Locating Faulty Code Using Failure-Inducing Chops -

Neelam Gupta Haifeng He

Xiangyu Zhang Rajiv Gupta

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

{ngupta, hehf, xyzhang, gupta}@cs.arizona.edu

ABSTRACT

Software debugging is the process of locating and corrg€éiulty
code. Prior techniques to locate faulty code either userprmg
analysis techniques such as backward dynamic programglaci
exclusively use delta debugging to analyze the state clsahging
program execution. In this paper, we present a new apprdeth t
integrates the potential of delta debugging algorithm wlithben-
efit of forward and backward dynamic program slicing to narro
down the search for faulty code. Our approach is to use dela d
bugging algorithm to identify a minimal failure-inducinggut, use
this input to compute a forward dynamic slice and then imtetrs
the statements in this forward dynamic slice with the stetes

in the backward dynamic slice of the erroneous output to caenp
a failure-inducing chop. We implemented our technique and c
ducted experiments with faulty versions of several progréitom
the Siemens suite to evaluate our technique. Our experinsboiv
that failure-inducing chops can greatly reduce the sizeeafch
space compared to the dynamic slices without significardip-c
promising the capability to locate the faulty code. We alpe a
plied our technique to several programs with known memory re
lated bugs such as buffer overflow bugs. The failure-indycimop

in several of these cases contained only 2 to 4 statementhwhi
included the code causing memory corruption.

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Bebuggers
D.2.5 [Software Engineering: Testing and Debugging-Bebug-
ging aids, Testing tools, Tracing

General Terms

Algorithms, Measurement, Reliability, Verification

Keywords

automated debugging, forward dynamic program slicingkivacd
dynamic program slicing, failure-inducing input

*Supported by grants from IBM, Microsoft, Intel, and NSF gsan
CCR-0324969, CCR-0220262, CCR-0208756, and EIA-0080123
to the Univ. of Arizona.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ASE’05,November 7-11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011$5.00.

1. INTRODUCTION

As Mark Paulk from Carnegie Mellon’s University’s Software
Engineering Institute notedX‘fundamental problem with software
quality is that programmers make mistak¢$5]. Programming
being a primarily human activity, errors creep into softevar spite
of the advances made in the areas of programming languagdes an
software development processes. Locating and correctiogse
in software is a difficult and time consuming activity thatjuges
understanding of the software. Techniques and tools thrahekp
software developers in narrowing down the search for factiye
can greatly reduce the time and resources spent on locatithg a
correcting software errors.

Delta Debugging. Zellerintroduced the termelta debuggind?7]
for the process of determining the causes for program behbyi
looking at the differences (the deltas) between the old aw n
configurations of the programs. Zeller and Hildebrandt [t&n
applied the delta debugging approach to simplify and isolaé
failure-inducing input. Tesimplifya failing test case, the delta de-
bugging algorithm finds a minimal test case where removing an
single input entity would cause the failure to disappear.is@at-
ing a minimal failure-inducing input difference between aifail
and a passing test case, the generalized delta debuggirittaig
can be used. In [26], Zeller further extended this idea t¢atso
failure-inducing differences in program states and builchase-
effect chain in terms of relevant state differences. Howea®s we
show later with an example, it may not always be easy to liek th
cause-effect chains (which are in terms of values of vt dif-
ferent execution points) to the faulty source code. Theegfih is
still up to the programmer to use these cause-effect chaitesiins

of program states to decide where the failure causing codld te

or what the failure causing circumstance could be. Recebtgve
and Zeller [7] focus on cause transitions in an effort to timé fail-
ures to the program code. The focus of this work is on analyzin
program statdransitions in space and time in order to narrow down
the search for faulty code.

Dynamic Slicing. In contrast to the above techniques that analyze
program statess they occur during program execution, the tradi-
tional program analysis techniques such as program sljtir@gy 3,
4,6,9,17, 18, 24, 29, 30, 31, 32] focus source codanalysis of
the programs. The concept of program slicing was first intced

by Mark Weiser [24]. Since debugging is usually performedby
alyzing the statements of the program when it is executatguesi
specific input, Korel and Laski proposed the idealghamic pro-
gram slicing[17]. There are two kinds of dynamic slices: backward
dynamic slices and forward dynamic slices. Baekward dynamic
sliceof a variable at a point in the execution trace includes akéh

main(int argc, char *argv([])
{

1

2

3 intred, green, blue, yellow;
4 int sweet,sour,salty,bitter; Initial Inputs:
5 inti;

6

7 red = atoi (argv[1]);

8 blue = atoi (argv[2]);

9 green = atoi (argv[3]);
10 yellow = atoi (argv[4]);

11
red = 2*red; Error: red = 5*red

12

13 sweet = red*green;,

14 sour=0;

15 i=0;

16 while (i<red) {

17 sour = sour + green;
18 i=it+l;

19 }

20 salty = blue + yellow;
21 yellow = sour + 1;

22 bitter = yellow + green;
23
24
25
26
27 }

printf ("%d %d %d %d\n", bitter,sweet,
sour,salty);
return 0;

inputl: =[1,5,8,2] - x
input2: =[0,0,0,0] -1/

1-minimal failure-inducing inputs: input3: =[1,0,8,2] - x

Incorrect outputs at line 24:

FwdSlicginput3,

BwdSlicéinput3,
Failure-inducing Chofinput3, argv[1], bitter@24) = {7,12,16,17, 18, 21, 22, 24}

BwdSlicéinput3,
Failure-inducing Chofinput3, argv[l], sweet@24)={7,12,13, 24}

BwdSlicéinput3,
Failure-inducing Chofinput3, argv[1], sour@24)= {7,12,16,17, 18, 24}

input4 : =[0,0,8,2] -/
bitter, sweet, sour

argu[l]) = {7,12,13,16,17, 18, 21,22, 24}

bitter@24) = {7,9,12, 14, 15,16, 17, 18, 21,22, 24}

sweet@24) = {7,9,12,13,24}

sour@24)={7,9,12, 14, 15, 16, 17, 18, 24}

Figure 1: An example program.

executed statements which affect the value of the variablbaa
point. In contrast, théorward dynamic slicef a variable at a point

in the execution trace includes all those executed statentbat
are affected by the value of the variable at that point. Backiw
dynamic slicing has been proposed to guide programmersein th
process of debugging [2, 4, 9, 18, 31] by focusing the atentif
the user on a subset of program statements which are expected
contain the faulty code. The effectiveness of backward oyoa
slice in fault location is determined by two factordow often is
the faulty statement present in the slice?dHow big is the slice,
i.e. how many statements are included in the slite®ur previ-
ous work [31], we have evaluated and compared the effeessen
of different backward dynamic slicing algorithms in faudthtion.
For those erroneous statements that are present in the Steés

of the faulty outputs, we observed that dynamic slices ate @b
contain the faulty statement in most of the cases and in gedgr
namic slices are quite small compared to the number of esdcut
statements. In fact results of a study reported in [32] shuat t
the number of executed statements can range from 2.46 t8 56.0
times the number of statements in a backward dynamic slioa-H
ever, we also observed that the number of statements in a/batk
dynamic slice could still be large and in addition many of stete-
ments are apparently unlikely to be related to the fault. e of
this paper is to further reduce the number of statementsnéned

to be examined to locate faulty code.

