Experimental Evaluation o
for Fault L

f Using Dynamic Slices
ocation-

Xiangyu Zhang Haifeng He Neelam Gupta Rajiv Gupta

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

{xyzhang,hehf,ngupta,gupta}@cs.arizona.edu

ABSTRACT

Dynamic slicing algorithms have been considered to aid bude
ging for many years. However, as far as we know, no detailedt st
ies on evaluating the benefits of using dynamic slicing faede
ing faulty statements in programs have been carried out. &e h
developed a dynamic slicing framework that uses dynamituns
mentation to efficiently collect dynamic slices and reducestered
Binary Decision Diagrams (roBDDs) to compactly store th&\e.
have used the above framework to implement three variardg-of
namic slicing algorithms including: data slicing, full gilig, and
relevant slicing algorithms. We have carried out detaileplee-
ments to evaluate these algorithms. Our results show thatiftes
and relevant slices can considerably reduce the subsebgfgm
statements that need to be examined to locate faulty stateme
We expect that the observations presented here will enalviel-d
opment of new slicing based algorithms for automated deibggg

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Bebuggers
D.2.5 [Software Engineering: Testing and Debugging-Bebug-
ging aids, Testing tools, Tracing

General Terms

Algorithms, Measurement, Reliability, Verification

Keywords

data slice, full slice, relevant slice, debugging

1. INTRODUCTION

The concept of program slicing was first introduced by Mark
Weiser [18]. He introduced program slicing as a debuggidgad
gave the firsstatic slicingalgorithm. During program debugging,
the objective of slicing is to reduce the debugging effortdusing

*This work is supported by grants from IBM, Microsoft, Intel,
and NSF grants CCR-0324969, CCR-0220334, CCR-0208756, and
EIA-0080123 to the Univ. of Arizona.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AADEBUG’05,September 19-21, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-050-7/05/000955.00.

the attention of the user on a subset of program statemerith wh
are expected to contain faulty code. Since debugging i®pagd

by analyzing the statements of the program when it is exdauge
ing a specific input, Korel and Laski proposed the idedysfamic
slicing [12]. There are two kinds of dynamic slices: backward dy-
namic slices and forward dynamic slices. A backward dynamic
slice of a variable at a point in the execution trace inclualkethose
executed statements which effect the value of the variablbaa
point. In contrast, the forward dynamic slice of a varialila point

in the execution trace includes all those executed statesntbat
are affected by the value of the variable at that point. Nb# t
throughout this paper we use the term dynamic slice to refer t
backwarddynamic slice.

A dynamic slice identifies a subsetefecuted statemerttsat is
expected to contain faulty code. The goal of our work is toeexp
imentally evaluate the usefulness of dynamic slicing imtdging
a subset of statements that contain at least one faultynstate
Therefore, we consider the cases where at least one faalig- st
ment is present in the static slice of the faulty output siweecan-
not expect to find the faulty statement in a dynamic sliceif itot
present in the static slice of the faulty output. Specificalle do
not consider the problem of locating erroneous statemeiats as
those missing from the static slice of the faulty output assalt of
a mistake in the variable name appearing onitheof an assign-
ment statement. Also we do not consider those faulty program
from which some code is completely missing.

Given a faulty output value, dynamic slicing algorithmsriele
tify the subsets of executed program statementsitifiaencedhe
computation of the faulty value. Different dynamic sliciatgo-
rithms use different notions of what they considerirgftuencing
In this paper we consider three dynamic slicing algorithms:

e Data slicing. Statements that directly or indirectly influence
the computation of faulty output value through chainslypf
namic data dependencase included in data slices [20].

Full slicing. Statements that directly or indirectly influence
the computation of faulty output value through chainslpf
namic data and/or control dependenca® included in full
slices [12].

Relevant slicingWhile relevant slices also consider data and
control dependences, in addition, they include predidatss
actually did not affect the output but could have affected it
had they been evaluated differently, direct data deperegenc
of these predicates, and chains of dynamic data and control
dependences of these direct data dependences [7].

The effectiveness of a given slicing algorithm in fault lboa

is determined by two factorsHow often is the faulty statement
present in the sliceandHow big is the slice, i.e. how many state-
ments are included in the slice?or the class of faults considered
in this paper, i.e. where the programmer has made a mistake in
predicate or an assignment statement, the faulty stateimgoar-
anteed to be present in the static slice and relevant slioaekfkr,

it may or may not be present in the full slice or the data slidee
following relationship holds among various slices: St&lice D
Relevant Sliced Full Slice D Data Slice.

All Statements
Static Slice
Relevant Slice

Full Slice

Data Slice

While dynamic slicing has long been considered useful fer de
bugging [1, 12, 2], experimental studies evaluating theatiife-
ness of slicing have not been carried out. The main goal sf thi
paper is to experimentally evaluate the three dynamicrgliaigo-
rithms by considering their sizes and their ability to ird#ufaulty
statements. Our results show that although data slicesnza# s
they often do not include faulty statements. Relevant sliaee
quite effective and only slightly larger than full sliceshé experi-
mentation is based upon a slicing tool that we have developieid
tool uses dynamic instrumentation to efficiently collegtitine in-
formation and uses the reduced ordered Binary DecisionrBiag
(roBDDs) to efficiently store the collected information. ughthis
tool provides a practical implementation of dynamic skciand
thus enables slicing of long program runs.

The rest of the paper is organized as follows. In section 2ivee g
the overview of dynamic slicing algorithms including cfarations
of some issues that were not provided in other publishedrpape
In section 3 we give the overview of our slicing tool. Sectibn
presents the results of our experiments. Related work Eepted
in section 5 and the conclusions are given in section 6.

2. DYNAMIC SLICING ALGORITHMS

Two types of methods for computing backward dynamic slices
have been proposedbackward computatiomethods [1, 20]; and
forward computatiommethods [5, 21]. In backward computation
methods the program dependences that are exercised diping a
gram execution are captured and saved in the form of a dynamic
dependence graph. Dynamic slices are constructed upos teser
quests by backward traversal of the dynamic dependencér.grap
Although this approach allows computationaf dynamic slices
of all variables at all execution points, a problem with tmsthod
is its space cost. lforward computatiormethods [5, 21] latest
backward dynamic slices of all program variables are costut
and maintained as sets of statements as the program exe&dtes
vantage of this approach is that the space cost is no longpppr
tional to the length of execution but rather proportionahi® num-
ber of variables. Therefore we decided to use forward coatjount
method in this work.

