.00
v8 59 1.00 51 1.00 34 1.00
v9 81 1.00 65 0.56 33 0.56
v10 93 1.00 71 0.60 45 0.60
v11 81 1.00 65 0.56 33 0.56
v12 68 1.00 52 0.00/1 35/50 0.00/1
v14 98 1.00 71 0.86 48 0.86
v15 39 1.00 36 1.00 24 1.00
v16 42 1.00 34 1.00 25 1.00
v18 94 1.00 68 0.82 42 0.82
v21 55 1.00 38 0.57 20 0.57
v23 69 0.64 46 0.46 20 0.20
v25 92 1.00 61 0.83 39 0.83
v26 85 0.12 71 0.81 38 0.09

Table 7: Average per benchmark: potential benefits of failure-inducing input differences.

Program Avg. BS In BS Avg. FS In FS Avg. FChop In FChop FChop/BS FChop/ALL

print tokens 62 1 49 1 38.4 1 0.62 0.07
print tokens2 55 0.43 54.29 0.93 32 0.43 0.58 0.06

schedule 77.33 0.67 38.67 0.67 28.33 0.46 0.37 0.07
schedule2 61.5 1 47.5 0.82 27.5 0.82 0.45 0.09

replace 74.72 0.93 57.11 0.78 36.28 0.73 0.49 0.06

Table 8: Overview of benchmark programs for memory related bugs.

Program Fault Description Fault Location Isolation On
gzip-1.0.7 1024 byte long filename overflows into global variableline 40 in strcpy.c file name
gzip-1.2.4 1024 byte long filename overflows into global variableline 1009 in gzip.c file name
ncompress-4.2.4 1024 byte long filename corrupts stack return addressline 886 in compress42.c file name
polymorph-0.4.0 2048 byte long filename corrupts stack return addressline 118 in polymorph.c file name
tar-1.13.25 wrong loop bounds lead to heap object overflow line 92 in prepargs.c env. variables
bc-1.06 misuse of bounds variable corrupts heap objects line 176 in storage.c file contents
tidy-34132 memory corruption problem line 3505 in parser.c file contents



The version v12 ofreplaceprogram presents an interesting case.
There is a faulty#define statement in this version. We modi-
fied the program by replacing all#define statements with cor-
responding assignment statements. For example, the erroneous
#define in this faulty version#define MAXPAT 50 is re-
placed byint MAXPAT = 50;. Thus, the error in a#define
becomes an error in an assignment statement. The problem in this
error, however, is that the faulty assignment statement does not de-
pend upon any program input. Therefore, it will never be present
in the forward slice of any input. This shows a limitation of using
forward slices for locating faulty code. Even if the faulty statement
is in the backward slice, the result of intersection is negative. To
address this problem, we make a little change in our fault location
algorithm. We simply added all the statements in the backward
dynamic slices, which do not depend upon any input, into the inter-
section. After that, the average size of theFChopincreased, from
41 to 56, but the result became positive.

The overall average results for each program are shown in Ta-
ble 4. The table shows that the range for the average fractionof In
BSis from 0.43 to 1.0 and the average fraction ofIn FS is always
1. Also, the range for average fraction ofIn FChopis from 0.43 to
1.0. In this table, the column labeledFChop/BSshows the average
ratio of the size ofFChopto BSand the column labeledFChop/ALL
shows the average ratio of the size ofFChopto the size of the whole
program. As we can see, the range ofFChop/BSis from 0.64 to
0.73 (i.e., significant reductions over backward slices areobserved)
and the range ofFChop/ALLis 0.07 to 0.14, which is less than 14%
of the size of the whole program. Another interesting observation
is that although the sizes of forward dynamic slices in theseexper-
iments were comparable to the sizes of backward dynamic slices,
forward dynamic slices were found to be more effective at contain-
ing the faulty code than backward dynamic slices.

A recent paper [7] compares the performance of using cause
transitions [7] and nearest neighbors [21] approaches to locate faulty
code in the Siemens suite. The results show that the nearest neigh-
bors method can locate the faulty statement within 10% of code in
16.51% of all test runs whereas the cause transitions methodcan
locate a faulty statement within 10% of code in about 26.36% of all
test runs. Although we have not considered the faulty versions from
Siemens suite containing faults of omission in our experiments, for
the 38 faulty versions and for 1525 failed runs corresponding to the
total number ofUSIsfor these faulty versions, our approach located
the faulty statement in 60.78% of these failed runs with the average
size of theFChopbeing 10.4% of the size of the program.

The time performance of the implementation of our algorithmis
shown in Table 5. The average time taken for simplification ofinput
and the average time taken to compute the forward and backward
slices is given in seconds. As seen from the table, the total time
taken to narrow down the search for faulty code to a small subset
of program statements is typically few seconds. The experiments
were conducted on Intel Pentium 4 with 3.00GHz CPU and 1G
memory and Linux 2.6.10 platform.

