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ABSTRACT
Dynamic slicing algorithms have been considered to aid in debug-
ging for many years. However, as far as we know, no detailed stud-
ies on evaluating the benefits of using dynamic slicing for detect-
ing faulty statements in programs have been carried out. We have
developed a dynamic slicing framework that uses dynamic instru-
mentation to efficiently collect dynamic slices and reducedordered
Binary Decision Diagrams (roBDDs) to compactly store them.We
have used the above framework to implement three variants ofdy-
namic slicing algorithms including: data slicing, full slicing, and
relevant slicing algorithms. We have carried out detailed experi-
ments to evaluate these algorithms. Our results show that full slices
and relevant slices can considerably reduce the subset of program
statements that need to be examined to locate faulty statements.
We expect that the observations presented here will enable devel-
opment of new slicing based algorithms for automated debugging.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Testing tools, Tracing

General Terms
Algorithms, Measurement, Reliability, Verification

Keywords
data slice, full slice, relevant slice, debugging

1. INTRODUCTION
The concept of program slicing was first introduced by Mark

Weiser [18]. He introduced program slicing as a debugging aid and
gave the firststatic slicingalgorithm. During program debugging,
the objective of slicing is to reduce the debugging effort byfocusing
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the attention of the user on a subset of program statements which
are expected to contain faulty code. Since debugging is performed
by analyzing the statements of the program when it is executed us-
ing a specific input, Korel and Laski proposed the idea ofdynamic
slicing [12]. There are two kinds of dynamic slices: backward dy-
namic slices and forward dynamic slices. A backward dynamic
slice of a variable at a point in the execution trace includesall those
executed statements which effect the value of the variable at that
point. In contrast, the forward dynamic slice of a variable at a point
in the execution trace includes all those executed statements that
are affected by the value of the variable at that point. Note that
throughout this paper we use the term dynamic slice to refer to a
backwarddynamic slice.

A dynamic slice identifies a subset ofexecuted statementsthat is
expected to contain faulty code. The goal of our work is to exper-
imentally evaluate the usefulness of dynamic slicing in identifying
a subset of statements that contain at least one faulty statement.
Therefore, we consider the cases where at least one faulty state-
ment is present in the static slice of the faulty output sincewe can-
not expect to find the faulty statement in a dynamic slice if itis not
present in the static slice of the faulty output. Specifically, we do
not consider the problem of locating erroneous statements such as
those missing from the static slice of the faulty output as a result of
a mistake in the variable name appearing on thelhs of an assign-
ment statement. Also we do not consider those faulty programs
from which some code is completely missing.

Given a faulty output value, dynamic slicing algorithms iden-
tify the subsets of executed program statements thatinfluencedthe
computation of the faulty value. Different dynamic slicingalgo-
rithms use different notions of what they consider asinfluencing.
In this paper we consider three dynamic slicing algorithms:

• Data slicing.Statements that directly or indirectly influence
the computation of faulty output value through chains ofdy-
namic data dependencesare included in data slices [20].

• Full slicing. Statements that directly or indirectly influence
the computation of faulty output value through chains ofdy-
namic data and/or control dependencesare included in full
slices [12].

• Relevant slicing.While relevant slices also consider data and
control dependences, in addition, they include predicatesthat
actually did not affect the output but could have affected it
had they been evaluated differently, direct data dependences
of these predicates, and chains of dynamic data and control
dependences of these direct data dependences [7].

The effectiveness of a given slicing algorithm in fault location



is determined by two factors:How often is the faulty statement
present in the slice?andHow big is the slice, i.e. how many state-
ments are included in the slice?For the class of faults considered
in this paper, i.e. where the programmer has made a mistake ina
predicate or an assignment statement, the faulty statementis guar-
anteed to be present in the static slice and relevant slice. However,
it may or may not be present in the full slice or the data slice.The
following relationship holds among various slices: StaticSlice⊇
Relevant Slice⊇ Full Slice⊇ Data Slice.

All Statements

Static Slice

Data Slice

Relevant Slice

Full Slice

While dynamic slicing has long been considered useful for de-
bugging [1, 12, 2], experimental studies evaluating the effective-
ness of slicing have not been carried out. The main goal of this
paper is to experimentally evaluate the three dynamic slicing algo-
rithms by considering their sizes and their ability to include faulty
statements. Our results show that although data slices are small
they often do not include faulty statements. Relevant slices are
quite effective and only slightly larger than full slices. The experi-
mentation is based upon a slicing tool that we have developed. This
tool uses dynamic instrumentation to efficiently collect runtime in-
formation and uses the reduced ordered Binary Decision Diagrams
(roBDDs) to efficiently store the collected information. Thus this
tool provides a practical implementation of dynamic slicing and
thus enables slicing of long program runs.

The rest of the paper is organized as follows. In section 2 we give
the overview of dynamic slicing algorithms including clarifications
of some issues that were not provided in other published papers.
In section 3 we give the overview of our slicing tool. Section4
presents the results of our experiments. Related work is presented
in section 5 and the conclusions are given in section 6.

2. DYNAMIC SLICING ALGORITHMS
Two types of methods for computing backward dynamic slices

have been proposed:backward computationmethods [1, 20]; and
forward computationmethods [5, 21]. In backward computation
methods the program dependences that are exercised during apro-
gram execution are captured and saved in the form of a dynamic
dependence graph. Dynamic slices are constructed upon user’s re-
quests by backward traversal of the dynamic dependence graph.
Although this approach allows computation ofall dynamic slices
of all variables at all execution points, a problem with thismethod
is its space cost. Inforward computationmethods [5, 21] latest
backward dynamic slices of all program variables are computed
and maintained as sets of statements as the program executes. Ad-
vantage of this approach is that the space cost is no longer propor-
tional to the length of execution but rather proportional tothe num-
ber of variables. Therefore we decided to use forward computation
method in this work.