We consider the three dynamic slicing algorithms (data, &ud
relevant) because they represent different tradeoffs deivglice
sizes and fault location capability. Next we present an gtarto
illustrate this point. Let us consider the program in the kefnd
side column of Fig. 1 — this is the correct program versiondéin
three different errors that we consider, we show the data €} S),
full slice (F'S), relevant slice RS), and set of executed statements

(ES). In case of Error 1, the faulty statement (13) can be found in
all dynamic slices. Therefore data slid@§) which is the smallest

is the most desirable choice. One can see that DS contaifesfar
statements than the number of distinct statements exeontéke
given input. In case of Error 2, the data slice does not contai
the faulty statement (10), but it can be found in the fullskg'S).
Finally in case of Error 3, the faulty statement (7) can ordydund

in relevant slice RS). Thus, the different dynamic slices that we
consider differ in their size and ability to capture faultgtements.

2.1 Data Slicing

Lets consider the execution of the program on an input that re
veals the fault by producing an erroneous output value. heart
let us assume that the presence of the faulty statement ttees a
the execution control flow, i.e. the set of statements execidr
this input are the same whether or not the fault is presentetUn
these conditions, the erroneous output must have beengaddhy
a fault in form of a computational error in one of statement®ge
computed value is related to the output value through a dfag-
namic data dependences. Thus, the faulty statement willdsept
in the data slice in this situation.

Given a statement, let s; denote the®™ execution instance of
s. Let Def]s;] be the set of variables defined by and Use][s;]
denote the sets of variables that are read by statementtexecu
s;. Statement executiosy is dynamically data dependent upon an-
other statement execution,, if and only if there exists a variable
v such thatv € Def[my] andv € Use[s;]. Starting from the
output value, by taking the transitive closure over dynateita de-
pendences, we can identify the set of statements that miosighi®
the data slice. Because a dynamic data slice can be smalbagd e
to understand, the faulty statement is easier to locate amimng
the data slice.

Next we present théorward computatioralgorithm [5, 21] that
we use to compute dynamic data slices. We isgv] to denote
the dynamic data slice for the latest definitionwof A forward
computation algorithm continuously computes dynamiceslias
statements are executed. Although all slices are compotdg,
the most recent slices of all variables are saved. Afterttitermient
executions;, DS[v] (wherev € Def/[s;]) is updated to include
the following: statements that belong to latest dynamicesliof
variables used by; (i.e., variables iU se[s;]) and the statemet
itself. The updating of dynamic data slices following theextion
of statement instance is summarized below.

Algorithm 1 Updating Data Slicing Information

Procedure Update§;)

1: slice={};

: for (each use in Use([s;]) do

slice = slice U DS[v];

. end for

. for (each definitiorw in Def[s;]) do
DSv] = slice U {s};

. end for

For example in Fig. 1, if Error 1 is introduced, the program
fails on the test input shown. Forward computation of daiesl
for this test case is shown in Table 1. The faulty program watutp
is —1 at statemeni4;, which is different from the correct out-
put. For debugging we look up the data slicezoht 14,. The
value of z at this point is defined at3;, which isz = = — .
{z,y} are the variables that are used. We can see from the Table
1 that at this pointDS[z] = {5}, andDS[y] = {6}. Therefore
DS[z] = {13} U DS[z] U DS[y] = {5,6,13}. We can see the
faulty statement3 is in the data slice.

(Error3)
T.a=alx
—T.a=a/2zx — 1,

Input:.a =8; n=1;
T=2y =2

Wrong output:z = 4;

Correct outputz = 0;

DS = 15,6, 12}

FS={1,2,3,4,5,6,8,
11,12}

*RS ={1,2,3,4,5,6,7,8,
9,11,12}

ES =1{1,2,3,4,5,6,7,8,9,
11,12, 14,15}

1. read (a);
:2,)' lrfgd () (Errorl) (Error2)
4. while (i<n){ | PFTE Y 10.b=a—4
5' read (X); —13.z=xz—y+1 5 10.b=a—3

' ' Input: a = 2; n = 1; Input:a = 8; n =1;
6. read (y); v 1y —1; o2y 2
;' zé;zx, Wrong outputz = —1; Wrong output.z = 4;
9: if (a'>1) Correct outputz = —2; Correct outputz = 0;
10. b=a-4; *DS = {5’ 6, 13} DS = {57 6, 12}
1. if (b>0) | FS={1,2,3,4,5,6,8,11, *FS=1{1,2,3,4,5,6,7,9,
12. Z=Xty,; 13} 107 117 12}

else | RS=1{1,2,3,4,5,6,7,8, RS ={1,2,3,4,5,6,7,9,
13. 7%y 9,11,13} 10,11,12}
14, output (2); | ES=1{1,2,3,4,5,6,7,8, ES=1{1,2,3,4,5,6,7,8,9,
15. i=i+1: 9,11,13, 14,15} 10,11,12, 14, 15}
}

Figure 1: Examples of Data, Full, and Relevant Slices.

Table 1: Forward computation of data slices.

dynamic dynamic

’ij Def[zj} Use[ij} DS[’U (S Def[zj]]
11 {a} 0 {1}
21 {n} 0 {2}
31 {i} 1] {3}
41 1] {i,n} n/a
51 {x} 0 {5}
61 {y} 0 {6}
71 {a} {a,x} {1,5,%}
81 {b} {a} {1,5,7.8
91 1] {a} n/a
11y 0 {b} n/a
B | {2 xy) (56,13
144 0 {z} n/a

2.2 Full Slicing

Let us consider Error 2 in Fig 1. The faulty program fails oa th
given input. It outputst at 14, while the correct output value is
0. The faulty statemerit0 is not in set{5, 6, 12} which is the data
slice of z at 14;. This is because the fault does not affect value of

at 14, through a chain of dynamic data dependences. Instead fault

in statementl0 affects the outcome of predicate Hit; changing
the direction of the branch and thus causing stateni@rto be
executed instead of statemdsst The value ofz thus computed is
altered. The data slice afat 14; contains statemenit2 which is
executed by mistake but it does not contain the faulty stameid.
Full slices correctly handle the above situation by corréde
control dependences. A statemaris true (false) control depen-
dent upon a predicageif and only if p’s true (false) outcome deter-
mines whetheg will be executed. This is also denoted as follows:

its execution, the most recently executed predigate whichs is
statically control dependent is found. The execution &fdynam-
ically control dependent upon this executionpofTimestamps are
associated with execution instances of statements in tod®ral-
uate the above condition. Second condition is needed irepces
of recursion. We discuss this point because we have not béen t
issue discussed in any other dynamic slicing paper. Forengx-
ecution of statement to be control dependent upon an execution
of a predicatep, the execution instances of both must correspond
to the same function invocation. This latter condition isstrated
by the example in Fig. 2.