Recall that above results were obtained by implementing the
ddminalgorithm and not theddalgorithm. The simplified input ob-
tained byddminmay in general contain several input values. If the
algorithmdd to isolate failure-inducing input differences is applied
to the simplified input, a smaller input difference and hencesmaller
chop may result. To estimate the potential of isolating failure-
inducing input differences for further reducing the chop sizes, we
conducted another experiment. In this experiment, forwardslices,
and hence the chops, were computed with respect to each valuein
the simplified input. For example, when the simplified input for
print tokenscontained more than one token, the forward slices for

each of these tokens are separately computed. The chops produced
in this manner will clearly be smaller. Table 6 shows averagere-
sults for the above chops. We give two results forreplace v12-
one without changing the fault location algorithm and the second
by applying the modification mentioned previously.

The overall average results for each program are shown in Ta-
ble 7. The table shows that the range for the average fractionof
In FS is from 0.67 to 1.0 (recall that it was always 1.0 forIn FS
in the previous experiment). The range for average fractionof In
FChop is from 0.43 to 1.0. Note that for some programs this av-
erage has fallen in comparison to earlierIn FChopvalues. In this
table, the column labeledFChop/BSshows the average ratio of the
size ofFChopto BSand the column labeledFChop/ALLshows the
average ratio of the size ofFChopto the size of the whole program.
As we can see, the range ofFChop/BSis from 0.37 to 0.62 (as op-
posed to 0.64 to 0.73 in the previous experiment) and the range of
FChop/ALLis 0.06 to 0.09, which is at most 9% of the size of the
whole program.

4.2 Reported Memory Related Faults
Our next evaluation is based upon a set of program versions taken

from [33, 20] for which real faults have been reported. In these
programs, listed in Table 8, the fault causes memory corruption
which eventually leads to a segmentation error. We observe that the
crashes caused in the above programs are directly related toeither
the length of the input or some particular value in the input.When
a corrupted memory location is accessed, the program crashes.

To find a failure-inducing input we again simplify the input for
a failed run. Unlike many of the faulty versions of programs in
the Siemens suite, these programs do not produce an output since
the program crashes before output can be produced. Therefore we
distinguish between a failing run and a successful run as follows.
Consider an input on which the program crashes at some execution
pointp. Now this input is reduced by removing the last input value.
The program is run again with a breakpoint set just past the point p.
If the breakpoint is not reached, i.e. program crashes againatp, the
input is further reduced and the process is repeated. Note that due
to the nature of bugs and the way the input is reduced (i.e., from the
end), the cause of the crash remains the same. On the other hand,
if the breakpoint is reached, it means that the latest changein input
resulted in the crash being avoided. In this case the part of the input
that was most recently removed must be thefailure-inducing input
difference. Thus, the above approachisolatedthe failure-inducing
input difference for these memory related bugs. By executing the
program on the most recent failing input, we are now able to collect
the backward slice of the erroneous output and the forward slice of
the failure-inducing input difference. Thus, the failure-inducing
chop can now be computed.

The results of our experiments are summarized in Table 9. In
this tableExecis the number of lines of code that are executed at
least once during the program run,BSandFS are the number of
lines of code that belong to the backward and forward slices re-
spectively, andFChopis the number of lines of code in the failure-
inducing chop. The results we obtained are very encouraging. First
we found that the statement whose execution corrupted the mem-
ory was present in the failure-inducing chops in all of thesecases.
Second we observe that in first four programs the number of lines
of code inFChopis so small (2 to 4) that the chop essentially pin-
points the appropriate statement. Moreover theFS is as effective
as theFChop in these cases. Finally we observe that for the last
three programs, although the chops are larger, they are significantly
smaller than the sizes ofExec, BS, andFS. The time to isolate the
failure-inducing input for these programs was in the range of 0.05



seconds to 3.06 seconds. For all programs other thantidy, the time
to compute the forward and backward slices was in the range of
2.43 seconds to 13.58 seconds. For thetidy program, it took 174.86
seconds to compute the forward and backward slices due to long
length of the run. In conclusion, these results show that ourtech-
nique for computing chops based upon integration of delta debug-
ging and dynamic slicing is effective in identifying code causing
memory corruption.

Table 9: FChop sizes.