We consider the three dynamic slicing algorithms (data, full, and
relevant) because they represent different tradeoffs between slice
sizes and fault location capability. Next we present an example to
illustrate this point. Let us consider the program in the left hand
side column of Fig. 1 – this is the correct program version. Under
three different errors that we consider, we show the data slice (DS),
full slice (FS), relevant slice (RS), and set of executed statements

(ES). In case of Error 1, the faulty statement (13) can be found in
all dynamic slices. Therefore data slice (DS) which is the smallest
is the most desirable choice. One can see that DS contains farfewer
statements than the number of distinct statements executedon the
given input. In case of Error 2, the data slice does not contain
the faulty statement (10), but it can be found in the full slice (FS).
Finally in case of Error 3, the faulty statement (7) can only be found
in relevant slice (RS). Thus, the different dynamic slices that we
consider differ in their size and ability to capture faulty statements.

2.1 Data Slicing
Lets consider the execution of the program on an input that re-

veals the fault by producing an erroneous output value. Further
let us assume that the presence of the faulty statement does alter
the execution control flow, i.e. the set of statements executed for
this input are the same whether or not the fault is present. Under
these conditions, the erroneous output must have been produced by
a fault in form of a computational error in one of statements whose
computed value is related to the output value through a chainof dy-
namic data dependences. Thus, the faulty statement will be present
in the data slice in this situation.

Given a statements, let si denote theith execution instance of
s. Let Def [si] be the set of variables defined bysi andUse[si]
denote the sets of variables that are read by statement execution
si. Statement executionsi is dynamically data dependent upon an-
other statement executionmn if and only if there exists a variable
v such thatv ∈ Def [mn] andv ∈ Use[si]. Starting from the
output value, by taking the transitive closure over dynamicdata de-
pendences, we can identify the set of statements that must belong to
the data slice. Because a dynamic data slice can be small and easy
to understand, the faulty statement is easier to locate by examining
the data slice.

Next we present theforward computationalgorithm [5, 21] that
we use to compute dynamic data slices. We useDS[v] to denote
the dynamic data slice for the latest definition ofv. A forward
computation algorithm continuously computes dynamic slices as
statements are executed. Although all slices are computed,only
the most recent slices of all variables are saved. After the statement
executionsi, DS[v] (wherev ∈ Def [si]) is updated to include
the following: statements that belong to latest dynamic slices of
variables used bysi (i.e., variables inUse[si]) and the statements
itself. The updating of dynamic data slices following the execution
of statement instancesi is summarized below.

Algorithm 1 Updating Data Slicing Information
ProcedureUpdate(si)
1: slice = {};
2: for (each usev in Use[si]) do
3: slice = slice ∪ DS[v];
4: end for
5: for (each definitionv in Def [si]) do
6: DS[v] = slice ∪ {s};
7: end for

For example in Fig. 1, if Error 1 is introduced, the program
fails on the test input shown. Forward computation of data slices
for this test case is shown in Table 1. The faulty program output
is −1 at statement141, which is different from the correct out-
put. For debugging we look up the data slice ofz at 141. The
value of z at this point is defined at131, which is z = x − y.
{x, y} are the variables that are used. We can see from the Table
1 that at this point,DS[x] = {5}, andDS[y] = {6}. Therefore
DS[z] = {13} ∪ DS[x] ∪ DS[y] = {5, 6, 13}. We can see the
faulty statement13 is in the data slice.



1. read (a);
2. read (n);
3. i=0;
4. while (i<n) {
5. read (x);
6. read (y);
7. a=a/x;
8. b=x;
9. if (a>1)
10. b=a-4;
11. if (b>0)
12. z=x+y;

else
13. z=x-y;
14. output (z);
15. i=i+1;

}

(Error1)
13. z = x − y

→ 13. z = x − y + 1
Input: a = 2; n = 1;

x = −1; y = 1;
Wrong output:z = −1;
Correct output:z = −2;
*DS = {5, 6, 13}
FS = {1, 2, 3, 4, 5, 6, 8, 11,

13}
RS = {1, 2, 3, 4, 5, 6, 7, 8,

9, 11, 13}
ES = {1, 2, 3, 4, 5, 6, 7, 8,

9, 11, 13, 14, 15}

(Error2)
10. b = a − 4

→ 10. b = a − 3
Input: a = 8; n = 1;

x = 2; y = 2;
Wrong output:z = 4;
Correct output:z = 0;
DS = {5, 6, 12}
*FS = {1, 2, 3, 4, 5, 6, 7, 9,

10, 11, 12}
RS = {1, 2, 3, 4, 5, 6, 7, 9,

10, 11, 12}
ES = {1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 14, 15}

(Error3)
7. a = a/x

→ 7. a = a/2x − 1;
Input: a = 8; n = 1;

x = 2; y = 2;
Wrong output:z = 4;
Correct output:z = 0;
DS = {5, 6, 12}
FS = {1, 2, 3, 4, 5, 6, 8,

11, 12}
*RS = {1, 2, 3, 4, 5, 6, 7, 8,

9, 11, 12}
ES = {1, 2, 3, 4, 5, 6, 7, 8, 9,

11, 12, 14, 15}

Figure 1: Examples of Data, Full, and Relevant Slices.

Table 1: Forward computation of data slices.

dynamic dynamic
ij Def [ij] Use[ij] DS[v ∈ Def [ij ]]

11 {a} ∅ {1}
21 {n} ∅ {2}
31 {i} ∅ {3}
41 ∅ {i,n} n/a
51 {x} ∅ {5}
61 {y} ∅ {6}
71 {a} {a,x} {1,5,7}
81 {b} {a} {1,5,7,8}
91 ∅ {a} n/a
111 ∅ {b} n/a
131 {z} {x,y} {5,6,13}
141 ∅ {z} n/a

2.2 Full Slicing
Let us consider Error 2 in Fig 1. The faulty program fails on the

given input. It outputs4 at 141 while the correct output value is
0. The faulty statement10 is not in set{5, 6, 12} which is the data
slice ofz at141. This is because the fault does not affect value ofz
at 141 through a chain of dynamic data dependences. Instead fault
in statement10 affects the outcome of predicate at111 changing
the direction of the branch and thus causing statement12 to be
executed instead of statement13. The value ofz thus computed is
altered. The data slice ofz at 141 contains statement12 which is
executed by mistake but it does not contain the faulty statement10.