Here a possible execution trace involving three invocatioh
f(n) are shown. For this executidh is dynamically control de-
pendent upori; and3; is dynamically control dependent upon.

As we can see, if we had simply used the first condition to deter
mine dynamic control dependence, we would have obtainedgvro
results 8; would have been found to be dynamically control de-
pendent uporis and3, would have been found to be dynamically
control dependent upory).

f(n) { 11

1:if (n>0) { 21

2: f(n-1); 12

3. S; 25

} Is

} 31
32

Figure 2: Dynamic control dependence.

In Algorithm 2, we present the forward computation algarith
for finding full slice. HereF'S[v] denotes the full slice for the lat-

pT) ¢ CD(s). Full slices are computed by taking the transitive est definition of variable); timestamp denotes the current time;

closure over both data and control dependence edges gthdin

stack is the current stack frame. Theack.slice[] andstack.ts]|

the output value. In the above example, when both types of de- are arrays allocated in the current stack frame in the samyeawa

pendences are considered, stateméris included in the full slice.
This is because statemem is control dependent upon predicate
11 which is data dependent upon statemnt

While a statement can be statically control dependent upda m
tiple predicates, at runtime, each execution instance tdtaraent
is dynamically control dependent upon a single predicatbe T
predicate on which the execution of a statement is contrpkde
dent is found as follows. First let us assume that there ameno
cursive procedures. Given an execution of a statemeptior to

a local array is allocated for a function. To correctly conepde-
pendences in the case of recursive calls, we store the amest

of latest executions of predicates and their corresporilhglices

in stack.ts[] andstack.slice[] respectively. This guarantees when
we search for the predicate instance with the largest tengstin
CD(i), we only consider those that have the same stack frame as
si. Note that the structure of this forward computation altgoni

is similar to the forward computation algorithm for datecsig.

The additional statements are present to enable handliognbfol

Table 2: Forward computation of full slices.

dynamic dynamic CD(s) cd stack.ts[s] stack.slice[s] FS[v € Defs;]
Si Defls;] Usels;]
11 {a} 0 [n/a n/a n/a {1}
21 {n} 0 0 nla n/a n/a {2}
31 {i} 0 0 n/a n/a n/a {3}
4 0 {in} 0 nla 0 2,3} {234
51 {x} 0 {47} 4 n/a n/a {2,343
61 {y} 0 {47} 4 n/a n/a {2,3,4,6
71 {a} {a,x} {47} 4 n/a n/a {1,2,3,4,5,%
81 {b} {a} {47} 4 n/a n/a {1,2,3,45,7,8
9 0 {a {47y a4 1 {1,2,34,53 {1,2,3,4,5,7,9
101 {v} {a} {97}y 9 n/a n/a {1,2,3,4,5,7,9,1p
114 0 {b} {4Ty a4 2 {1,2,345791p {1,2,3,4,57,9,10,11
129 {z} {x,y} {17y 1 n/a n/a {1,2,3,4,5,6,7,9,10,11,32
141 0 {z} {47y 4 n/a n/a n/a

Algorithm 2 Updating Full Slicing Information

Procedure Updateé;, stack)

1: slice ={};

2: for (each use in Use[s;]) do

3: slice = slice U FS[v];

4: end for

5: cd =the predicate in CD(s) s.ttack.ts[cd] is maximum;
6

7

8

9

slice = slice U stack.slice[cd] U {cd};
if (s is a predicatejhen
stack.slice[s] = slice;
stack.ts[s|=timestamp++;
cendif

11: for (each definitiorv in Def]s;]) do
12: FS[v] =slice U {s};
13: end for

dependences during slicing. The lines 2-4 updatethe by state-
ments that belong to latest dynamic slices of variables byed.
The line 5 finds the immediate control dependence oy picking
the predicated in C'D(s) that has maximum timestamp. The line
6 updatesslice to include all the statements #ice(cd) anded it-
self. If s is a predicate, the lines 8 and 9 respectively storathe
and thetimestamp for s in the corresponding array elements in
the stack frame. 1§ is an assignment, then the full slice for each
of the variable whose definition is generated dig assigned the
slice and the statementitself. Forward computation of full slices
for execution in case of Error 2 is shown in Table 2. We canisae t
the faulty statementl() is in the full slice but not in the data slice
of z at14;. At the same time we note that the full slice, which is
{1,2,3,4,5,6,7,9,10, 11, 12}, is much larger than the data slice.

2.3 Relevant Slicing

Unfortunately, in some situations erroneous statemerntaata
even be captured by full slices. In Fig 1, if Error 3 is consid-
ered on the given input the program fails producing output of
instead of0 at 14,. The full slice of z at 14; is computed as
{1,2,3,4,5,6,8,11,12}, the erroneous statementis not in the
full slice. This error turns value aof at 7, from 4 into 1 and thus
predicate ab, takes the wrong branch which causésnot to be
executed whilel0 should have been executed in the correct pro-
gram. Because of the missing executionlof 9; would not be in
the full slice so that the faulty execution af; would not appear
either. In general, the basic reason is that some statemiith
should have been executed did not get executed due to the faul

To handle the above situation a new form of dependence needs t
be introduced between certain predicate outcomes and Ga&sn
a useu, let us define potentially dependsetP D(u) such that the
set contains members of the form that specify predicategtasid
outcomes (i.ep” orp™). If p” (p¥') is present inP D (u), it means
that if prior to the execution of predicatep was executed, and its
outcome wasl" (F), then while no definition corresponding to
was encountered, it could have been encounteretiaid evaluated
to F' (T). For the above example (whose control flow graph is
given in Fig. 3) this means tha” ¢ PD(b@11) because when
the outcome of predicateis F, no definition ofb is encountered
after execution of) while if 9 had evaluated t@" the definition of
b at11 would be encountered.

(4
T:
(8)defb
S\

F defb
VA

11) use b

Figure 3: Control flow graph.

The potentially depends property is a static property @fhich
is precomputed and later used at runtime to compute relsliaas.
Now let us see how th& D sets are used at runtime to compute
relevant slices. When a useis encountered at runtime we first
determine the corresponding definition’s execution instafnom
which the use gets its value. Then the execution instancpsedf
icate outcomes indicated iR D(u) that are executed before the
use and after its corresponding definition are identifiedy @rese
instances could have caused a different definition to dyoalhyi
reach the execution of useunder consideration. Thus these are
also included in the slice. Let(s;) denote the timestamp af.
LDT(v) denotes the latest definition’s timestamp for variatle
A statement executios; is potentially dependent upgst (where

z € {T, F} andj is the instance number of the predicate), if and
only if there existe € Use(s;) such that

(LDT(v) < ts(p}) < ts(s:)) A p* € PD(v@s).