Integrating Delta Debugging and Dynamic Slicing. Surpris-
ingly, none of the prior research on delta debugging [27 288,7]
integrates the potential of dynamic program slicing wita trelta
debugging approach in narrowing down the search for fadtec
In this paper, we propose the following novel approach. tries
use delta debugging to either find a simplified failure-indgadn-
put or isolate a minimal failure-inducing input differend&e sim-
ply refer to this relevant part of the input as the minimalufi-

inducing input. Next, we compute the intersection of theesta
ments in theforward dynamic sliceof the failure-inducing input
and thebackward dynamic slicef the faulty output to locate the
likely faulty code. We simply refer to the statements in thee
intersection of forward and backward dynamic slices agatare-
inducing chop The failure-inducing chops are expected to be much
smaller than backward dynamic slices since they captusetboke
statements of the dynamic slices that are affected by th@main
failure-inducing input.

Let us consider the example program shown in the left coluimn o
Figure 1 which is taken from the Unravel tool set [22]. Letnisa-
duce an error in this program by modifying the statemeniat 1i2
tored = 5 * red. Inputs for a failed test case and a passed test case
for this program are shown on the right. Starting with thegrits
for the failed and passed runs, we use the delta debuggiogtalm
to isolate minimal failure-inducing input difference. Talgorithm
isolatedargv[1] as the minimal failure-inducing input difference.
The inputs for the failed test case and the correct test aase-c
sponding to the isolated minimal failure-inducing inpufetience
are[1,0,8,2] and[0,0,8,2]. The three outputbitter, sweetand
sour are found to have wrong value for inpfit, 0, 8, 2]. The for-
ward slice omargv[1] and the backward slices duitter, sweetand
sour, and the resulting failure-inducing chops are also shovthen
right column in Figure 1. We can see that the failure-indgahop
for each of the faulty outputs contains the faulty statenientin
addition, the failure-inducing chop in each case is sméllan the
respective backward and forward slices.

Note that in this example, both the failed run as well as ssgce
ful run contain the error statement. Hence an approach based
programdices(i.e., set difference of execution slices of failed and
successful runs) discussed in [4] would not be able to lateter-
ror statement in this case. We also used Asklgor [5], theraated
debugging service based on the delta debugging technigux-t
tain the cause-effect chains for the example program inrEigu
with line 12 in error. The cause-effect chains are givenwelo

1. Execution reaches line 14 of tedd.c in main. Since the pro-
gram was invoked dst est . dd 1 5 8 2", local variable
sweet is now40.

2. Execution reaches line 21 of teddl.c in main. Sinceweet
was40, local variablesal t y is now7.

3. Execution reaches line 22 of tedd.c in main. Sinceal ty
was7, local variablesal t y is now7.

4. Execution ends. Sineal t y was7, the program exits with
status code 255. The program fails.

From the above cause-effect chains, it is not easy to figure ou
that the statement at line 12 in the source code was in erten, A
the values of the variablgal t y at steps 2, 3, and 4 in the cause-
effect chain do not seem to be directly linked with the faluin
fact, the outputsal t y was correct for both the failed and suc-
cessful runs. We would like to point out here that althoughade
debugging provides a novel technique to select a set of éestsc
that may be highly relevant to the failure, it may not alwags b
easy to link the cause-effect chains in term of values oftdeis at
different execution points to the faulty source code.

Our approach attempts to combine the novelty of delta debug-

ging algorithm in selecting relevant test cases, with theefies of
dynamic source code analysis, to automatically providerinf-
tion to the programmer about which statements are mostliiel
be cause of failure. Note that the cause-effect chains syl
able to capture failures resulting from other circumstar(sech as
incorrect environmental settings etc.) besides the fedluesulting
from the faulty source code. However, the goal of our worlois t
be able to provide more direct source code related help tpritie
grammers in the cases where failures of programs resultfaalty
source code. We implemented our approach and evaluatefi its e
fectiveness in locating faulty code for several progran@s 83, 14,
13]. Our results show the promise of combining dynamic istjci
with delta debugging for locating faulty code. The conttibos of
our paper are:

4.
e We propose a novel approach that integrates the delta debug- 5.

ging algorithm with the forward and backward dynamic pro-
gram slicing to narrow down the search for faulty statements
to afailure-inducing chop

e Prior work on using program slicing for debugging has pro-
posed the use dfackwarddynamic program slicing. How-
ever, we show how delta debugging enables the uderof
ward program slicing in locating faulty code.

e We conducted experiments with the Siemens suite of pro-
grams [14, 13] which provides a few faulty versions injected
with faults and the test pools for each program. Our results

2. FAILURE-INDUCING CHOPS

The basic idea of our approach is shown in Figure 2. Figure 2(a
represents a successful execution which takes a set ofsingart
ries out a series of computations and then produces a setmifteu
Figure 2(b) represents a failing run (faulty output is okied) re-
sulting from the execution of taulty statementThe figure shows
a case in which the backward dynamic sl&® on the faulty out-
put includes the faulty statement. By using delta debugging-
rithm [28], we identify theminimal failure-inducing inputA,,i»
as shown in the figure. Therefore, if we perform forward dyitam

Failure inducing input

R S N

Input

Output

LU

Faulty output

(a) (b)
Figure 2: Failure-inducing chops.

slicing on theA .., it is reasonable to expect that tfzilty state-
mentwould be present in the failure-inducing ch@Chop)which
is the intersection oBSand FS. As shown in Figure 2, we can
expect thgFChop)to be much smaller than eith&Sor FS. The
outline of our algorithm is given in Algorithm 1. Next we diss
each step of our algorithm.

