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Abstract—Graph-based applications have become increasingly
important in many application domains. The large graph sizes
offer data level parallelism at a scale that makes it attractive
to run such applications on distributed shared memory (DSM)
based modern clusters composed of multicore machines. Our
analysis of several graph applications that rely on speculative
parallelism or asynchronous parallelism shows that the balance
between computation and communication differs between ap-
plications. In this paper, we study this balance in the context of
DSMs and exploit the multiple cores present in modern multicore
machines by creating three kinds of threads which allows us to
dynamically balance computation and communication: compute
threads to exploit data level parallelism in the computation;
fetch threads that replicate data into object-stores before it is
accessed by compute threads; and update threads that make
results computed by compute threads visible to all compute
threads by writing them to DSM. We observe that the best
configuration for above mechanisms varies across different inputs
in addition to the variation across different applications. To this
end, we design ABC?: a runtime algorithm that automatically
configures the DSM using simple runtime information such as:
observed object prefetch and update queue lengths. This runtime
algorithm achieves speedups close to that of the best hand-
optimized configurations.

Keywords-Distributed Shared Memory; Clusters; Runtime
Monitoring; Dynamic Adaptive Model; Speculative Parallelism;
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I. INTRODUCTION

Clusters offer an attractive computing platform for achieving
scalable performance on data and compute intensive appli-
cations. To simplify the task of programming clusters, dis-
tributed shared memory (DSM) has been widely used. The
memory resources available across the machines in a cluster
are harnessed as one and made available to the application
in form of shared-memory. The large amount of application
data stored in DSM is actually scatterred across the machines
and must be transferred across them as needed by the com-
putation. A variety of DSMs have been built in the past
[1], [2], [3]- These DSMs were developed before the advent
of multicore machines. To deliver high performance, latency
hiding mechanisms were deployed to mitigate the impact of
communication delays associated with transferring data across
machines: for example, creating multiple application threads
was the common approach. The primary limitation of this
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approach is that computation and communication are still
coupled: the communication is still in the critical path of
computation. Moreover, with the advent of multi-cores, a much
larger number of application threads becomes feasible — but
that also increases communication which can quickly become
the bottleneck on DSMs. Decoupling communication and
computation will allow for dynamically balancing computation
and communication — this will automatically achieve optimal
performance even in the face of changes to the DSM/cluster
HW/SW configuration. In this work, we study this balance in
the context of DSM for applications that benefit from specu-
lation [4], [5], [6] and asynchronous [7], [8], [9] parallelism.

A. Communication Bottleneck on Multicore Machines

Since each machine in a modern cluster supports multiple
cores, simultaneous requests for communication originating
from multiple computation threads can rapidly cause the com-
munication to become a performance bottleneck — if programs
designed for prior DSMs and developed for a cluster of unipro-
cessor machines are naively executed on modern multicore
machines by simply running more threads on each machine,
the network becomes the bottleneck. For example, on a cluster
of six 8-core machines, we observed that a 5x increase in the
number of threads generating communication requests resulted
in a 7x increase in fetch time from the DSM. In this work we
exploit multicore machines to tolerate communication latency
by introducing dedicated communication threads and move the
communication latency off the critical path.

Computation being performed generates two types of net-
work requests: fetch and update. In addition, to tolerate fetch
latency, prefetch requests may also be issued. Fetch requests
are of the highest priority since a computation must stall on
a fetch. On the other hand, prefetch requests can be given a
lower priority because they are issued to reduce latency of
future fetch requests and update requests can be given lower
priority because there may or may not be other computations
waiting on the updates. Therefore, depending upon the spare
network capacity, prefetch requests and update requests should
be accomodated at a rate that does not overwhelm the network.
Moreover, depending upon the needs of the application, a bal-
ance between handling of prefetch and update requests should
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be maintained. In this work, for each machine, the number of
outstanding prefetch requests and outstanding update requests
is controlled to: limit the amount of network capacity they use;
and to maintain a balance between the two types of requests.
We develop a system to achieve this goal that, for a given
number of compute threads, dynamically varies the number of
prefetch threads and update threads to meet the needs of the
application.

As an example, our experiments show that merely increasing
the number of compute threads can actually hurt the per-
formance of distributed Graph Coloring — on a cluster of
6 machines, the speedup with 4 computation threads and 4
prefetch threads was 2.4x that of the speedup with 8 com-
putation threads and 4 prefetch threads. We further observed
that blindly increasing either prefetch or update threads in
DSM based programs also can hurt performance. An optimal
configuration that uses just 4 compute threads per machine
and dynamically varies the number of update threads was
faster than the case of 4 compute threads with 4 prefetchers
by a factor of 1.2x. To summarize, this data illustrates that
fewer computation threads when balanced with communi-
cation gives better speedup compared to more computation
threads. Clearly, this data is an indicator for the need to
carefully balance computation and communication in DSM
based applications.