Next we describe the forward computation algorithm for upda
ing relevant slices. The Algorithm 3 follows same structasethe
full slicing algorithm. The changes reflect that not onlyadahd
control dependences are to be considered, but in additiengte-
vantpotential dependencese also considered. The contribution of
P D dependences to the relevant slice are denoteB $lices in
the algorithm. ThePS slices include potentially dependent predi-
cates, their direct data dependences, and the relevass slithese
direct dependences. The relevant slice for the latest tefindf
variablev is denoted byRS[v]. For each use, the lines4 — 6

Algorithm 3 Updating Relevant Slicing Information

Procedure Update§;, stack)

1: slice={};

2: for (each use in Use[s;]) do

slice = slice U RS[v];

for (eachp? s.t.p” € PD(v@i) A LDT(v) < ts[pf]) do
slice = slice U PS[p}];

end for

. end for

. cd = the predicate in CD(S) s.ttack.ts[cd] is maximum;

RS = slice U stack.slice[cd] U {cd};

. if (s is a predicate}hen
11: stack.slice[s] = RS;
12: stack.ts[s|=timestamp;
13: Letz bes’s branch outcome.
14: PS[s?]=slice U {s?};
15: ts[s?] = timestamp;
16: end if
17: for (each definitiorv in Def]s;]) do
18: RS[]=RSU{s};
19: LDT(v) =timestamp;
20: end for
21: timestamp++;

in the Algorithm 3 search through all the instances of prais in

3. SLICING TOOL

We have developed a dynamic slicing tool which was used to
conduct the experiments described in the next section. @nir t
executegycc compiler generated binaries for Intel x86 and com-
putes dynamic slices based upon forward computation &lhgosi
described in the preceding section. Even though our tooksvon
binary level, the slices can be mapped back to source coéé lev
using the debugging information generatedgtmyc .

inputs

y 1 Instrumenter
bina CD, PD -
—,y|—> Valgrind basic block (bb)
" i
» |events S||c|.ng slices| roB0D
Runtime
OutW

Figure 4: Slicing Infrastructure.

Instrumented bb

Fig. 4 shows the main components of the tool. $tatic analysis
component of our tool computes static control dependené® (C
and potential dependence (PD) information required dutithignd
relevant slice computations from the binary. The statidymimwas
implemented using th®iablo [24] retargetable link-time binary
rewriting framework as this framework already has the cdipab
of constructing the control flow graph from x86 binary.

The dynamic profilingcomponent of our system which is based
upon theValgrind memory debugger and profiler [25] accepts the
samegcc generated binary, instruments it by calling glieing in-
strumenteyand executes the instrumented code with the support of
the slicing runtime The slicing instrumenter and slicing runtime
were developed by us to enable collection of dynamic infdiona
and computation of dynamic slices. Valgrind's kernel is aaiyic
instrumenter which takes the binary and before executiygaw
(never instrumented) basic blocks it calls the instrumtémdunc-
tion, which is provided by the slicing instrumenter. Thetinmen-
tation function instruments the provided basic block andirre
the new basic block to the Valgrind kernel. The kernel exestiie
instrumented basic block instead of the original one. Tlstrin
mented basic block is copied to a new code space and thus it can

PD(v) and find those that are executed between the current time be reused without calling the instrumenter again. Theumnsénta-

and the definition time. The currestice is unioned with theP S's

for those selected predicate instances. BeforeSjnéice contains

the contributions of data dependence and potential depeade

the current slice. The lines—9 compute the contribution of control
dependence and finally get the current relevant gtie Whens is

a predicate, a couple of things need to be done to supporbtiieot
dependence and the potential dependence computation fa-the
ture. As mentioned in the full Slicing algorithm, tkéack.slice]]
andstack.ts|] are arrays allocated in the current stack frame. The
line 11 in the Algorithm 3 updates the relevant slice for the latest
instance of predicate to the computed?S. The line12 updates
the timestamp which will be used later on in the comparisdrgs a
Similarly, P.S and the timestamp for the current predicate instance
need to be stored to facilitate the future computation ia 4in- 6.
One thing we need to point out is thAtS is updated taslice but

tion is dynamic in the sense that the user can enforce theatixi
of any instrumented basic block such that the original bbkick
has to be instrumented again (i.e., instrumentation carutred
on and off as desired). Thus, we can easily turn off/on trengi
instrumentation for sake of time performance or for certzde,
e.g. library code. The slicing runtime essentially corssdta set
of call back functions for certain events (e.g., enteringcfions,
accessing memory, binary operations, predicates etce) Cthand
PD information computed by the static analysis componergps
resented based on the virtual addresses which can be wuatthst
Valgrind.

The forward computation algorithms maintain the latestuaiyit
slice for each variable/location. These dynamic slicesstwesd
in reduced ordered Binary Decision DiagraroBDD) [14] com-
ponent of our system. In our previous work [21], we identified

not RS because the assumption for a predicate being a potential three characteristics of dynamic slices: same dynamiestiend to

dependent is that the branch outcome of that predicate dmuld
wrong, which implies the fault could only contribute to thegi-
cate outcome via data dependence or potential dependennetbu
control dependence. The lin& updates the relevant slices of all
the variables defined atto RS and the statemeuntitself. Note that
the union of PS is computed for only those instancespgfwhose
execution times are between the definition time and use tfrtteeo
variable which potentially depends upph.

reappearfrom time to time during execution, different slices tend
to share statementsndclusters of statementscated near each
other in the program often appear in a dynamic slice. Theae ch
acteristics resulted in our observation that roBDD reprtg@n of
sparse sets was suitable for storing dynamic slices as itatis
space and time efficient. The roBDD benefits us in the follgwin
respects. Each unique slice is presented by unique integeber

in roBDD, which implies that if and only if two slices are idéen

cal, they are represented by the same integer number. Thewho Fig. 6 shows examples for instrumentation. Left hand side is
set of statements in the slice can be recovered from roBDBgusi the instrumentation for data slice computation. We can sethé
that number. This is critical to our design because now fehea sb instruction, the operands atex andebx. The instrumentation

variable (memory location) we only need to store one integee first takes the slices for these registers from the shadoistezdile
of roBDD achieves space efficiency because roBDD is capdble o SRF', and then computes the union of these two slices with current
removing duplicate, overlapping, and clustered sets waiehex- pc. The computed slice is stored in the shadow space indexed by
actly the characteristics of slices. Using roBDD also pilegitime the same virtual address which indicates the correspondim-

efficiency because roBDD implementations of set operatames ory byte in application’s virtual space. Right hand sidevehibow
very efficient. More details about why and how we use roBDD can the instrumentation for predicate looks like. The variablée-

be found in [21]. notes the index of the predicate, the first predicate in peronds
We also implemented a simple debugging interface which pro- index of 0 and so on. After theemp instruction gets executed,
vides limited capabilities including setting breakpojrdsntinuing the pre-allocated shadow space in the stack frame is updated
execution, stopping after certain steps of executionjrglion a the current timestamp and slice. These information are teted
register, slicing on a memory location, and slicing on thedain- when the instruction atabel turns out to be control dependent on
stance of a predicate. the predicate.
Virtual Space(VS) Shadow Space(SS)[4] 4 EXPER'MENTAL EVALUAT'ON