Algorithm 1 Fault location using failure-inducing chops.
1: Step 1: Compute minimal failure-inducing input by:
2: either useddmin to Simplify input [28]:

3: I} = ddmin(Iy)

A1112'11 = I}
or usedd to Isolate input difference [28]:
6: (I;,I}):dd(ls,_[f)
7: Apin =1, - I}
8: Step 2: Compute forward dynamic slice:
o: FS= FwdSlice(I}, Amin)

10: Step 3: Compute backward dynamic slice:
11: BS= BwdSlice(I}, failed_output)
12: Step 4: Compute failure-inducing chop:

13: FChop=FSNBS

Step 1: Finding minimal failure-inducing input. To find a failure-

show that on average, the faulty statement was present in theinducing input, any of the two algorithms given by Zeller afitble-

failure-inducing chop in 43% to 100% cases across different
programs. Also, the average size of failure-inducing clsop i
64% to 73% of the size of backward dynamic slice and only
7% to 14% of the size of the whole program.

e We applied our technique to several programs with known

memory related bugs. In many cases our technique was able

to locate very few (2 to 4) statements which included the
faulty code.

The rest of the paper is organized as follows. In section 2xve e
plain our technique and present the algorithms. We desatiie
implementation in section 3 and present experimental tesusec-
tion 4. Related work is presented in section 5 and conclgséoa
given in section 6.

brandt in [28] can be used. The first algorithm (ddmsimplifies

a failing test casd; to produce a minimal test cagé¢ such that
removing any single input entity frorff; causes the failure to dis-
appear. Therefora,.;,, is I} in this case. The second algorithm
(dd) isolatesa minimal failure-inducing input difference between a
failing and a passing test case. Given inpltsand I, for a failed
run and a successful run respectively, this algorithm netar pair
of inputs (1%, I;), such thatl; and I}; correspond to a successful
run and a failed run respectively and any single parfjof- I if
removed from/; would make the failure disappear or if added §o
would make the failure occur. Therefore in this cdsg:,=I}-1.

Step 2: Compute Forward Dynamic Slice.The minimal failure-
inducing inputA,,;, computed by the first step defines the slicing

criteria for the forward dynamic slicing. In this step, wergaute
the forward dynamic slic€S= FwdSlice(I}, Amin). We illus-
trate the computation of forward dynamic slice using thengia
in Figure 1. In Figure 1, the value afd at statement 12 is affected
by inputargv[1] because it is data dependentasgv[1]. Therefore
statement 12 is in the forward sliceafyv{1]. Even thougtargv[1]
does not directly contribute to the values computed at Istaités
17 and 18, it decides the execution of those statements gt
the predicate outcome at 16. Therefore statements 17 ante18 a
also in the forward slice oérgv[1]. In other words, given an in-
put and the corresponding execution, the dynaimieard sliceis
the set of statements which are affected by that particofartivia
data/control dependences.

While a statement can be statically control dependent upda m
tiple predicates, at runtime, each execution instance tdtaraent
is dynamically control dependent upon a single predicatbe T
predicate on which the execution of a statement is contrpkde
dentis found as follows. First, a statement executiand its intra-
procedural control ancestpmust correspond to the same function
invocation. Second, the dynamic control dependence ofutixec
of s is on the most recently executed predicaten which s is
statically control dependent. Timestamps are associatidexe-
cution instances of statements in order to evaluate theeabon-
dition. Third, inter-procedural control dependence is pated by
introducing extra dependence edges between call siteharabt-
responding function entries.

Algorithm 2 Updating forward slicing information.

Procedure Updateé;, stack

. IsMarked=0;

. for (each use in Us€s;]) do

IsMarked= IsMarked| MARKEDv];
. end for

. cd = the predicate in CD(s) s.$tack.ts[cd]is maximum;
. IsMarked= IsMarked| stack.marked[cd]
o if (IsMarked== 1) then

slice= sliceU {s}

s endif

10: if (s is a predicatejhen

11: stack.markefk] = IsMarked

12: stack.ts[s|=timestamp++;

13: end if

14: for (each definitiorv in Def[s;]) do
15 MARKEDw] = IsMarked,

16: end for

©CONOUTAWNE

Next we present a forward computation algorithm [6, 30] for
forward slicing. This algorithm updates the forward slicésari-
ables after execution of each statement. The updating afrdin
forward slice following the execution of statement inseng is
presented in the Algorithm 2. The variables used in the élgor
are as follows:MARKEDv] denotes whethes is affected by the
specified input|]sMarkedindicates whether or not statemetis to
be included in the sliceslice denotes the currently computed for-
ward slice for the specified inputimestamp denotes the current
time; andstack is the current stack frame. We store the timestamps
of latest executions of predicatesstack.ts[Jand the information
about whether these predicates were affected by the spkuifie
put in stack.marked[] This guarantees that when we search for
the predicate instance with largest timestamp in the“ge{s) of
predicates on which is statically control dependent, we only con-
sider those instances that have the same stack framge &s the
Algorithm 2, lines 2 to 4 seisMarkedif there is a use of a marked
variablev in s;. Lines 5 and 6 sdsMarkedif immediate control
ancestor ofs; is marked. IflsMarkedis set, lines 7 to 9 include

s in the forward slice. Lines 10 to 13 update the information on
the stack ifs is a predicate. Finally, lines 14 to 16 mark each of
the variable defined by;. To initiate the propagation of marks, we
need to mark the specified input variable.

Step 3: Compute the backward dynamic slice.In this step the
backward dynamic slic8S= BwdSlice(I}, failed_output) for

the failed output is computed for the failed run correspogdio

the input/} generated in Step 1. The backward dynamic slice is
computed from the statement instance where the first erusneo
output is generated. When the faulty version generatesraeseg-
tion fault for I';, the backward slicing criterion is the pointer which
caused the segment fault instead of the output. The backslyard
namic slicing algorithm we used is ttell slicing algorithm pre-
sented in our prior work [31].

Step 4: Compute the failure-inducing chop.In this step, we com-
pute the statements in the intersection of the forward dymalite
FScomputed in Step 2 and the backward dynamic di&com-
puted in the Step 3. Our algorithm identifies the set of statem
in this intersection called the failure-inducing chB@hopas the
set of statements that are likely to contain the faulty code.

3. IMPLEMENTATION

We have developed a dynamic slicing tool which was used to
conduct experiments. Our tool executgsc compiler generated
binaries for Intel x86 and computes dynamic slices based tge
ward computation algorithms. Even though our tool worksiat b
nary level, the slices can be mapped back to source codelsve

the debugging information generateddpyc.
Slicing
X CD, PD 1 Instrumenter
Diablo* Valgrind
> | events slices rOBDDJ
omuTr

Figure 3: Slicing infrastructure.

inputs Instrumented bb

binary basic block (bb)

Slicing
Runtime

Fig. 3 shows the main components of the tool. taic analy-
siscomponent of our tool computes static control dependenbg (C
required for forward/backward slice computations fromhhery.
The static analysis was implemented using Eiablo [8] retar-
getable link-time binary rewriting framework as this framuek al-
ready has the capability of constructing the control flowpgrirom
x86 binary.