B. Dynamically Adaptive Communication

This latency tolerance mechanism hides communication la-
tency by creating communication threads that run concurrently
with computation on the multicore machine. Two types of
communication threads are used: prefetch threads and update
threads. Prefetch threads fetch objects from the DSM into
the prefetch buffer before they are accessed by the threads
on a machine so that computation threads can avoid potential
long access latency. Update threads are responsible for writing
modified objects to the DSM so that computation threads can
proceed with execution without waiting for object updates
in DSM to complete. Given a fixed number of computation
threads, the number of communication threads required will
depend upon the rate at which the computation threads initiate
fetch and update operations from and to the DSM. Therefore
we must decide:

o Degree of prefetching - determined by the number of
prefetch threads that are created to run concurrently with
the given number of computation threads; and

o Aggressiveness of updates - determined by the number of
update threads that are created to run concurrently with
computation threads.

An appropriate balance between computation and communi-
cation threads must be dynamically maintained at runtime to
optimize performance.

II. MOTIVATING STUDY

In this section, we present results of a study that motivates
the conjecture that different applications require different
balance between communication and computation. Table I lists
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the applications considered in this work and their character-
istics. We consider two classes of applications: those with
speculative parallelismm [4], [5], [6] and those with asyn-
chronous parallelism [7], [8], [9]. We briefly describe these
classes of applications in subsections Section II-A and Section
II-B. Notice that applications with low sharing benefit from
speculation while applications with high sharing are better
off with asynchronous parallelism, wherever the application
domain can allow for stale values in update.

TABLE I: A Suite of Modern Applications

Application Parallelism Sharing

Low | High

Spec [ Async

Graph Coloring (GC)

KMeans (KM)

Single Src Shortest Path (SSSP)
Maximal Independent Set (MIS)

PageRank (PR/PRO)

Spam Filter (SF)

Wave Simulation (WS)
Heat Simulation (HS)

2D Heat Simulation (2DHS)
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Fig. 1: Speedups of the parallel versions of the benchmarks
over their serial versions.

We first present the raw speedups of the parallel versions
(without using our techniques) over the serial versions. The ex-
periments were conducted on the dyDSM system [10], which
supports speculative and asynchronous execution. dyDSM’s
uses the the SpiceC [4] model for speculative execution. Figure
1 shows that before using our techniques, the speculative
benchmarks achieve 30x speedups while the asynchronous
benchmarks achieve about 40x speedup on average. Our goal is
to further improve the speedups of these parallel benchmarks.

In the rest of this study, the speedups we present are over the
baseline parallel version that does not use separate prefetching
or udpate threads. This allows us to objectively study the
speedups that can be attributed exclusively to the mechanisms
considered in this study.



In the remainder of this section we describe two forms of
parallelism observed in applications listed in Table I and, in
each case, we evaluate the benefits from balancing commu-
nication and computation. As mentioned above, the baseline
used is the parallel version without our techniques. This
allows us to evaluate the specific benefit from using dedicated
prefetch and update threads and dynamically adapting these
resources.

A. Speculative Parallelism

Speculative parallelism is a software technique that par-
allelizes algorithms by creating parallel threads to perform
computations that may exhibit non-deterministic sharing of
data [4], [5], [6]. To illustrate speculative parallelism let us
consider the example of Graph Coloring. The serial algorithm
for graph coloring works as follows — for each node in the
graph, if the node is not yet colored, then assign a color to it
based on the colors of its neighbors. If such a coloring is not
possible, algorithm fails. The pseudo code for the serial graph
coloring algorithm is given in Figure 2.

0. for(i=0; i<NUM_NODES; 1i++) {

1. for(j=0; Jj<NODES[i].neighbors; j++) {

2. // decide upon an unassigned color ‘c’
// to assign to NODES[i]

3.}

4. NODES[i].color = c

5. 1}

Fig. 2: Pseudocode for the serial algorithm of Graph Coloring.

In order to parallelize the Graph Coloring algorithm, we can
color mutiple nodes from the graph in parallel. However, in
such a parallel version, a pair of neighboring nodes may be
concurrently assigned colors by a pair of computation threads.
As shown in Figure 3, the node NN; being colored by thread
T; is the neighbor of the node N; which is concurrently being
colored by thread 7). Therefore, the coloring information of
node N; with thread 7T; and node N; with thread T; may
indicate that the two nodes are not colored. This can lead
to incorrect coloring assignment, i.e. the two nodes may be
assigned the same color.
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Fig. 3: Parallelizing Graph Coloring requires speculation.