]

Register file (RF) Table 3 shows the benchmarks we used for our experimentation
The first five programs are from the Siemens suite [9, 23] aad th
remaining three are medium sized linux utility programsrfrthe
same code repository [23] as the Siemens suite. We exclide th
S“E;ﬁg”z’sf;g‘)s‘e’ programtcas and tot_info from the Siemens suite becausasis
too small and our tool currently does not support floatingnppio-
oldesp | = grams liketot info. The faulty programs (Num. Versions) and the
g | test cases (Num. Tests) are provided at the website [23].aNot
: the provided faulty programs are used in our experimentsneSo
faulty programs produce no output and thus it is unclear how a
- proper slicing criterion should be defined. There are alsergain
number of faults which are simple code omissions. Theretbie
faulty omitted statement will not be present in any slice. &¥a-
ply exclude those versions. For the rest of the versionssltbiag
criteria we choose are either the points at which eithefiteein-
We discuss instrumentation in more detail next. The basiaid ~ correct output is producedr at which asegmentation fauticcurs.
of forward computation is that when some operation is peréat [N our experiments, each faulty version of the program hastéx
on operands, the slices of source operands are fetched amdn ~ one fault injected.
together with the current statement. The resulting sligsggned

p1 —»

p2

Heap

esp

[Alocated [shadow

Figure 5: Storing slices.

to the destination operand. Although one slice can be repted Table 3: Overview of benchmark programs.

as one integer, we neeq to storeT one integer for each.opertai.ntj w Brogram Descrption NI ToC T Num.
could be memory location, register, or predicate. Fig. Sarp Versions Tests
how we manage this. For memory, we use sha_dow sr_)ac_e_to stor Drint tokens Texical analyzer 5 565 | 4072
the slices. For each stack/heap byte allocated in appiitatiir- print t okens?2 lexical analyzer] 510 | 4057
tual space, a corresponding word is allocated in the shagases repl ace pattern replacemenf 19 563 | 5542
The shadow space can be accessed using the same virtuasaddre schedul e priority scheduler 6 412 | 2627
As we can see in Fig. 5, we need four shadow spaces, one for eaclh schedul e2 priority scheduler 3 307 | 2683
byte in a word of the virtual space. For register, we use thesh gzi p2 compression utility 1 7199 | 217
register file to store the slices for registers. For predicas we de- 9zi p5 compression utility | 2 8009 | 217
scribed earlier, a predicate and its control dependerersgt must flex lexica ane:lyzer 5 12418 525
correspond to the same function invocation. Therefore Voeate generator

some space in the stack frame to store the slices for pregicahis) o

can be done by shifting the stack pointer from its originaifion We instrument the faulty programs in minor ways when we run
old_esp to esp as shown in Fig. 5. them through our tool. For example, we intercept almosthal t

output functions likeprintf, printf, fputcetc. and redirect them to
our customized functions in which it is more convenient far o

Data Dependence Instrumentation Control Dependence Instrumentation tOOl tO flnd SIiCing Criterion.

sb SRF(eax) U SRF(ebx) U pc, cmp eax, 0x0 .

e T e 4.1 Data, Full, and Relevant Slices

S| eax,(ebx, s I_SP- -

W sSioliebsl ¢ X ot fabel The first experiment we carried out compares the three basic

mov r U pe, SRF(eax), label: ! slicing algorithms that we have discussed. We compare thlese

Iw (ebx), eax mov r, pis a control dependent and . N i .

*(old_sp-27p) is maximum gorithms both from the perspective of slice sizes and whetre

SS[0][0x0884dc0] U SRF Iw *(old_sp-2*r-1) U pc, SRF(ebx) : .

[e R v o0 slices include faulty statements. For each faulty prograentake

add (0x0884dc0), eax all the test cases which produce wrong outputs, and therefdr e
Instrumehinted code test case we computkata slice(D.S), full slice (F'S), andrelevant

.) . slice (RS) for the first wrong output. We classified all the errors
Figure 6: Instrumentation example.

in the faulty versions of the programs into two categorissign-
ment FaultsandPredicate Faults If the error was in a definition,
it was classified as an assignment fault, otherwise it wessitlad
as a predicate fault. We did not compufes' for predicate faults

becauseDSs never contain branch predicates. The averages over

all the failed test cases for each faulty program are preseint
Table 4. In this table, the column label&dil Casesshows the
number of failed test cases for the faulty version corredpanto
a given row. The column labeleflvg. Exec.shows the average
number of distinct statements that are executed at least famc
the failed test cases. The columns labefed. DS Avg. FSand

Avg. RSrespectively show the average number of statements in

DS, FS andRS. Similarly, the columns labelelh DS, In FSand
In RSrespectively show th&action of data slices and full slices
that contained the faulty statement. The results are alsorsu
rized according to theifault typesfor each benchmark in Table 5
and Table 6.