The dynamic profilingcomponent of our system which is based
upon theValgrind memory debugger and profiler [23] accepts the
samegcc generated binary, instruments it by calling tlecing
instrumenterand executes the instrumented code with the support
of the slicing runtime The slicing instrumenter and slicing run-
time were developed by us to enable collection of dynamiorinf
mation and computation of dynamic slices. Valgrind’'s kéiae
dynamic instrumenter which takes the binary and before gieg
any new (never instrumented) basic blocks it calls the imsén-
tation function, which is provided by the slicing instrunbem The
instrumentation function instruments the provided bakickhand
returns the new basic block to the Valgrind kernel. The Kezre-
cutes the instrumented basic block instead of the original @he
instrumented basic block is copied to a new code space asd thu
it can be reused without calling the instrumenter again. ifihe
strumentation is dynamic in the sense that the user canalerce
the expiration of any instrumented basic block. Thus, weezeily

turn off/on the slicing instrumentation for sake of timefpemance
or for certain code, e.g. library code.

The slicing runtime essentially consists of a set of calkifanc-
tions for certain events (e.g., entering functions, adngsaemory,
binary operations, predicates etc.). We intercept anyutigystem
call (WRITE etg. and then augment the original output with their
slices represented dgeduced ordered Binary Decision Diagram
(roBDD)s [30]. More details about why and how we use roBDD in
slicing can be found in our previous work [30, 31]. One of teeyw
important features of roBDD is that it can represent a unisgte
by one unique (integer) number and from that number the @ill s
can be easily retrieved from the roBDD. In other words, byngsi
roBDD we are able to represent a slice by one integer. Thistis ¢
cal to our design because now for each variable (memoryitogat
we only need to store one integer.

The basic idea of forward computation is that when some epera
tion is performed on operands, the slices/marks of soureeaopls
are fetched and unioned/ored together with the currergratt.
The resulting slice is assigned to the destination oper&imd:e one
slice can be represented as one integer, we need to stonetegeri
(one mark bit) for each operand which could be memory locatio
register, or predicate.

The implementation of delta debugging was carried out sepa-
rately as it mainly involves repeatedly manipulating peogrin-
puts and executing the program on these inputs. Once thedail
inducing input has been identified, the above set up is usegeo
cute the program and compute the chop from the forward and bac
ward dynamic slices.

4. EXPERIMENTAL EVALUATION

4.1 Evaluation for Siemens Suite

Our first experimental study is based upon the programs from
the Siemens suite [14, 13]. For each program, the Siemeres sui
provides its test cases and several faulty versions withualbn
injected faults.

Table 1: Overview of benchmark programs.

| Program | Description | Versions| LOC | Tests|
print _t okens lexical analyzer 5 565 [4072
print _t okens2 lexical analyzer 7 510 [4057
schedul e priority scheduler 6 412 | 2627
schedul e2 priority scheduler 2 307 | 2683
repl ace pattern replacement 18 563 | 5542

Table 1 shows the Siemens suite programs used in our exper-

imentation. We excluded the prograntas andtot.info because
tcasis too small andotinfo has floating point operations, which
are currently not supported by our slicing tool. Since thétizm
statement will not be present in any static or dynamic sliceex-
cluded the faulty versions corresponding to errors of cadission
from our experiments. Each faulty version of the prograndiee
our experiments had exactly one fault injected. Some fauity
grams were excluded because they produce no output andtthus i
is unclear how a proper slicing criterion should be defined. il
strument the faulty programs in minor ways in order to rungke
periments. For example, we replaced the input functioresfijts,
fgetc and output functionfprintf, printf, fputcwith our customized
functions using which it is more convenient for our slicimpltto
find the forward and backward slicing criterion.

Failure-inducing chops. Table 2 lists the programs and their faulty
versions used in our experiments. We useddth@ininput simpli-
fication algorithm [28] in these experiments. The numberadétl

Table 2: Number and size of original and simplified inputs.

Program Version [[Number of | Avg. Input Size
FTs 1 USIs] Orig. T Simplified
print_ vl 5 4 78 3
t okens V2 43 T 240 1
V4 28 1 39 2
V6 186 2 58 1
V7 24 24 53 1
print_ v4 403 9 128 2
t okens2 v5 172 1 18 T
V6 518 93 33 1
V7 292 1 153 2
V8 256 74 49 2
) 60 1 76 2
v10 172 1 18 1
schedul e vl 7 7 21 6
V2 210 | 210 64 I
V3 161 | 148 53 5
V4 2947 288 57 8
V6 7 I 21 [§]
V7 35 29 54 6
schedul e2 V5 32 32 30 6
V7 39 33 52 6
repl ace vl 64 1 59 3
V3 1231 87 110 5
V5 267 62 63 10
V6 94 30 49 8
V7 69 1 45 2
V8 53 15 102 3
) 23 21 64 I
v10 20 19 63 [§]
vI11 23 21 64 7
v1Z 221 84 88 19
v14 13T 72 52 7
v15 59 1 25 1
V16 82 1 38 2
V18 210 70 42 5
v21 2 2 92 3
V23 21 11 55 3
v25 2 2 19 3
vZ26 93 59 55 11

test cases in the test pool, for each faulty version of eachrpm
used in our experiments, are shown in colufifis When we
applied theddmininput simplification algorithm to each of these
failed test cases, the number of unique simplified inputsiyced
for each faulty version are given in colurbiSls The latter number
is smaller than the former because in some cases differiingfa
inputs produce the same simplified input. The average sizies o
puts for failed test cases and the average sizes of simplifpeds
are given in column®rig. and Simplifiedrespectively. The in-
put sizes are in terms of entities appropriate for the progr&or
print_tokensandprint_tokensat is the number of tokens, fached-
ule andscheduleit is the number of commands, and feplaceit

is the number of characters. As we can see, simplified inpets a
much smaller than original inputs.