Full slices correctly handle the above situation by considering
control dependences. A statements is true (false) control depen-
dent upon a predicatep if and only if p’s true (false) outcome deter-
mines whethers will be executed. This is also denoted as follows:
pT (F ) ∈ CD(s). Full slices are computed by taking the transitive
closure over both data and control dependence edges starting from
the output value. In the above example, when both types of de-
pendences are considered, statement10 is included in the full slice.
This is because statement12 is control dependent upon predicate
11 which is data dependent upon statement10.

While a statement can be statically control dependent upon mul-
tiple predicates, at runtime, each execution instance of a statement
is dynamically control dependent upon a single predicate. The
predicate on which the execution of a statement is control depen-
dent is found as follows. First let us assume that there are nore-
cursive procedures. Given an execution of a statements, prior to

its execution, the most recently executed predicatep on whichs is
statically control dependent is found. The execution ofs is dynam-
ically control dependent upon this execution ofp. Timestamps are
associated with execution instances of statements in orderto eval-
uate the above condition. Second condition is needed in presence
of recursion. We discuss this point because we have not seen this
issue discussed in any other dynamic slicing paper. For a given ex-
ecution of statements to be control dependent upon an execution
of a predicatep, the execution instances of both must correspond
to the same function invocation. This latter condition is illustrated
by the example in Fig. 2.

Here a possible execution trace involving three invocations of
f(n) are shown. For this execution31 is dynamically control de-
pendent upon12 and32 is dynamically control dependent upon11.
As we can see, if we had simply used the first condition to deter-
mine dynamic control dependence, we would have obtained wrong
results (31 would have been found to be dynamically control de-
pendent upon13 and32 would have been found to be dynamically
control dependent upon12).

f(n) { 11

1: if (n>0) { 21

2: f(n-1); 12

3: S; 22

} 13

} 31

32

Figure 2: Dynamic control dependence.

In Algorithm 2, we present the forward computation algorithm
for finding full slice. HereFS[v] denotes the full slice for the lat-
est definition of variablev; timestamp denotes the current time;
stack is the current stack frame. Thestack.slice[] andstack.ts[]
are arrays allocated in the current stack frame in the same way as
a local array is allocated for a function. To correctly compute de-
pendences in the case of recursive calls, we store the timestamps
of latest executions of predicates and their correspondingfull slices
in stack.ts[] andstack.slice[] respectively. This guarantees when
we search for the predicate instance with the largest timestamp in
CD(i), we only consider those that have the same stack frame as
si. Note that the structure of this forward computation algorithm
is similar to the forward computation algorithm for data slicing.
The additional statements are present to enable handling ofcontrol



Table 2: Forward computation of full slices.

dynamic dynamic CD(s) cd stack.ts[s] stack.slice[s] FS[v ∈ Def [si]
si Def [si] Use[si]

11 {a} ∅ ∅ n/a n/a n/a {1}
21 {n} ∅ ∅ n/a n/a n/a {2}
31 {i} ∅ ∅ n/a n/a n/a {3}
41 ∅ {i,n} ∅ n/a 0 {2,3} {2,3,4}
51 {x} ∅ {4T } 4 n/a n/a {2,3,4,5}
61 {y} ∅ {4T } 4 n/a n/a {2,3,4,6}
71 {a} {a,x} {4T } 4 n/a n/a {1,2,3,4,5,7}
81 {b} {a} {4T } 4 n/a n/a {1,2,3,4,5,7,8}
91 ∅ {a} {4T } 4 1 {1,2,3,4,5,7} {1,2,3,4,5,7,9}
101 {b} {a} {9T } 9 n/a n/a {1,2,3,4,5,7,9,10}
111 ∅ {b} {4T } 4 2 {1,2,3,4,5,7,9,10} {1,2,3,4,5,7,9,10,11}
121 {z} {x,y} {11T } 11 n/a n/a {1,2,3,4,5,6,7,9,10,11,12}
141 ∅ {z} {4T } 4 n/a n/a n/a

Algorithm 2 Updating Full Slicing Information
ProcedureUpdate(si , stack)
1: slice = {};
2: for (each usev in Use[si]) do
3: slice = slice ∪ FS[v];
4: end for
5: cd = the predicate in CD(s) s.t.stack.ts[cd] is maximum;
6: slice = slice ∪ stack.slice[cd]∪ {cd};
7: if (s is a predicate)then
8: stack.slice[s] = slice;
9: stack.ts[s]=timestamp++;

10: end if
11: for (each definitionv in Def [si]) do
12: FS[v] = slice ∪ {s};
13: end for

dependences during slicing. The lines 2-4 update theslice by state-
ments that belong to latest dynamic slices of variables usedby si.
The line 5 finds the immediate control dependence ofs by picking
the predicatecd in CD(s) that has maximum timestamp. The line
6 updatesslice to include all the statements inslice(cd) andcd it-
self. If s is a predicate, the lines 8 and 9 respectively store theslice
and thetimestamp for s in the corresponding array elements in
the stack frame. Ifs is an assignment, then the full slice for each
of the variable whose definition is generated bys is assigned the
slice and the statements itself. Forward computation of full slices
for execution in case of Error 2 is shown in Table 2. We can see that
the faulty statement (10) is in the full slice but not in the data slice
of z at 141. At the same time we note that the full slice, which is
{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12}, is much larger than the data slice.