On the face of it, it appears that an algorithm such as
graph coloring cannot be parallelized. However, this is where
speculation comes in. With speculation, there are two distinct
phases: (1) computation and (2) commit. To begin, each
computation thread speculates that the data it reads will stay

393

current during the computation and proceeds with the compu-
tation and stores the results privately. Once the computation is
complete, the thread attempts to commit the results in order
to make these results visible to other computation threads. As
part of the commit phase, a mis-speculation check is performed
to assert that the data read by the thread is, in fact, still current.
The result of a speculative computation is committed only if
the mis-speculation check succeeds. On failure, the result of
the computation is discarded and the computation is scheduled
to be re-executed.

Therefore, in the presence of potential sharing between con-
currently executing threads, the key idea behind speculation is
to speculate that such sharing does not occur and proceed with
the computation. Once the results of the computation are ready
to be written to memory, a mis-speculation check is performed
to assert the absence of such sharing. This can be achieved by
resorting to versioning of data, for example. Thus, speculative
parallelism only commits those results that are computed from
most current values. With speculative parallelism, data commit
failures can arise from violating write-read or read-write or
write-write dependencies that manifest at runtime. In this
work, we use the SpiceC [4] speculative execution model.

Applications generate high-priority fetch requests when the
node to be processed is needed — these must be serviced
immediately and the requesting thread blocks until this request
completes. Once a node has been fetched, additional requests
are issued to prefetch the neighbors. Finally, once the specula-
tive computation is completed, an update request is issued to
commit the updated private copy of the data. The update thread
performs the mis-speculation check and performs the commit
asynchronously and off the critical path of the speculative
computation.

For speculation to be effective, the sharing of nodes between
concurrently executing threads should be small. If such sharing
is high, the potential benefits from speculation will be offset by
repeated re-computations caused by commit failures that result
from failed mis-speculation checks. Examples of applications
that have low sharing and can benefit from speculative exe-
cution include: Graph Coloring (GC), Single Source Shortest
Path (SSSP), KMeans (KM) and Maximal Independent Set
(MIS).

We now present a study of the speculative benchmarks
listed in Figure 1. Figure 4 show the speedups Graph Coloring
(GC), Single Source Shortest Path (SSSP), KMeans (KM),
and Maximal Independent Set (MIS) with varying number of
commit and prefetch threads on the lower axes. The baseline
for the speedups is the configuration with zero prefetch and
zero update threads. We now present the observations for
communication.

Communication Strategy. Asynchronously prefetching the
data needed for computation in the near future can definitely
help speedup the computations: this is seen in the speedups
plotted in Figures 4a, 4b, 4c and 4d. This is especially true
when there are a proportionately large number of neighbors
to process for each node. In addition, speculation will benefit
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Fig. 4: Figures 4a, 4b, 4c and 4d show the speedups for GC, SSSP, KM and MIS respectively. Prefetch threads make remote
objects locally available, hence avoiding remote accesses and reducing the average fetch time. Each benchmark was executed
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from aggressive updates back to the DSM: this is apparent
from the increasing speedup with an increasing number of
commit threads in Figure 4. Delaying commits increases the
mis-speculation rate as the computation threads continue to
compute results based on potentially stale values. This can
be observed in Figure 5 — the aborts are higher for fewer
commit threads and rapidly decrease with increasing commit
threads. Further, notice that in most cases when there are fewer
commit threads, aggressive prefetching can result in a 10x
increase in aborts. This is because prefetching aggressively
brings in stale values since the newer values are still in the
update queue. As a result, all computations that speculated on
prefetched stale values will eventually abort, thereby resulting
in an overall slow down of the program execution. Therefore, it
is imperative that depending on the speed of computation, the
number of update threads — both prefetch and commit — should
be dynamically balanced as needed to speedup commits.
Notice that neither the number of prefetch threads nor
the number of commit threads can be statically determined
in advance: the number of most effective prefetch threads
depends on the number of compute threads, the speed of the
computation, dynamic network latencies etc. All these point to
the need for dynamically adapting these types of requests.

B. Asynchronous Parallelism

In this form of parallelism there is little to no synchroniza-
tion between various concurrently executing threads [7], [8],
[9]. Consider the problem of Distributed Spam Filtering where
the sharing is total. More specifically, the set of words that
indicate presence of spam are fully shared by all computation
threads of the Spam Filter program. While this word set may
be infrequently updated, the completed spam classification
computations need not be thrown away. It suffices to execute
future spam classifications using the updated word set. In other
words, the result of the current computation is deemed to be
‘good enough’. PageRank is another example of an application
that falls into this category. The PageRank algorithm computes
the rank of a node based on the ranks of its neighbors, until
the ranks only change negligibly, that is, until the ranks of
nodes converge under some criterion. Now, if a computation
thread reads the rank of a neighbor that then becomes stale
due to a concurrent update, the results of the computation
need not be thrown away. By making this choice, the path to
convergence is modified, but the progress towards convergence
is not hindered. It suffices to ensure that updates are not lost.