Table 3 shows the results for this experiment. The columns la
beledAvg. BSAvg. FS andAvg. FChopshow the average sizes
of backward slices, forward slices, and failure-inducihgs re-
spectively. The averages are computed over the number gai@ni
simplified inputs USIg for each version. The columns labeled
BS In FS, andIn FChoprespectively show th&action (out of to-
tal number of USIs for each faulty versioof) backward dynamic
slices, forward dynamic slices and their failure-induciigps that
contain the faulty statement. This fraction ranges from2 tdow-
ever, in most of the cases the fraction is 1 indicating thattya
statements are being captured by the failure-inducing€hop

Table 3: Results of fault location using simplified inputs.

| Program | Version] Avg. BST InBS] Avg. FST InFS]| Avg. FChop | In FChop |

print _t okens vl 72 1.00 60 1.00 50 1.00
V2 44 1.00 32 1.00 23 1.00
v4 65 1.00 56 1.00 14 1.00
V6 63 1.00 54 1.00 42 1.00
V7 66 1.00 59 1.00 14 1.00
print tokens2 v4 54 0.00 73 1.00 40 0.00
VO 52 1.00 64 1.00 36 1.00
V6 77 1.00 75 1.00 58 1.00
V7 54 0.00 70 1.00 40 0.00
V8 48 0.00 57 1.00 33 0.00
V9 54 0.00 70 1.00 40 0.00
v10 46 1.00 54 1.00 33 1.00
schedul e V1 57 1.00 44 1.00 34 1.00
vZ2 87 0.15 75 1.00 57 0.15
v3 86 0.61 80 1.00 56 0.61
v4 87 0.24 82 1.00 58 0.24
V6 57 1.00 44 1.00 34 1.00
V7 90 1.00 77 1.00 60 1.00
schedul e2 v5 60 1.00 73 1.00 43 1.00
V7 65 1.00 75 1.00 42 1.00
replace V1 42 1.00 52 1.00 27 1.00
v3 111 1.00 112 1.00 80 1.00
VO 84 0.97 96 1.00 56 0.97
V6 110 1.00 106 1.00 79 1.00
24 42 1.00 38 1.00 27 1.00
V8 59 1.00 55 1.00 36 1.00
V9 81 1.00 94 1.00 53 1.00
v10 93 1.00 96 1.00 65 1.00
vll 81 1.00 94 1.00 53 1.00

v1Z 68 1.00 59 0.00/1 41756 0.00/1
vl4 98 1.00 98 1.00 68 1.00
v1l5 39 1.00 36 1.00 24 1.00
v16 42 1.00 38 1.00 27 1.00
v1l8 94 1.00 95 1.00 61 1.00
V21 55 1.00 57 1.00 34 1.00
vZ3 69 0.64 81 1.00 42 0.64
vZ25 92 1.00 96 1.00 60 1.00
vZ6 85 0.12 99 1.00 57 0.12

Table 4: Average per benchmark: results of fault location usng simplified inputs.

[Program [Avg.BS [InBS][Avg. FS] InFS | Avg. FChop] In FChop [FChop/BS| FChop/ALL |
print_tokens 62 1 52.2 1 40.6 1 0.65 0.07
print_.tokens2 55 0.43 66.14 1 40 0.43 0.73 0.08

schedule 77.33 0.67 67 1 49.83 0.67 0.64 0.12
schedule2 62.5 1 74 1 425 1 0.68 0.14
replace 7472 0.93 77.89 1 50.78 0.93 0.68 0.09

Table 5: Average time in seconds for simplifying inputs and omputing slices.

[Program | # of failed Test Case$ Simplification Time [| # of Unique Simplified Inputs| Average Slicing Time)
print_tokens 291 1.08 32 7.41
print_tokens2 1873 0.75 180 3.23

schedule 714 0.96 689 10.19
schedule2 71 0.58 65 8.11
replace 1557 15 559 12.67

Table 6: Potential benefits of failure-inducing input differences.

| Program | Version[[Avg. BS[InBS][Avg.FS | InFS] Avg. FChop [In FChop |
print _t okens vl 1.00 55 1.00 46 1.00
V2 44 1.00 32 1.00 23 1.00
V4 65 1.00 49 1.00 39 1.00
V6 63 1.00 50 1.00 40 1.00
V7 66 1.00 59 1.00 44 1.00
print _t okens2 v4 54 0.00 50 0.50 24 0.00
V5 52 1.00 64 1.00 36 1.00
V6 77 1.00 75 1.00 57 1.00
V7 54 0.00 48 1.00 26 0.00
V38 48 0.00 41 1.00 22 0.00
V9 54 0.00 48 1.00 26 0.00
v10 46 1.00 54 1.00 33 1.00
schedul e vl 57 1.00 19 0.76 15 0.76
V2 87 0.15 43 0.74 31 0.13
V3 86 0.61 50 0.53 35 0.33
V4 87 0.24 52 0.57 37 0.16
V6 57 1.00 19 0.76 15 0.76
V7 90 1.00 49 0.63 37 0.63
schedul e2 V5 59 1.00 49 0.77 29 0.77
v/ 64 1.00 46 0.86 26 0.86
replace vl 42 1.00 43 0.67 22 0.67
V3 111 1.00 75 0.83 50 0.83
VO 84 0.97 68 0.67 40 0.66
V6 110 1.00 79 0.88 56 0.88
V7 42 1.00 34 1.00 25 1.00
V38 59 1.00 51 1.00 34 1.00
V9 81 1.00 65 0.56 33 0.56
v10 93 1.00 71 0.60 45 0.60
vIi1 81 1.00 65 0.56 33 0.56
V12 68 1.00 52 0.0071 35/50 0.0071
v1i4 98 1.00 71 0.86 48 0.86
vI5 39 1.00 36 1.00 24 1.00
vi6 42 1.00 34 1.00 25 1.00
vi8 94 1.00 68 0.82 42 0.82
vZ1 55 1.00 38 0.57 20 0.57
vZ23 69 0.64 46 0.46 20 0.20
vZ5 92 1.00 61 0.83 39 0.83
vZ26 85 0.12 71 0.81 38 0.09

Table 7: Average per benchmark: potential benefits of failue-inducing input differences.

[Program [Avg.BS [InBS][Avg. FST InFS || Avg. FChop] In FChop [FChop/BS| FChop/ALL |
print_tokens 62 1 49 1 38.4 1 0.62 0.07
print_ tokens2 55 0.43 54.29 0.93 32 0.43 0.58 0.06
schedule 77.33 0.67 38.67 0.67 28.33 0.46 0.37 0.07
schedule2 61.5 1 475 0.82 27.5 0.82 0.45 0.09
replace 74.72 0.93 57.11 0.78 36.28 0.73 0.49 0.06
Table 8: Overview of benchmark programs for memory related hugs.
[Program | Fault Description | Fault Location | Tsolation On |
gzip-1.0.7 1024 byte Tong filename overflows into global varialjléine 40 in strcpy.c file name
gzip-1.2.4 1024 byte Tong filename overflows into global variabléine 1009 in gzip.c file name

ncompress-4.2.