Note that since there was only one faulty statement in eadtyfa
version, the relevant slice always contained the faultyestant.
However, in general when there are multiple faulty statemana
program, a relevant slice may contain only some of the faitite-
ments. This is because a relevant slice is computed by cmirsid
the contributions of potentially dependent predicates wexeac-
tually executedor an input. To illustrate this, let us consider the
simple code segment below.

read(m,n);
X:=2*m;
w:=b;
a:=10;
if (w > n)
b:=15;
else
if (x >5)
a:=20;

CeNORWONE

10: else

11: b:=25;
12: endif

13: endif

14: output(a);

Let us consider the execution of above code segment for plu in
(m=1, n=2). The lines 1, 2, 3, 4, 5, 6, 14 in the code segmenteabo
are executed for the above input. Let us assume statemelitesn
2 and 3 are faulty. The full dynamic slice of variakiet line 14
for this input will consist of only statement at line 4. Hovegvfor
computing the relevant slice for this input, the predicdténe 5
will be identified as a potential dependence since if it haduated
to false outcome, the value of variakleutput at line 14 could be
affected. Therefore, the relevant slice will contain theesnents at
lines 5, 3 and 1 in addition to the statement at line 4 thattiserfull
dynamic slice. Thus, the relevant slice of variablat line 14 for
this input will contain only one faulty statement i.e., thatement
at line 3. The other faulty statement (at line 2) will be migsirom
this relevant slice. This is because the predicate at lin@8 ot
identified as a potential dependence since it natexecuted

However, if we consider an input (m=1, n=6) for which the pred
icate at line 5 evaluates to false, then the predicate a8linél be
executed and it will evaluate to its false outcome. Althotlghfull
dynamic slice for this input will again consist of only that&ment
at line 4, the predicate at line 8 will be identified as a patute-
pendence because if it evaluated to true, the value of Jariaht
line 14 would be affected. Therefore, the statement at liméll2
be included in this relevant slice since predicate at lins 8ata
dependent on it. However, the faulty statement in line 3 naf
be included in the relevant slice because the direct codepén-

dences of the potentially dependent predicates are natdedlin
the relevant slice. Thus, in general if multiple erronedasesnents
are present in the static slice of an output variable, a asleslice
for a given input may contain only a subset of the faulty stegets.

Next we describe our experimental results and compare the ef
fectiveness of data, full and relevant slices in capturagty state-
ments. We first discuss our observations from the expersneiti
capturing assignment faults.

Assignment Faults: From Table 5, we can see the average data
slice sizesAvg. DS are very small. They are only.5 — 28% of
the average executed\(g. Exeq. statements. Data slices do not
always capture the faults as can be seen from the columrethbel
In DS In some benchmarks (e.g:¢place), none of data slices
we computed contained the faulty statements. On the othet, ha
we do observe that foflex, the largest benchmark we have, DS
successfully located all the faulty statements. For thiggam DS
has the average size of aroutidtatements, which is only.5% of
the executed statements.

For comparison, we also computeS and RS for assignment
faults. Although the size of'S increased by the factors af74 —
8.39 when compared with the size dP.S, F'S covered almost
all the faulty statements including those missedh§ except for
benchmarkschedule2. Compared td'S, although the size oRS
increased by a factor af04 — 2.59, RS successfully contained all
of the faulty statements. For most of the benchmarks, thatiafis
in size of RS when compared té&'S are small (many of them are
less thanl0%) exceptflex. However, when we compare the size
of RS to the executed statemen®s/(). Exeq. for flex, it has just
12% of the executed statements.

Predicate Faults For this type of faults, we compare the perfor-
mance ofF’'S and RS in terms of their sizes and how often they
contained the faulty statement. We can see from the Tablat6 th
most of the time,F'S was able to capture the faulty statement.
The F'S contained4.3 — 61% of the executed statements. Those
faulty statements which were missed frdfit were captured by
RS. Compared td"S, RS are2 — 181% larger in size. However,
the size ofRS increased by less thar)% for many benchmarks.
In addition, RS contained onlyl2 — 62% of the executed state-
ments as compared 0S that contained.3 —61% of the executed
statements.

Overall, all the slicing methods including S, F'S and RS are
quite effective in reducing the executed set of statemerdastuch
smaller faulty statement candidate set. In our experimBiisvas
found to be very small in size and effective in containingigrss
ment faults for large programg4ip5 and flex). The F'.S showed
a very high chance to capture both types of faults. Its sizewea-
mally much larger tha.S’s even though it was still a small subset
of the executed statements. TR& was very effective in capturing
faults and its size was comparable to thatFo’s in most of the
cases. For benchmai{ex, out of the1500 executed statements,
the DS size is8, the F'S size is65 and theR.S size is180 on aver-
age. This strongly supports that slicing is very effectivéélping
users focus their attention during debugging.

4.2 Searching for a faulty statement in Data,
Full and Relevant Slices

A slice provides a fault candidate set that the programmest mu
examine to identify the faulty statement. Therefore smalke set
of statements that the user has to examine the better ittisoddh
data slices are small, our experiments show that very often t

Table 4: Comparison of Data, Full, and Relevant Slicing.

| Program | Fault Type | Version [Fail Cases] Avg. Exec.| Avg. DS [InDS | Avg. FS| InFS [Avg. RS InRS |
print _tokens | Assignment v4 28 116 26 0.00 74 1.00 77 1.0
v6 186 119 28 0.00 76 1.00 78 1.0
Predicate vl 6 124 - - 86 1.00 88 1.0
V2 48 127 - - 74 1.00 75 1.0
V7 28 149 - - 82 1.00 85 1.0
print_tokens2 | Assignment v4 332 153 18 0.00 71 0.91 75 1.0
v5 173 134 18 0.00 70 1.00 72 1.0
Predicate v3 33 149 - - 86 1.00 87 1.0
v6 518 145 - - 73 1.00 78 1.0
V7 207 149 - - 69 0.95 75 1.0
v8 256 153 - - 67 0.94 71 1.0
v9 56 161 - - 74 0.83 80 1.0
v10 173 116 - - 60 1.00 64 1.0
repl ace Assignment| v12 301 89 7 0.00 53 1.00 56 1.0
v15 63 102 15 0.00 50 1.00 54 1.0
Predicate vl 70 168 - - 100 0.81 122 1.0
v2 39 167 - - 82 0.62 111 1.0
v3 131 185 - - 108 1.00 122 1.0
v5 272 186 - - 89 0.71 120 1.0
v6 97 184 - - 113 1.00 120 1.0
V7 85 59 - - 35 1.00 36 1.0
v8 55 157 - - 49 0.00 97 1.0
V9 31 158 - - 54 0.23 96 1.0
v10 24 167 - - 75 0.52 103 1.0
vlil 31 158 - - 54 0.24 96 1.0
v14 138 181 - - 106 1.00 115 1.0
v16 84 59 - - 35 1.00 36 1.0
v18 211 180 - - 101 1.00 116 1.0
v21 3 160 - - 84 1.00 80 1.0
v23 23 176 - - 78 0.58 99 1.0
v25 4 179 - - 106 1.00 113 1.0
V26 128 200 - - 90 0.55 121 1.0
schedul e Assignment vl 4 85 24 1.00 40 1.00 42 1.0
V2 210 146 42 0.00 75 0.49 81 1.0
v3 159 142 43 0.74 73 0.81 80 1.0
v6 4 85 24 1.00 40 1.00 42 1.0
v7 27 142 36 0.00 66 1.00 72 1.0
Predicate v4 294 144 - - 70 0.57 78 1.0
schedul e2 Assignment v5 32 120 17 1.00 40 1.00 52 1.0
V6 7 109 18 0.00 34 0.00 55 1.0
Predicate V7 31 126 - - 46 1.00 60 1.0
gzi p2 Predicate vl 170 541 57 0.00 286 0.21 307 1.0
gzi p5 Assignment vl 9 272 36 1.00 74 1.00 105 1.0
Predicate v10 169 517 - - 256 0.18 274 1.0
flex Assignment v4 74 1327 8 1.00 67 1.00 184 1.0
v5 193 1562 8 1.00 67 1.00 186 1.0
v17 278 1546 8 1.00 77 1.00 183 1.0
v18 160 1607 9 1.00 66 1.00 165 1.0
Predicate vil 356 1467 - - 64 1.00 180 1.0
Table 5: Comparison of Data, Full, and Relevant Slicing for Asignment Faults.