2.3 Relevant Slicing

Unfortunately, in some situations erroneous statements cannot
even be captured by full slices. In Fig 1, if Error 3 is consid-
ered on the given input the program fails producing output of4
instead of0 at 141. The full slice of z at 141 is computed as
{1, 2, 3, 4, 5, 6, 8, 11, 12}, the erroneous statement7 is not in the
full slice. This error turns value ofa at 71 from 4 into 1 and thus
predicate at91 takes the wrong branch which causes10 not to be
executed while10 should have been executed in the correct pro-
gram. Because of the missing execution of10, 91 would not be in
the full slice so that the faulty execution of71 would not appear
either. In general, the basic reason is that some statementswhich
should have been executed did not get executed due to the fault.

To handle the above situation a new form of dependence needs to
be introduced between certain predicate outcomes and uses.Given
a useu, let us define apotentially dependssetPD(u) such that the
set contains members of the form that specify predicates andtheir
outcomes (i.e.,pT orpF ). If pT (pF ) is present inPD(u), it means
that if prior to the execution ofu predicatep was executed, and its
outcome wasT (F ), then while no definition corresponding tou
was encountered, it could have been encountered ifp had evaluated
to F (T ). For the above example (whose control flow graph is
given in Fig. 3) this means that9F ∈ PD(b@11) because when
the outcome of predicate9 is F , no definition ofb is encountered
after execution of9 while if 9 had evaluated toT the definition of
b at11 would be encountered.

4

use b

def b

9

10

11

F

T

T

F

12 13

14

T F

15

def b8

Figure 3: Control flow graph.

The potentially depends property is a static property ofu which
is precomputed and later used at runtime to compute relevantslices.
Now let us see how thePD sets are used at runtime to compute
relevant slices. When a useu is encountered at runtime we first
determine the corresponding definition’s execution instance from
which the use gets its value. Then the execution instances ofpred-
icate outcomes indicated inPD(u) that are executed before the
use and after its corresponding definition are identified. Only these
instances could have caused a different definition to dynamically
reach the execution of useu under consideration. Thus these are
also included in the slice. Letts(si) denote the timestamp ofsi.
LDT (v) denotes the latest definition’s timestamp for variablev.
A statement executionsi is potentially dependent uponpx

j (where



x ∈ {T, F} andj is the instance number of the predicate), if and
only if there existsv ∈ Use(si) such that

(LDT (v) < ts(px
j ) < ts(si)) ∧ px ∈ PD(v@s).

Next we describe the forward computation algorithm for updat-
ing relevant slices. The Algorithm 3 follows same structureas the
full slicing algorithm. The changes reflect that not only data and
control dependences are to be considered, but in addition, the rele-
vantpotential dependencesare also considered. The contribution of
PD dependences to the relevant slice are denoted byPS slices in
the algorithm. ThePS slices include potentially dependent predi-
cates, their direct data dependences, and the relevant slices of these
direct dependences. The relevant slice for the latest definition of
variablev is denoted byRS[v]. For each usev, the lines4 − 6

Algorithm 3 Updating Relevant Slicing Information
ProcedureUpdate(si , stack)
1: slice = {};
2: for (each usev in Use[si]) do
3: slice = slice ∪ RS[v];
4: for (eachpx

j s.t.px ∈ PD(v@i) ∧ LDT (v) < ts[px
j ]) do

5: slice = slice ∪ PS[px
j ];

6: end for
7: end for
8: cd = the predicate in CD(s) s.t.stack.ts[cd] is maximum;
9: RS = slice ∪ stack.slice[cd]∪ {cd};

10: if (s is a predicate)then
11: stack.slice[s] = RS;
12: stack.ts[s]=timestamp;
13: Let x bes’s branch outcome.
14: PS[sx

i ] = slice ∪ {sx
i };

15: ts[sx
i ] = timestamp;

16: end if
17: for (each definitionv in Def [si]) do
18: RS[v] = RS ∪ {s} ;
19: LDT (v) = timestamp;
20: end for
21: timestamp++;

in the Algorithm 3 search through all the instances of predicates in
PD(v) and find those that are executed between the current time
and the definition time. The currentslice is unioned with thePSs
for those selected predicate instances. Before line8, slice contains
the contributions of data dependence and potential dependence to
the current slice. The lines8−9 compute the contribution of control
dependence and finally get the current relevant sliceRS. Whens is
a predicate, a couple of things need to be done to support the control
dependence and the potential dependence computation in thefu-
ture. As mentioned in the full Slicing algorithm, thestack.slice[]
andstack.ts[] are arrays allocated in the current stack frame. The
line 11 in the Algorithm 3 updates the relevant slice for the latest
instance of predicates to the computedRS. The line12 updates
the timestamp which will be used later on in the comparisons at 8.
Similarly, PS and the timestamp for the current predicate instance
need to be stored to facilitate the future computation in line4 − 6.
One thing we need to point out is thatPS is updated toslice but
not RS because the assumption for a predicate being a potential
dependent is that the branch outcome of that predicate couldbe
wrong, which implies the fault could only contribute to the predi-
cate outcome via data dependence or potential dependence but not
control dependence. The line18 updates the relevant slices of all
the variables defined ats to RS and the statements itself. Note that
the union ofPS is computed for only those instances ofpx whose
execution times are between the definition time and use time of the
variable which potentially depends uponpx.

3. SLICING TOOL
We have developed a dynamic slicing tool which was used to

conduct the experiments described in the next section. Our tool
executesgcc compiler generated binaries for Intel x86 and com-
putes dynamic slices based upon forward computation algorithms
described in the preceding section. Even though our tool works on
binary level, the slices can be mapped back to source code level
using the debugging information generated bygcc.
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Figure 4: Slicing Infrastructure.

Fig. 4 shows the main components of the tool. Thestatic analysis
component of our tool computes static control dependence (CD)
and potential dependence (PD) information required duringfull and
relevant slice computations from the binary. The static analysis was
implemented using theDiablo [24] retargetable link-time binary
rewriting framework as this framework already has the capability
of constructing the control flow graph from x86 binary.