1024 byte Tong filename corrupts stack return addrd

skine 886 in compress42.¢ file name

polymorph-0.4.0

2048 byte Tong filename corrupts stack return addre

skne 118 in polymorph.c

file name

tar-1.13.25

wrong loop bounds Tead to heap object overflow

line 92in prepargs.c

env. variables

bc-1.06

misuse of bounds variable corrupts heap objects

line 176 in storage.c

file contents

tidy-34132

memory corruption problem

line 3505 in parser.c

file contents

The version v12 ofeplaceprogram presents an interesting case. each of these tokens are separately computed. The chopscprbd
There is a faulty#def i ne statement in this version. We modi- in this manner will clearly be smaller. Table 6 shows avenage
fied the program by replacing afidef i ne statements with cor- sults for the above chops. We give two results fgplace v12-
responding assignment statements. For example, the eusne one without changing the fault location algorithm and theosel

#def i ne in this faulty version#defi ne MAXPAT 50 is re- by applying the modification mentioned previously.

placed byi nt MAXPAT = 50; . Thus, the error in #def i ne The overall average results for each program are shown in Ta-
becomes an error in an assignment statement. The problénisint ble 7. The table shows that the range for the average fracfion
error, however, is that the faulty assignment statemerg doede- In FSis from 0.67 to 1.0 (recall that it was always 1.0 forFS
pend upon any program input. Therefore, it will never be gnés in the previous experiment). The range for average fraatioim

in the forward slice of any input. This shows a limitation aing FChopis from 0.43 to 1.0. Note that for some programs this av-
forward slices for locating faulty code. Even if the faultatement erage has fallen in comparison to earlief=Chopvalues. In this

is in the backward slice, the result of intersection is niggatTo table, the column labeleChop/BSshows the average ratio of the
address this problem, we make a little change in our faulition size of FChopto BSand the column labele@Chop/ALLshows the
algorithm. We simply added all the statements in the bacttwar average ratio of the size &Chopto the size of the whole program.
dynamic slices, which do not depend upon any input, intorites4 As we can see, the rangee€hop/BSs from 0.37 to 0.62 (as op-
section. After that, the average size of #@hopincreased, from posed to 0.64 to 0.73 in the previous experiment) and theerahg
41 to 56, but the result became positive. FChop/ALLis 0.06 to 0.09, which is at most 9% of the size of the

The overall average results for each program are shown in Ta- whole program.
ble 4. The table shows that the range for the average fraofiom

BSis from 0.43 to 1.0 and the average fractionifSis always 4.2 Reported Memory Related Faults
1. Also, the range for average fractionlafFChopis from 0.43 to L .

. Our next evaluation is based upon a set of program versiéaa ta
rlégbIgftt?]':;iag%;gigotlgrgg;i%ﬁﬁg?ﬁfﬁ?;ggggﬁoa\ﬁﬁ?e from [33, 20] for which real faults have been reported. Insthe
shows the average ratiz of the sizé=@hopto the size of thepwhole programs, listed in Table 8, the fault_ causes memory CaOTIpt

g p
roaram. As we can see. the rangecgthon/BSis from 0.64 to which eventually leads to a segmentation error. We obsbatdtie
8 7% @i e- significant reduétions ovgr backvxF/)ard slicesnasérved) crashes caused in the above programs are directly relawsthey
) €., SIg X L o. thelength of the input or some particular value in the infhen
and the.range d¥Chop/ALLis 0.0710 0.14, W.h'Ch IS Igss than 14% a corrupted memory location is accessed, the program @ashe
g:ﬁ; Sa'fliﬁo?j tt:"ihvghs?;?aspg??‘;mérﬁgorz%:gflrigzgr;g ,:)m?_ To find a failure-inducing input we again simplify the inpat f
9 y B a failed run. Unlike many of the faulty versions of programs i

e e Comparale I e e of backvard AMESIC i Siemens sute, ese programs do ot prodce an et
ind the fal)J/|t code than backward dvnamic slices the program crashes before output can be produced. Thenstor
g y y) distinguish between a failing run and a successful run dewsl

traﬁsriﬁgﬁgt[%zesjr n[g]arZZTnp;risb;?S[g f]n:rr?zggﬁegg;g%fause Consider an input on which the program crashes at some éxecut
9 PP y pointp. Now this input is reduced by removing the last input value.

code in the Siemens suite. The results show that_the nezmgi_;t—n The program is run again with a breakpoint set just past tivg po
bors method can locate the faulty statement within 10% oédnd o : .
If the breakpoint is not reached, i.e. program crashes agairthe

16.51% of all test runs whereas the cause transitions metiaiod . : .
A . input is further reduced and the process is repeated. Nataltle
0,
Itgg?ﬁﬁr?sfaxllagltjatﬁwg rrlltav\\/”etmgtlc?)fs?(;:r%%et;ll?ajﬁrtjt 52&32?:10 to the nature of bugs and the way the input is reduced (i@ the
' 9 y end), the cause of the crash remains the same. On the othé&r han

tShlgrgg ?:u?tu 't\?eigigtr?;n;% ffilslissgfsc;g;:??ﬂr:g g:rlrrg;(pemm;;ifﬁé if the breakpoint is reached, it means that the latest chamiggut
y PO resulted in the crash being avoided. In this case the panedfiput

total number ofJSlsfor these faulty versions, our approach located ; . L
: . . that was most recently removed must befditure-inducing input
ts?fefil]flttz;gtﬁ?%r;;n 61%7118(?022?:2;32?!?&;“nf’ow'rg'mmage difference Thus, the above approaddolatedthe failure-inducing
The time erfgrmar?ce 6f tr(:e implementation Igf ogur aI. oritam input difference for these memory related bugs. By exegufie
p P 9 program on the most recent failing input, we are now able iecb

shown in Table 5. The average time taken for simplificatioimpéit he backward sli f1h d the forwiad ef
and the average time taken to compute the forward and badkwar the ackward slice O.t € erroneous output and the TOrwate &
the failure-inducing input difference. Thus, the failunglucing

slices is given in seconds. As seen from the table, the tiota t h b d
taken to narrow down the search for faulty code to a smalletubs chop can now be compute - . .
The results of our experiments are summarized in Table 9. In

of program statements is typlc_ally few _seconds. The exarien this tableExecis the number of lines of code that are executed at
were conducted on Intel Pentium 4 with 3.00GHz CPU and 1G .
least once during the program rudSand FS are the number of

memory and Linux 2.6.10 platform. . . . lines of code that belong to the backward and forward sliees r
Recall that above results were obtained by implementing the . ; . . N
spectively, and~Chopis the number of lines of code in the failure

e e TGk . The Tesuts i otaned ar veryencourafing
ying P ' we found that the statement whose execution corrupted time-me

algorithmddto isolate failure-inducing input differences is applied ory was present in the failure-inducing chops in all of th s,