[Program [Avg. Exec.| Avg. DS [InDS [Avg. FST InFS [Avg. RS [InRS | DS/Exec.| FS/DS| RS/FS| RS/Exec.|
print_tokens 117.5 27 0 75 1 80.6 1.0 0.23 2.78 1.07 0.68
print.tokens2 143.5 18 0 70.5 0.96 735 1.0 0.13 3.92 1.04 0.51

replace 95.5 11 0 51.5 1 55 1.0 0.12 4.68 1.07 0.58
schedule 120 33.8 0.74 58.8 0.86 63.4 1.0 0.28 174 1.08 0.53
schedule2 1145 175 0.5 37 0.5 53.5 1.0 0.15 211 1.45 0.47

gzip2 NA NA NA NA NA NA NA NA NA NA NA

gzip5 272 36 1 74 1 105 1.0 0.13 2.06 142 0.38

flex 1510.5 8.25 1 69.3 1 1795 1.0 0.0054 8.39 2.59 0.12

Table 6: Comparison of Data, Full, and Relevant Slicing for Pedicate Faults.

[Program [Avg. Exec.| Avg. FS| InFS [Avg. RS InRS | FS/Exec.| RS/FS| RS/Exec.]
print_tokens 133.3 80.7 1 82.7 1.0 0.61 1.02 0.62
print_tokens2 145.5 715 0.95 75.8 1.0 0.49 1.06 0.52
replace 160.2 79.9 0.72 100.2 1.0 0.50 1.25 0.62
schedule 144 70 0.57 78 1.0 0.49 1.11 0.54
schedule2 126 46 1 60 1.0 0.36 1.30 0.48
gzip2 541 286 0.21 307 1.0 0.53 1.07 0.57
gzip5 517 256 0.18 274 1.0 0.50 1.07 0.53
flex 1467 64 1 180 1.0 0.043 2.81 0.12
faulty statement is not present in data slices. Thus, thewseld Table 8: Performance
need_to examine larger fl_JII and/or relevant slices. Evenghahe Program 55 = RS
full slices and relevant slices are small compared to thefsete- SD [Mem. | SD | Mem. | SD | Mem.
cuted statements, it is still quite a lot of work to examirieoéthe (MB) (MB) (MB)
statements in those slices. Therefore, to get an estiméte ofum- gzip2 | 1040 | 221 | 1172 | 222 | 1624 228
ber of the statements a developer will have to examine inca,sli gzip5 827 | 220 | 948 | 222 | 1428 227
we took the first test case which produced wrong output foheac flex 59 221 7 222 | 102 | 228

faulty program and computed the full slice for the wrong emitp
In Table 7, the column labeled F'S (Explore Full Slice) shows

how many statements were present in the full slice startimg the

wrong output until we reached the faulty statement. Theroaki

labeledDS and F'S respectively show the number of statements

in the data slice and the full slice. We excludBdex from this
experiment because in most of its versions, the faulty istate was
captured by the data slice which contained very few statésnen

We can see from the Table 7 that the number of statements tha

were present in the full slice between the faulty statemediarong
output is 1.19 to 3.33 times larger than the size of dataskcel
they are only 32% to 71% of the statements in the full slices.

In practice, a developer may examine the statements inalsfic
traversing along the data and control dependence edgestifiem
point where a faulty output was produced. Clearly the depeoel
distance of the faulty statement from the point where therimct
output is produced will be smaller the number of statemermtsgnt
in the slice between these two points. Therefore, in practidevel-
oper may need to examine fewer % of statements in the fubslic
than shown in the Table 7 in order to locate the faulty statgme
This suggests that in practice, the dynamic slices canfigntly
reduce the effort to search for a faulty statement.

Table 7: Exploring slices

4.3 Performance

(SD) varies a lot fromyzip to flex. The slow down forgzip is
very high, this is because the uninstrumented runs termimghin
0.005sec, which makes thd algrind start-up time very signifi-
cant. Forflex, whose uninstrumented runs take several seconds,
the slow down for our tool is lower. We can also see the memory

t{consumption for our tool does not vary too much. One explanat

could be the memory used Byalgrind is the dominant factor
which tends to be constant for different benchmarks anemifft
runs.

5. RELATED WORK

In [7], Agrawal et al. first proposed the conceptrefevant slic-
ing. They expanded thBynamic Dependence Grafdy introduc-
ing dependence edges between predicates and the statevhatts
potentially depend on those predicates. They suggestad el
evant slicing in incremental regression testing. Gyimoghyal.
presented a forward computation algorithm for computaigvant
slicesin [7]. Even though they suggested using relevant slices for
debugging, they did not experimentally evaluate the effeness
of relevant slicing for debugging. Wang et al. also talkeouthow
to computeelevant slicesn [17]. They followed a method similar
to Agrawal’s by considering potential dependence edges. difa

Program fg’g‘ g%gb; %q ‘L};’g EF—IE ference is that instead of constructing the wHBRG, they main-
print Tokens >0 35 175 72 047 tain slices, which is basically a parti@DG, by backward traversal
print tokens2 | 14 24 171 | 73 | 032 of a compressed java bytecode trace. They do not evaluaterg!
repl ace 9 30 | 333 | 86 | 035 slicing either.
schedul e 31 37 1.19 52 0.71 Dynamic slicing was introduced as an aid to debugging [2, 11,
schedul e2 22 28 127 | 48 | 057 13, 4, 15]. Agrawal et al. [4] proposed subtracting a single c
9zi p2 54 94 174 | 192 | 049 rect execution trace from a single failed execution trace[15],
9zi p5 61 | 124 | 2.03 | 197 | 063 Pan and Spafford presented a family of heuristics for faataliza-

tion using dynamic slicing. Compared to these previous wone
are the first one to compare the effectiveness of differenadyc
slicing algorithms in fault location.