Thedynamic profilingcomponent of our system which is based
upon theValgrind memory debugger and profiler [25] accepts the
samegcc generated binary, instruments it by calling theslicing in-
strumenter, and executes the instrumented code with the support of
the slicing runtime. The slicing instrumenter and slicing runtime
were developed by us to enable collection of dynamic information
and computation of dynamic slices. Valgrind’s kernel is a dynamic
instrumenter which takes the binary and before executing any new
(never instrumented) basic blocks it calls the instrumentation func-
tion, which is provided by the slicing instrumenter. The instrumen-
tation function instruments the provided basic block and returns
the new basic block to the Valgrind kernel. The kernel executes the
instrumented basic block instead of the original one. The instru-
mented basic block is copied to a new code space and thus it can
be reused without calling the instrumenter again. The instrumenta-
tion is dynamic in the sense that the user can enforce the expiration
of any instrumented basic block such that the original basicblock
has to be instrumented again (i.e., instrumentation can be turned
on and off as desired). Thus, we can easily turn off/on the slicing
instrumentation for sake of time performance or for certaincode,
e.g. library code. The slicing runtime essentially consists of a set
of call back functions for certain events (e.g., entering functions,
accessing memory, binary operations, predicates etc.). The CD and
PD information computed by the static analysis component isrep-
resented based on the virtual addresses which can be understood by
Valgrind.

The forward computation algorithms maintain the latest dynamic
slice for each variable/location. These dynamic slices arestored
in reduced ordered Binary Decision Diagram(roBDD) [14] com-
ponent of our system. In our previous work [21], we identified
three characteristics of dynamic slices: same dynamic slices tend to
reappearfrom time to time during execution, different slices tend
to share statements, andclusters of statementslocated near each
other in the program often appear in a dynamic slice. These char-
acteristics resulted in our observation that roBDD representation of
sparse sets was suitable for storing dynamic slices as it wasboth
space and time efficient. The roBDD benefits us in the following
respects. Each unique slice is presented by unique integer number
in roBDD, which implies that if and only if two slices are identi-



cal, they are represented by the same integer number. The whole
set of statements in the slice can be recovered from roBDD using
that number. This is critical to our design because now for each
variable (memory location) we only need to store one integer. Use
of roBDD achieves space efficiency because roBDD is capable of
removing duplicate, overlapping, and clustered sets whichare ex-
actly the characteristics of slices. Using roBDD also provides time
efficiency because roBDD implementations of set operationsare
very efficient. More details about why and how we use roBDD can
be found in [21].

We also implemented a simple debugging interface which pro-
vides limited capabilities including setting breakpoints, continuing
execution, stopping after certain steps of execution, slicing on a
register, slicing on a memory location, and slicing on the latest in-
stance of a predicate.
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Figure 5: Storing slices.

We discuss instrumentation in more detail next. The basic idea
of forward computation is that when some operation is performed
on operands, the slices of source operands are fetched and unioned
together with the current statement. The resulting slice isassigned
to the destination operand. Although one slice can be represented
as one integer, we need to store one integer for each operand which
could be memory location, register, or predicate. Fig. 5 explains
how we manage this. For memory, we use shadow space to store
the slices. For each stack/heap byte allocated in application’s vir-
tual space, a corresponding word is allocated in the shadow space.
The shadow space can be accessed using the same virtual address.
As we can see in Fig. 5, we need four shadow spaces, one for each
byte in a word of the virtual space. For register, we use the shadow
register file to store the slices for registers. For predicate, as we de-
scribed earlier, a predicate and its control dependent statement must
correspond to the same function invocation. Therefore we allocate
some space in the stack frame to store the slices for predicates. This
can be done by shifting the stack pointer from its original position
old esp to esp as shown in Fig. 5.
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Figure 6: Instrumentation example.

Fig. 6 shows examples for instrumentation. Left hand side is
the instrumentation for data slice computation. We can see for the
sb instruction, the operands areeax andebx. The instrumentation
first takes the slices for these registers from the shadow register file
SRF , and then computes the union of these two slices with current
pc. The computed slice is stored in the shadow space indexed by
the same virtual address which indicates the correspondingmem-
ory byte in application’s virtual space. Right hand side shows how
the instrumentation for predicate looks like. The variablex de-
notes the index of the predicate, the first predicate in pc order has
index of 0 and so on. After thecmp instruction gets executed,
the pre-allocated shadow space in the stack frame is updatedwith
the current timestamp and slice. These information are later used
when the instruction atlabel turns out to be control dependent on
the predicate.

4. EXPERIMENTAL EVALUATION
Table 3 shows the benchmarks we used for our experimentation.

The first five programs are from the Siemens suite [9, 23] and the
remaining three are medium sized linux utility programs from the
same code repository [23] as the Siemens suite. We exclude the
programtcasand tot info from the Siemens suite becausetcas is
too small and our tool currently does not support floating point pro-
grams liketot info. The faulty programs (Num. Versions) and the
test cases (Num. Tests) are provided at the website [23]. Notall
the provided faulty programs are used in our experiments. Some
faulty programs produce no output and thus it is unclear how a
proper slicing criterion should be defined. There are also a certain
number of faults which are simple code omissions. Therefore, the
faulty omitted statement will not be present in any slice. Wesim-
ply exclude those versions. For the rest of the versions, theslicing
criteria we choose are either the points at which either thefirst in-
correct output is producedor at which asegmentation faultoccurs.
In our experiments, each faulty version of the program has exactly
one fault injected.

Table 3: Overview of benchmark programs.

Program Description Num. LOC Num.
Versions Tests

print tokens lexical analyzer 5 565 4072
print tokens2 lexical analyzer 8 510 4057

replace pattern replacement 19 563 5542
schedule priority scheduler 6 412 2627
schedule2 priority scheduler 3 307 2683
gzip2 compression utility 1 7199 217
gzip5 compression utility 2 8009 217
flex lexical analyzer 5 12418 525

generator

We instrument the faulty programs in minor ways when we run
them through our tool. For example, we intercept almost all the
output functions likefprintf, printf, fputcetc. and redirect them to
our customized functions in which it is more convenient for our
tool to find slicing criterion.