E%the fr:gqyplfelzﬂlrpl#(’) aez?rﬁg?é Thp:tpd()lf;:gglc ifainsig Et$in| [gE ufml”ef Second we obse_rve that in first four programs the numb_er e$ I_in

inducing input differences for further reducing the chapesi we of .COde |nFChop|s.so small (2 o 4) that the chop essenually pin-

conducted another experiment. In this experiment, forvgéices, points the approprlate statemer_lt. Moreover fi%is as effective

and hence the chops, were computed with respect to eachigalue as theFChopin these cases. Finally we observe tha’g for the last
’ three programs, although the chops are larger, they ariisagnily

the simplified input. For example, when the simplified inpot f smaller than the sizes &xe¢ BS andFS The time to isolate the
print_tokenscontained more than one token, the forward slices for __. . T .
failure-inducing input for these programs was in the range.@5

seconds to 3.06 seconds. For all programs othertilgnthe time the above failure-inducing input difference and the backivaice

to compute the forward and backward slices was in the range of of env atline 1344 for the most recently failed run. The size of the
2.43 seconds to 13.58 seconds. Fottithgprogram, it took 174.86 forward slice was 4 lines of code and the size of the backwlare s
seconds to compute the forward and backward slices due ¢p lon was 35 lines of code. Their intersection which is the saméas t

length of the run. In conclusion, these results show thatech- forward slice includes theor statement at line 40 ist r cpy. c,
nique for computing chops based upon integration of deltage which is the place where the buffer overflow occurred. Not th
ging and dynamic slicing is effective in identifying codeusing the overflow occurred at a statement executed insidecpy. ¢
memory corruption. which is not a part of the source codeg#i p. However, since
our slicing tool is running on the binary code, it is able tofpem
Table 9: FChop sizes. slicing on both the source code and the library code.
[Program | Exec] BS] FS] FChop]
9Zip-1.0.7 5] 30 2 Z 5. RELATED WORK
gzip-1.2.4 118 34| 3 3 In a series of articles [28, 27, 26], tdelta debugginglgorithm
ncompress-4.2. o9 18] 2 2 has been developed to automatically simplify or isolateilarfa:
P{;‘_ﬁml‘ggg'o""o 4212 1523(1) 12?5 72 inducing input [28, 27], produce cause effect chains [26] tm
be-1.06 636 204 182 107 link cause transi_tions [7] to the faulty code. These Works_ delta
fidy-34132 15191 540 1 346 164 debugging algorithm to analyz#ogram statechanges during the

execution of the program. Program state based analysifficuti
and expensive for C programs [7].
On the other handprogram source codanalysis based tech-

nigues have explored the use of backward dynamic slicing,[3,
4, 6,9, 17, 18, 24, 29, 30, 31, 32] for debugging. One problem
that had existed for some time was the cost of computing digyam
slicing. However, in our recent work [32] we developed a picat
slicing algorithm whose average slicing times range froité o
36.25 seconds across several benchmarks from SPECIng500/
In [32, 29] we have also shown that the number of distinctestat
ments executed at least once during a program executionean b
2.46 and 56.08 times more than the number of statements itka ba
ward dynamic slice. In [31], we presented an experimentalyst
which shows dynamic slicing is effective in locating fauttyde.
Although, backward dynamic slices typically contain onlgraall
fraction of executed statements, the number of statemantstd|
be large. This is what motivated our current work. The prir r
search has explored only the usebafckward dynamic slicinfpr
strepy.c) . Memory Layout debugging. However, in this paper we have shown how a minimal

36 strepy (char * __restrict to, const char * __estrict from) failure-inducing input computed using delta debugging eaable

To provide understanding of how failure-inducing chop cegs
the statement causing memory corruption, let us consigecdke
of gzip-1.0.7 which has a known buffer overflow problem. Fegd
illustrates the details of this problem. On the left hanei€lFig-
ure 4, we show the relevant code segment for the problem. The
problem happens in thet r cpy statement at line 844. Variable
i f nane is a global array defined at line 198. The size of the ar-
ray is defined as 1024. Before thér cpy statement at line 844,
there is no check on the length of the stringane. If the length
of stringi nane is longer than 1024, then the buffer overflows. If
the length of string name is larger than 3604, the value ehv
is changed due to buffer overflow. This is because accorditiget
memory layout shown in Figure 4, the difference between and
i f nane is 3604 bytes. Later when at line 13fi¢e(env)is exe-
cuted, the program crashes due to presence of an illegal gemo
address irenv.

(40 Tor (- (to—*rom) 1=0; from; ++o): | Heap the use offorward dynamic slicegor debugging. In our experi-
4l retum(save); BSS segment ments, the forward dynamic slices were found to be effedtive
B Failure-inducing input containing the faulty code and were often smaller than trek-ba
gfisf’z-j; define MAX PATH LEN 1024 fﬁﬁﬁ:ﬁ ward dynamic slices. Our work in this paper shows how the fise o
- delta debugging can be combined with both forward and baeckwa
193 char * env; T w [a]om] dynamic slices to compute failure-inducing chops thatsaneller
198 CHAR ifname[MAX PATH LEN]; . . .
Overtlow amaaa... than either backward or forward dynamic slice.
anas Harrold et al. [11] compared the spectra of passing anchaili
$36 focal int get_istat(iname.sbuD) ! runs and found that failing runs tend to have unusual coeespgc-
844 stropy(ifname, iname); ox8092400 I tra. Jones et al. [16] ranked each statement according tatits
845 ermo=0; of failing tests to correct tests and used this informatimmssist
1341 local void do_exit(exitcode) fault location. Liblit et al. [19] describe a sampling frawark
{344 if env!=NULL) froe (onv), env=NULL; Data segment and present an approach to guess and eliminate predicais to
late a deterministic bug. For isolating nondeterministigd they
]) use statistical regression techniques to identify preégthat are
Figure 4: gzip buffer overflow. highly correlated with the program failure. In contrast,niReis
and Reiss [21] focused on the difference between the failimg
We picked aninput file namea <r epeated 3610 ti mes>’ and asingle passing run with similar spectra as a means to nar-
on which the above program crashes because the lengthaofe row down the search space for faulty code. Xie et al. show that
is larger than 3604. After applying the simplification preseale- many redundancies [25] in programs correspond to hard anogr

scribed in this section, we find a successful input in which th errors. Hangal et al. [10] identified the causes of some progr
file name is a <repeated 3604 ti nes> and the most re- ming errors in Java programs by observing violations of poy

cently failed run had its input as the file narha <r epeat ed invariants. In [12], we developed a technique that used emot
3605 ti mes>'. Thus, the failure-inducing input difference be- of path based weakest preconditions to automatically éofzatlty
tween them is the last character 'a’ in the input of the mostnédy code in a function when the precondition and postconditibthe

failed run. We used our slicing tool to compute the forwaidesof function are available as first order predicate logic forasul

6. CONCLUSIONS

In this paper, we propose a novel way to combine the the delta

debugging algorithm with the forward and backward dynartig: s
ing to narrow down the search for faulty code. Although, ifopr
work backward dynamic slicing has been considered usefprte
gram debugging, our work for the first time shows how the appli
cation of forward slicing in locating faulty code is enablegthe
delta debugging technique. As our experiments show the size
chops induced by the combination of forward and backwauoihg)i
are much smaller than either forward or backward slicesawith
significantly compromising the fault detection effectiess.