In this experiment, we measure the average timing and space A lot of interesting research other than dynamic slicingeéhav

overhead of dynamic slicing for the runs @fip and flex. We do
not present this data for Siemens suite programs as theyailtes

been carried on in fault location. Zeller has presented eser
techniques [8, 19, 6] from isolating the critical input tolating

and hence most of the time and space cost are spent during thecost-effect chains in both space and time. The basic idea is t

start-up and shut-down procedures of our slicing tool.
From Table 8, we can see that ttata slicingalgorithm is the
fastest and theelevant slicings the slowest. The slow down factor

find the specific part of thanput/program statewhich is critical
to the program failure by minimizing the difference betwéesin-
put/program statéeading to a passing run and that leading to a fail-

ing run. We believe our technique can be combined with Zsller
technique in many aspects, for instance, the isolededesare per-
fect slicing criteria starting from which dynamic slicingampro-
duce a much smaller fault candidate set than from the faganet.
Renieris and Reiss [16] presented technique that selextsinigle
passing run that most resembles to the failing run and reploet
difference between these two runs. Jones [10] presentecha te
nique that uses software visualization to assist faulttiona Their
technique provides a ranking of each statement accordiitg ta-
tio of failing tests to correct tests.

6. CONCLUSIONS

The development of dynamic slicing was motivated by the prob
lem of locating the faulty code when an execution of a program
fails. There has been a lot of research in developing alyostfor
computing different types of dynamic slices. The contiitnutof
this paper is to present an experimental evaluation of tHiféer-
ent types of dynamic slices for the benefit of using them tatec

Engineering Conference and 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineempages
303-321, Toulouse, France, 1999.

[8] R. Hildebrandt and A. Zeller, “Simplifying Failure-ingting
Input”, International Symposium on Software Testing and
Analysis pages 135-145,2000.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
“Experiments on the Effectiveness of Dataflow- and
Controlflow-based Test Adequacy Criteria@th International
Conference on Software Engineerjpgges 191-200, 1994.

[10] J.A. Jones, "Fault Localization Using VisualizatiohTest
Information”, 26th International Conference on Software
Engineering page 54-56,2004.

[11] M. KamkKar, “Interprocedural Dynamic Slicing with
Applications to Debugging and Testing?hD Thesis
Linkoping University, 1993.

a faulty statement in a program. We have presented experimen [12] B. Korel and J. Laski, “Dynamic Program Slicing,’

tal studies for several large programs. In our experimeneasa
slices were found to be much smaller than full slices andrasie
slices. However, they captured very few faulty statements\o
erage. The full slices were significantly bigger than daizesind
captured much larger number of faulty statements than diata s
Interestingly, we found the relevant slices performed besap-
turing faulty statements. The relevant slices were founietonly
slightly larger than full slices, however they capturedtiad faulty
statements in our experiments.

Acknowledgements

We would like to thank Dr. Gregg Rothermel, Dept. of Computer
Science and Engineering, University of Nebraska, Lincfanpro-
viding the programs with the associated faulty versions st
suites.

7. REFERENCES

[1] H. Agrawal and J. Horgan, “Dynamic Program SlicingCM
SIGPLAN Conference on Programming Language Design and
Implementationpages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging with
Dynamic Slicing and Backtracking3oftware Practice and
Experience\Vol. 23, No. 6, pages 589-616, 1993.

[3] H. Agrawal, J.R. Horgan, E.W. , and S.A. London,
“Incremental Regression TestindEEE Conference on
Software Maintenangeages 348-357, Montreal, Canada,
1993.

[4] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault
Localization Using Execution Slices and Dataflow Tesg#’
IEEE International Symposium on Software Reliability
Engineering pages 143-151, 1995.

[5] A.Beszedes, T. Gergely, Z.M. Szabo, J. Csirik, and T.
Gyimothy, “Dynamic Slicing Method for Maintenance of Large
C Programs,’5th European Conference on Software
Maintenance and Reengineerimaages 105-113, March 2001.

[6] H. Cleve and Andreas Zeller, “Locating Causes of Program
Failures”,27th International Conference on Software
Engineering pages 342-351, 2005.

[7] T. Gyimothy, A. Beszedes, |. Forgacs, “An Efficient Redav
Slicing Method for Debugging”7th European Software

Information Processing Lettersol. 29, No. 3, pages 155-163,
1988.

[13] B. Korel and J. Rilling, “Application of Dynamic Slicmin
Program Debugging3rd International Workshop on
Automatic Debuggingpages 43-58, Linkoping, Sweden, 1997.

[14] J. Lin-Nielsen. “BuDDy, A Binary Decision Diagram
Package,” Department of Information Technology, Technica
University of Denmarkhttp://www.itu.dk/research/buddy/.

[15] H. Pan and E. H. Spafford, “Heuristics for Automatic
Localization of Software FaultsTechnical Report
SERC-TR-116-FPurdue University, 1992.

[16] M. Renieris and S. Reiss, “Fault Localization with Nestr
Neighbor Queries,JEEE International Conference on
Automated Software Engineeringages 30-39, 2003.

[17] T. Wang and A. Roychoudhury, “Using Compressed
Bytecode Traces for Slicing Java Progran#8th International
Conference on Software Engineerjpgges 512-521,
Edinburgh, Scotland, UK, 2004.

[18] M. Weiser, “Program Slicing,/JEEE Transactions on
Software Engineeringvol. SE-10, No. 4, pages 352-357, 1982.

[19] A. Zeller, “Isolating Cause-effect Chains from Comgut
Programs”10th ACM SIGSOFT Symposium on Foundations of
Software Engineeringpages 1-10, Charleston, South Carolina,
2002.

[20] X.Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic 8tici
Algorithms,” IEEE International Conference on Software
Engineering pages 319-329, Portland, Oregon, May 2003.

[21] X.Zhang, R. Gupta, and Y. Zhang, “Effective Forward
Computation of Dynamic Slices Using Reduced Ordered
Binary Decision DiagramsJEEE International Conference on
Software Engineeringpages 502-511, Edinburgh, UK, 2004.

[22] X.Zhang and R. Gupta, “Cost Effective Dynamic Program
Slicing,” ACM SIGPLAN Conference on Programming
Language Design and Implementatigrages 94-106, 2004.

[23] http://www.cse.unl.edw/galileo/sir
[24] http://www.elis.ugent.be/diablo/
[25] http://valgrind.org/