4.1 Data, Full, and Relevant Slices
The first experiment we carried out compares the three basic

slicing algorithms that we have discussed. We compare theseal-
gorithms both from the perspective of slice sizes and whether the
slices include faulty statements. For each faulty program,we take
all the test cases which produce wrong outputs, and then for each
test case we computedata slice(DS), full slice (FS), andrelevant
slice (RS) for the first wrong output. We classified all the errors



in the faulty versions of the programs into two categories,Assign-
ment FaultsandPredicate Faults. If the error was in a definition,
it was classified as an assignment fault, otherwise it was classified
as a predicate fault. We did not computeDS for predicate faults
becauseDSs never contain branch predicates. The averages over
all the failed test cases for each faulty program are presented in
Table 4. In this table, the column labeledFail Casesshows the
number of failed test cases for the faulty version corresponding to
a given row. The column labeledAvg. Exec.shows the average
number of distinct statements that are executed at least once for
the failed test cases. The columns labeledAvg. DS, Avg. FSand
Avg. RSrespectively show the average number of statements in
DS, FS andRS. Similarly, the columns labeledIn DS, In FSand
In RSrespectively show thefraction of data slices and full slices
that contained the faulty statement. The results are also summa-
rized according to theirfault typesfor each benchmark in Table 5
and Table 6.

Note that since there was only one faulty statement in each faulty
version, the relevant slice always contained the faulty statement.
However, in general when there are multiple faulty statements in a
program, a relevant slice may contain only some of the faultystate-
ments. This is because a relevant slice is computed by considering
the contributions of potentially dependent predicates that wereac-
tually executedfor an input. To illustrate this, let us consider the
simple code segment below.

1: read(m,n);
2: x:=2*m;
3: w:=5;
4: a:=10;
5: if (w > n)
6: b:=15;
7: else
8: if (x >5)
9: a:=20;
10: else
11: b:=25;
12: endif
13: endif
14: output(a);

Let us consider the execution of above code segment for the input
(m=1, n=2). The lines 1, 2, 3, 4, 5, 6, 14 in the code segment above
are executed for the above input. Let us assume statements onlines
2 and 3 are faulty. The full dynamic slice of variablea at line 14
for this input will consist of only statement at line 4. However, for
computing the relevant slice for this input, the predicate at line 5
will be identified as a potential dependence since if it had evaluated
to false outcome, the value of variablea output at line 14 could be
affected. Therefore, the relevant slice will contain the statements at
lines 5, 3 and 1 in addition to the statement at line 4 that is inthe full
dynamic slice. Thus, the relevant slice of variablea at line 14 for
this input will contain only one faulty statement i.e., the statement
at line 3. The other faulty statement (at line 2) will be missing from
this relevant slice. This is because the predicate at line 8 was not
identified as a potential dependence since it wasnot executed.

However, if we consider an input (m=1, n=6) for which the pred-
icate at line 5 evaluates to false, then the predicate at line8 will be
executed and it will evaluate to its false outcome. Althoughthe full
dynamic slice for this input will again consist of only the statement
at line 4, the predicate at line 8 will be identified as a potential de-
pendence because if it evaluated to true, the value of variable a at
line 14 would be affected. Therefore, the statement at line 2will
be included in this relevant slice since predicate at line 8 is data
dependent on it. However, the faulty statement in line 3 willnot
be included in the relevant slice because the direct controldepen-

dences of the potentially dependent predicates are not included in
the relevant slice. Thus, in general if multiple erroneous statements
are present in the static slice of an output variable, a relevant slice
for a given input may contain only a subset of the faulty statements.

Next we describe our experimental results and compare the ef-
fectiveness of data, full and relevant slices in capturing faulty state-
ments. We first discuss our observations from the experiments with
capturing assignment faults.

Assignment Faults: From Table 5, we can see the average data
slice sizes (Avg. DS) are very small. They are only0.5 − 28% of
the average executed (Avg. Exec.) statements. Data slices do not
always capture the faults as can be seen from the column labeled
In DS. In some benchmarks (e.g.,replace), none of data slices
we computed contained the faulty statements. On the other hand,
we do observe that forflex, the largest benchmark we have, DS
successfully located all the faulty statements. For this program DS
has the average size of around8 statements, which is only0.5% of
the executed statements.

For comparison, we also computeFS andRS for assignment
faults. Although the size ofFS increased by the factors of1.74 −
8.39 when compared with the size ofDS, FS covered almost
all the faulty statements including those missed byDS except for
benchmarkschedule2. Compared toFS, although the size ofRS
increased by a factor of1.04−2.59, RS successfully contained all
of the faulty statements. For most of the benchmarks, the inflations
in size ofRS when compared toFS are small (many of them are
less than10%) exceptflex. However, when we compare the size
of RS to the executed statements (Avg. Exec.) for flex, it has just
12% of the executed statements.

Predicate Faults. For this type of faults, we compare the perfor-
mance ofFS andRS in terms of their sizes and how often they
contained the faulty statement. We can see from the Table 6 that
most of the time,FS was able to capture the faulty statement.
TheFS contained4.3 − 61% of the executed statements. Those
faulty statements which were missed fromFS were captured by
RS. Compared toFS, RS are2 − 181% larger in size. However,
the size ofRS increased by less than10% for many benchmarks.
In addition,RS contained only12 − 62% of the executed state-
ments as compared toFS that contained4.3−61% of the executed
statements.