Program Exec BS FS FChop
gzip-1.0.7 115 39 4 4
gzip-1.2.4 118 34 3 3
ncompress-4.2.4 59 18 2 2
polymorph-0.4.0 45 21 3 3
tar-1.13.25 445 180 122 76
bc-1.06 636 204 182 102
tidy-34132 1519 540 346 164

To provide understanding of how failure-inducing chop captures
the statement causing memory corruption, let us consider the case
of gzip-1.0.7 which has a known buffer overflow problem. Figure 4
illustrates the details of this problem. On the left hand side of Fig-
ure 4, we show the relevant code segment for the problem. The
problem happens in thestrcpy statement at line 844. Variable
ifname is a global array defined at line 198. The size of the ar-
ray is defined as 1024. Before thestrcpy statement at line 844,
there is no check on the length of the stringiname. If the length
of stringiname is longer than 1024, then the buffer overflows. If
the length of stringiname is larger than 3604, the value ofenv
is changed due to buffer overflow. This is because according to the
memory layout shown in Figure 4, the difference betweenenv and
ifname is 3604 bytes. Later when at line 1344free(env)is exe-
cuted, the program crashes due to presence of an illegal memory
address inenv.
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Figure 4: gzip buffer overflow.

We picked an input file name’a <repeated 3610 times>’
on which the above program crashes because the length ofiname
is larger than 3604. After applying the simplification process de-
scribed in this section, we find a successful input in which the
file name is’a <repeated 3604 times>’ and the most re-
cently failed run had its input as the file name’a <repeated
3605 times>’. Thus, the failure-inducing input difference be-
tween them is the last character ’a’ in the input of the most recently
failed run. We used our slicing tool to compute the forward slice of

the above failure-inducing input difference and the backward slice
of env at line 1344 for the most recently failed run. The size of the
forward slice was 4 lines of code and the size of the backward slice
was 35 lines of code. Their intersection which is the same as the
forward slice includes thefor statement at line 40 instrcpy.c,
which is the place where the buffer overflow occurred. Note that
the overflow occurred at a statement executed insidestrcpy.c
which is not a part of the source code ofgzip. However, since
our slicing tool is running on the binary code, it is able to perform
slicing on both the source code and the library code.

5. RELATED WORK
In a series of articles [28, 27, 26], thedelta debuggingalgorithm

has been developed to automatically simplify or isolate a failure-
inducing input [28, 27], produce cause effect chains [26] and to
link cause transitions [7] to the faulty code. These works use delta
debugging algorithm to analyzeprogram statechanges during the
execution of the program. Program state based analysis is difficult
and expensive for C programs [7].

On the other hand,program source codeanalysis based tech-
niques have explored the use of backward dynamic slicing [1,2, 3,
4, 6, 9, 17, 18, 24, 29, 30, 31, 32] for debugging. One problem
that had existed for some time was the cost of computing dynamic
slicing. However, in our recent work [32] we developed a practical
slicing algorithm whose average slicing times range from 1.74 to
36.25 seconds across several benchmarks from SPECInt2000/95.
In [32, 29] we have also shown that the number of distinct state-
ments executed at least once during a program execution can be
2.46 and 56.08 times more than the number of statements in a back-
ward dynamic slice. In [31], we presented an experimental study
which shows dynamic slicing is effective in locating faultycode.
Although, backward dynamic slices typically contain only asmall
fraction of executed statements, the number of statements can still
be large. This is what motivated our current work. The prior re-
search has explored only the use ofbackward dynamic slicingfor
debugging. However, in this paper we have shown how a minimal
failure-inducing input computed using delta debugging canenable
the use offorward dynamic slicesfor debugging. In our experi-
ments, the forward dynamic slices were found to be effectivein
containing the faulty code and were often smaller than the back-
ward dynamic slices. Our work in this paper shows how the use of
delta debugging can be combined with both forward and backward
dynamic slices to compute failure-inducing chops that aresmaller
than either backward or forward dynamic slice.

Harrold et al. [11] compared the spectra of passing and failing
runs and found that failing runs tend to have unusual coverage spec-
tra. Jones et al. [16] ranked each statement according to itsratio
of failing tests to correct tests and used this information to assist
fault location. Liblit et al. [19] describe a sampling framework
and present an approach to guess and eliminate predicates toiso-
late a deterministic bug. For isolating nondeterministic bugs, they
use statistical regression techniques to identify predicates that are
highly correlated with the program failure. In contrast, Renieris
and Reiss [21] focused on the difference between the failingrun
and asingle passing run with similar spectra as a means to nar-
row down the search space for faulty code. Xie et al. show that
many redundancies [25] in programs correspond to hard program
errors. Hangal et al. [10] identified the causes of some program-
ming errors in Java programs by observing violations of program
invariants. In [12], we developed a technique that used a notion
of path based weakest preconditions to automatically locate faulty
code in a function when the precondition and postcondition of the
function are available as first order predicate logic formulas.



6. CONCLUSIONS
In this paper, we propose a novel way to combine the the delta

debugging algorithm with the forward and backward dynamic slic-
ing to narrow down the search for faulty code. Although, in prior
work backward dynamic slicing has been considered useful for pro-
gram debugging, our work for the first time shows how the appli-
cation of forward slicing in locating faulty code is enabledby the
delta debugging technique. As our experiments show the sizes of
chops induced by the combination of forward and backward slicing
are much smaller than either forward or backward slices without
significantly compromising the fault detection effectiveness.
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