7. REFERENCES

[1] H. Agrawal and J. Horgan, “Dynamic program slicingCM
SIGPLAN Conference on Programming Language Design and
ImplementatioPLDI), pages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging with
dynamic slicing and backtracking3oftware Practice and
Experiencg SP&E), Vol. 23, No. 6, pages 589-616, 1993.

[3] H. Agrawal, J.R. Horgan, E.W. , and S.A. London,
“Incremental regression testindEEE Conference on Software
MaintenancgICSM), Montreal, Canada, 1993.

[4] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault
localization using execution slices and dataflow teS#sth
IEEE International Symposium on Software Reliability
Engineering(ISSRE), pages 143-151, 1995.

[5] Asklgor, Automated Debugging Service.
http://www.st.cs.uni-sb.de/askigor/

[6] A.Beszedes, T. Gergely, Z.M. Szabo, J. Csirik, and T.
Gyimothy, “Dynamic slicing method for maintenance of large
C programs,’5th European Conference on Software
Maintenance and Reengineerif@SMR), pages 105-113,
March 2001.

[7] H. Cleve and Andreas Zeller, “Locating causes of program
failures,”27th International Conference on Software
Engineering(ICSE), pages 342-351, 2005.

[8] Diablo Is A Better Link-time Optimizer.
http://www.elis.ugent.be/diablo/

[9] T. Gyimothy, A. Beszedes, |. Forgacs, “An efficient redav
slicing method for debugging7th European Software
Engineering Conference/ 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(ESEC/FSE), Toulouse, France, 1999.

[10] S. Hangal and M.S. Lam, “Tracking down software bugs
using automatic anomaly detectiofiternational Conference
on Software Engineerinf CSE), 2002.

[11] M. J. Harrold,, G. Rothermel, K. Sayre, R. Wu, and L. Yi,
“An empirical investigation of the relationship betweersra
differences and regression faultdgurnal of Software Testing
Verification and Reliability10(3):171-194, 2000.

[12] H. He and N. Gupta, “Automated Debugging using
Path-Based Weakest Preconditiof@jhdamental Approaches
to Software Engineerin(FASE), ETAPS Joint Conference,
Barcelona, Spain, March 29-31, 2004.

[13] http://www.cse.unl.edu/galileo/sir

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
“Experiments on the effectiveness of dataflow and contilflo
based test adequacy criteriaBth International Conference on
Software Engineerin CSE), pages 191-200, 1994.

[15] Information Week, Issue on Software Quality, Jan 2020

[16] J.A. Jones, M.J. Harrold, and J. Stasko, "Visualizatftest
information to assist fault localizationlhternational Conf. on
Software Engineerin CSE), page 467-477, 2002.

[17] B. Korel and J. Laski, “Dynamic program slicing,”
Information Processing Lettef¢PL), Vol. 29, No. 3, pages
155-163, 1988.

[18] B. Korel and J. Rilling, “Application of dynamic slicgin
program debugging3rd International Workshop on Automatic
Debugging(AADEBUG), Linkoping, 1997.

[19] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program samplingIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), San Diego, California, June 2003.

[20] S. Narayanaswamy, G. Pokam, and B. Calder, “BugNet:
continuously recording program execution for determiaist
replay debugging,32nd International Symposium on
Computer Architecturél SCA), pages 284-295, 2005.

[21] M. Renieris and S. Reiss, “Fault localization with restr
neighbor queries Automated Software Engineerigg§SE),
2003.

[22] The Unravel Projechttp://hissa.nist.gov/unravel/

[23] Valgrind. http://valgrind.org/

[24] M. Weiser, “Program slicing,JEEE Transactions on
Software EngineeringT SE), Vol. SE-10, No. 4, pages
352-357, 1982.

[25] Y. Xie and D. Engler, “Using Redundancies to Find Erfbrs
ACM SIFSOFT International Symposium on Foundations of
Software Engineerin@~SE), pages 51-60, 2002.

[26] A. Zeller, “Isolating cause-effect chains from comgut
programs,”10th ACM SIGSOFT Symposium on Foundations of
Software Engineerin@~SE), Charleston, South Carolina, 2002.

[27] A. Zeller, “Yesterday, my program worked. Today, it doe
not. Why?,”Seventh European Software Engineering
Conference/ Seventh ACM SIGSOFT Symposium on
Foundations of Software EngineerifgSEC/FSE), pages
253-267, Sept. 1999.

[28] A. Zeller and R. Hildebrandt, “Simplifying and isolatj
failure-inducing input,1EEE Transactions on Software
Engineering(TSE), Vol 28, No 2, Feb. 2002.

[29] X.Zhang, R. Gupta, and Y. Zhang “Precise dynamic sjcin
algorithms,”IEEE/ACM International Conference on Software
Engineering(ICSE), pages 319-329, Portland, Oregon, May
2003.

[30] X.Zhang, R. Gupta, and Y. Zhang, “Effective forward
computation of dynamic slices using reduced ordered binary
decision diagramsJEEE International Conference on
Software Engineerin CSE), pages 502-511, 2004.

[31] X.Zhang, H. He, N. Gupta and R. Gupta, “Experimental
evaluation of using dynamic slices for fault locatio8fkth
International Symposium on Automated and Analysis-Driven
Debugging(AADEBUG), Monterey, California, September
2005.

[32] X.Zhang and R. Gupta, “Cost effective dynamic program
slicing,” ACM SIGPLAN Conference on Programming
Language Design and Implementati@®LDI), pages 94-106,
Washington D.C., June 2004.

[33] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S.P. Midkif
and J. Torrellas, “AccMon: automatically detecting
memory-related bugs via program counter-based invariants
37th Annual International Symposium on Microarchitecture
(MICRO), pages 269-280, 2004.