Overall, all the slicing methods includingDS, FS andRS are
quite effective in reducing the executed set of statements to a much
smaller faulty statement candidate set. In our experimentsDS was
found to be very small in size and effective in containing assign-
ment faults for large programs (gzip5 andflex). TheFS showed
a very high chance to capture both types of faults. Its size was nor-
mally much larger thanDS’s even though it was still a small subset
of the executed statements. TheRS was very effective in capturing
faults and its size was comparable to that ofFS’s in most of the
cases. For benchmarkflex, out of the1500 executed statements,
theDS size is8, theFS size is65 and theRS size is180 on aver-
age. This strongly supports that slicing is very effective in helping
users focus their attention during debugging.

4.2 Searching for a faulty statement in Data,
Full and Relevant Slices

A slice provides a fault candidate set that the programmer must
examine to identify the faulty statement. Therefore smaller the set
of statements that the user has to examine the better it is. Although
data slices are small, our experiments show that very often the



Table 4: Comparison of Data, Full, and Relevant Slicing.

Program Fault Type Version Fail Cases Avg. Exec. Avg. DS In DS Avg. FS In FS Avg. RS In RS

print tokens Assignment v4 28 116 26 0.00 74 1.00 77 1.0
v6 186 119 28 0.00 76 1.00 78 1.0

Predicate v1 6 124 - - 86 1.00 88 1.0
v2 48 127 - - 74 1.00 75 1.0
v7 28 149 - - 82 1.00 85 1.0

print tokens2 Assignment v4 332 153 18 0.00 71 0.91 75 1.0
v5 173 134 18 0.00 70 1.00 72 1.0

Predicate v3 33 149 - - 86 1.00 87 1.0
v6 518 145 - - 73 1.00 78 1.0
v7 207 149 - - 69 0.95 75 1.0
v8 256 153 - - 67 0.94 71 1.0
v9 56 161 - - 74 0.83 80 1.0
v10 173 116 - - 60 1.00 64 1.0

replace Assignment v12 301 89 7 0.00 53 1.00 56 1.0
v15 63 102 15 0.00 50 1.00 54 1.0

Predicate v1 70 168 - - 100 0.81 122 1.0
v2 39 167 - - 82 0.62 111 1.0
v3 131 185 - - 108 1.00 122 1.0
v5 272 186 - - 89 0.71 120 1.0
v6 97 184 - - 113 1.00 120 1.0
v7 85 59 - - 35 1.00 36 1.0
v8 55 157 - - 49 0.00 97 1.0
v9 31 158 - - 54 0.23 96 1.0
v10 24 167 - - 75 0.52 103 1.0
v11 31 158 - - 54 0.24 96 1.0
v14 138 181 - - 106 1.00 115 1.0
v16 84 59 - - 35 1.00 36 1.0
v18 211 180 - - 101 1.00 116 1.0
v21 3 160 - - 84 1.00 80 1.0
v23 23 176 - - 78 0.58 99 1.0
v25 4 179 - - 106 1.00 113 1.0
v26 128 200 - - 90 0.55 121 1.0

schedule Assignment v1 4 85 24 1.00 40 1.00 42 1.0
v2 210 146 42 0.00 75 0.49 81 1.0
v3 159 142 43 0.74 73 0.81 80 1.0
v6 4 85 24 1.00 40 1.00 42 1.0
v7 27 142 36 0.00 66 1.00 72 1.0

Predicate v4 294 144 - - 70 0.57 78 1.0
schedule2 Assignment v5 32 120 17 1.00 40 1.00 52 1.0

v6 7 109 18 0.00 34 0.00 55 1.0
Predicate v7 31 126 - - 46 1.00 60 1.0

gzip2 Predicate v1 170 541 57 0.00 286 0.21 307 1.0
gzip5 Assignment v1 9 272 36 1.00 74 1.00 105 1.0

Predicate v10 169 517 - - 256 0.18 274 1.0
flex Assignment v4 74 1327 8 1.00 67 1.00 184 1.0

v5 193 1562 8 1.00 67 1.00 186 1.0
v17 278 1546 8 1.00 77 1.00 183 1.0
v18 160 1607 9 1.00 66 1.00 165 1.0

Predicate v11 356 1467 - - 64 1.00 180 1.0

Table 5: Comparison of Data, Full, and Relevant Slicing for Assignment Faults.

Program Avg. Exec. Avg. DS In DS Avg. FS In FS Avg. RS In RS DS/Exec. FS/DS RS/FS RS/Exec.

print tokens 117.5 27 0 75 1 80.6 1.0 0.23 2.78 1.07 0.68
print tokens2 143.5 18 0 70.5 0.96 73.5 1.0 0.13 3.92 1.04 0.51

replace 95.5 11 0 51.5 1 55 1.0 0.12 4.68 1.07 0.58
schedule 120 33.8 0.74 58.8 0.86 63.4 1.0 0.28 1.74 1.08 0.53
schedule2 114.5 17.5 0.5 37 0.5 53.5 1.0 0.15 2.11 1.45 0.47

gzip2 NA NA NA NA NA NA NA NA NA NA NA
gzip5 272 36 1 74 1 105 1.0 0.13 2.06 1.42 0.38
flex 1510.5 8.25 1 69.3 1 179.5 1.0 0.0054 8.39 2.59 0.12



Table 6: Comparison of Data, Full, and Relevant Slicing for Predicate Faults.

Program Avg. Exec. Avg. FS In FS Avg. RS In RS FS/Exec. RS/FS RS/Exec.

print tokens 133.3 80.7 1 82.7 1.0 0.61 1.02 0.62
print tokens2 145.5 71.5 0.95 75.8 1.0 0.49 1.06 0.52

replace 160.2 79.9 0.72 100.2 1.0 0.50 1.25 0.62
schedule 144 70 0.57 78 1.0 0.49 1.11 0.54
schedule2 126 46 1 60 1.0 0.36 1.30 0.48

gzip2 541 286 0.21 307 1.0 0.53 1.07 0.57
gzip5 517 256 0.18 274 1.0 0.50 1.07 0.53
flex 1467 64 1 180 1.0 0.043 2.81 0.12

faulty statement is not present in data slices. Thus, the user would
need to examine larger full and/or relevant slices. Even though the
full slices and relevant slices are small compared to the setof exe-
cuted statements, it is still quite a lot of work to examine all of the
statements in those slices. Therefore, to get an estimate ofthe num-
ber of the statements a developer will have to examine in a slice,
we took the first test case which produced wrong output for each
faulty program and computed the full slice for the wrong output.

In Table 7, the column labeledEFS (ExploreFull Slice) shows
how many statements were present in the full slice starting from the
wrong output until we reached the faulty statement. The columns
labeledDS andFS respectively show the number of statements
in the data slice and the full slice. We excludedF lex from this
experiment because in most of its versions, the faulty statement was
captured by the data slice which contained very few statements.

We can see from the Table 7 that the number of statements that
were present in the full slice between the faulty statement and wrong
output is 1.19 to 3.33 times larger than the size of data slices and
they are only 32% to 71% of the statements in the full slices.

In practice, a developer may examine the statements in a slice by
traversing along the data and control dependence edges fromthe
point where a faulty output was produced. Clearly the dependence
distance of the faulty statement from the point where the incorrect
output is produced will be smaller the number of statements present
in the slice between these two points. Therefore, in practice a devel-
oper may need to examine fewer % of statements in the full slices
than shown in the Table 7 in order to locate the faulty statement.
This suggests that in practice, the dynamic slices can significantly
reduce the effort to search for a faulty statement.

Table 7: Exploring slices

Program Avg. Avg. EFS Avg. EFS
DS EFS DS FS FS

print tokens 20 35 1.75 74 0.47
print tokens2 14 24 1.71 73 0.32

replace 9 30 3.33 86 0.35
schedule 31 37 1.19 52 0.71
schedule2 22 28 1.27 48 0.57

gzip2 54 94 1.74 192 0.49
gzip5 61 124 2.03 197 0.63

4.3 Performance
In this experiment, we measure the average timing and space

overhead of dynamic slicing for the runs ofgzip andflex. We do
not present this data for Siemens suite programs as they are smaller
and hence most of the time and space cost are spent during the
start-up and shut-down procedures of our slicing tool.

From Table 8, we can see that thedata slicingalgorithm is the
fastest and therelevant slicingis the slowest. The slow down factor

Table 8: Performance

Program DS FS RS
SD Mem. SD Mem. SD Mem.

(MB) (MB) (MB)

gzip2 1040 221 1172 222 1624 228
gzip5 827 220 948 222 1428 227
flex 59 221 77 222 102 228

(SD) varies a lot fromgzip to flex. The slow down forgzip is
very high, this is because the uninstrumented runs terminate within
0.005sec, which makes theV algrind start-up time very signifi-
cant. Forflex, whose uninstrumented runs take several seconds,
the slow down for our tool is lower. We can also see the memory
consumption for our tool does not vary too much. One explanation
could be the memory used byV algrind is the dominant factor
which tends to be constant for different benchmarks and different
runs.

5. RELATED WORK
In [7], Agrawal et al. first proposed the concept ofrelevant slic-

ing. They expanded theDynamic Dependence Graphby introduc-
ing dependence edges between predicates and the statementswhich
potentially depend on those predicates. They suggested using rel-
evant slicing in incremental regression testing. Gyimothyet al.
presented a forward computation algorithm for computingrelevant
slicesin [7]. Even though they suggested using relevant slices for
debugging, they did not experimentally evaluate the effectiveness
of relevant slicing for debugging. Wang et al. also talked about how
to computerelevant slicesin [17]. They followed a method similar
to Agrawal’s by considering potential dependence edges. The dif-
ference is that instead of constructing the wholeDDG, they main-
tain slices, which is basically a partialDDG, by backward traversal
of a compressed java bytecode trace. They do not evaluate relevant
slicing either.

Dynamic slicing was introduced as an aid to debugging [2, 11,
13, 4, 15]. Agrawal et al. [4] proposed subtracting a single cor-
rect execution trace from a single failed execution trace. In [15],
Pan and Spafford presented a family of heuristics for fault localiza-
tion using dynamic slicing. Compared to these previous works, we
are the first one to compare the effectiveness of different dynamic
slicing algorithms in fault location.

A lot of interesting research other than dynamic slicing have
been carried on in fault location. Zeller has presented a series
techniques [8, 19, 6] from isolating the critical input to isolating
cost-effect chains in both space and time. The basic idea is to
find the specific part of theinput/program statewhich is critical
to the program failure by minimizing the difference betweenthein-
put/program stateleading to a passing run and that leading to a fail-



ing run. We believe our technique can be combined with Zeller’s
technique in many aspects, for instance, the isolatedcausesare per-
fect slicing criteria starting from which dynamic slicing may pro-
duce a much smaller fault candidate set than from the failurepoint.
Renieris and Reiss [16] presented technique that selects the single
passing run that most resembles to the failing run and reports the
difference between these two runs. Jones [10] presented a tech-
nique that uses software visualization to assist fault location. Their
technique provides a ranking of each statement according toits ra-
tio of failing tests to correct tests.

6. CONCLUSIONS
The development of dynamic slicing was motivated by the prob-

lem of locating the faulty code when an execution of a program
fails. There has been a lot of research in developing algorithms for
computing different types of dynamic slices. The contribution of
this paper is to present an experimental evaluation of threediffer-
ent types of dynamic slices for the benefit of using them to locate
a faulty statement in a program. We have presented experimen-
tal studies for several large programs. In our experiments,data
slices were found to be much smaller than full slices and relevant
slices. However, they captured very few faulty statements on av-
erage. The full slices were significantly bigger than data slice and
captured much larger number of faulty statements than data slice.
Interestingly, we found the relevant slices performed bestin cap-
turing faulty statements. The relevant slices were found tobe only
slightly larger than full slices, however they captured allthe faulty
statements in our experiments.
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