As described in the two examples above, for applica-
tions that exhibit asynchronous parallelism, there is no pre-
determined order of execution that needs to be enforced among
concurrently executing threads. Moreover, if data sharing
between concurrent threads exists, computations that use stale
values can be allowed to commit. That is, in contrast to
speculative parallelism, commit failures do not arise in asyn-
chronous parallelism. This relaxation is a key differentiator of
asynchronous parallelism from speculative parallelism. As we
shall see, this differentiation allows for novel possibilities to
achieve speedups. Other examples of applications that belong
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in this category are: 1D and 2D Heat Simulation and Wave
Simulation.

We now present a study of the asynchronous benchmarks
listed in Figure 1. The baseline for the speedups is the
configuration with zero prefetch and zero update threads. We
vary the number of commit and update threads. We now
present the observations for varying communication.

Communication Strategy. Prefetching can help throughout
the lifetime of such applications depending on the rate at which
objects get replaced from the machine-level object store. As
seen in Figure 6, prefetching alone increases the speedup by
37% for PR and PR-HS, 22% for SF, 35% for 2DHS, and
22% for both HS and WS. Also observe that increasing the
number of prefetch threads only helps upto a point. After that,
there is no benefit from prefetching. Notice once again, that
the number of update and prefetch threads cannot be known in
advance. This also points to the need for dynamically adapting
the number of prefetch and update threads at runtime.

In the next section, we present an adaptive computational
model that directly follows from the above observations. We
propose, present and evaluate various parameters that can be
monitored at runtime. Finally, we evaluate our proposed dy-
namic model and show that it dynamically achieves speedups
close to that of the best hand-optimized parallel versions.

III. ABC?: AN ADAPTIVE RUNTIME FRAMEWORK

The results of the study of applications in the previous
section are summarized in Table II. As we can see, not
all applications benefit from prefetching but for those that
do, the appropriate number of prefetch threads can vary.
Finally, although update threads help tolerate latency in all
applications, the appropriate number of update threads varies
across applications. Therefore we conclude that to benefit from
the latency tolerance mechanisms we support, it is best to
develop a runtime model that supports all of the proposed
mechanisms and, with the help of runtime monitoring, it adapts
their use to meet the needs of the application.

TABLE II: Summary of communication strategies.

Parallelism
Strategy -
Speculative | Asynchronous
Number of Prefetch Threads Varying Varying
Number of Update Threads Varying Varying

In this section we develop an adaptive framework that
performs well for all different types of parallel applications
considered without any a priori knowledge of their type or
behavior. We identify parameters that are monitored at runtime
to guide and control the degree of prefetching and aggressive-
ness of updates. In the remainder of this section we present
the system architecture and design, discuss the parameters
monitored at runtime, and finally present ABC?which is the
runtime decision making algorithm.
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Fig. 6: Speedups for PR, PR with high sharing are shown in figures 6a and 6b; speedups for SF and WS are shown in figures
6¢c & 6d respectively; and speedups for HS and 2DHS are shown in 6e, 6f. Prefetch threads make remote objects locally
available, hence avoiding remote accesses and reducing the average fetch time. Each benchmark was executed on a cluster of

6 machines, running 5 computation threads.

A. System Design

In this section we present the system design and describe
the roles and responsibilities of its various components.

DSM. We use the object-based dyDSM [10] as the underlying
DSM in this work.

Speculation. As described in Section II-A, we have imple-
mented the copy-in, copy-out speculative model from SpiceC
[4]. The separate compute and commit phases of this model
are in tune with our need to separate computation and com-
munication.

Thread Pool. To eliminate the penalty of creating and ter-
minating new threads at runtime, we employ a thread pool
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model. A large number of threads of each required type are
created during the runtime initialization. Unused threads are
put to sleep and woken up as needed rather than resorting to
polling for work. This prevents idle threads from using CPU
resources.

Prefetching. Prefetching is implemented to take advantage
of the graph structures being used by the applications. The
computation threads enque the objects IDs of the objects that
need to be prefetched into the prefetch queue. The prefetch
threads first deque the object IDs from the prefetch queue,
then fetch the object asynchronously and place the object into
a prefetch buffer. When per-machine replication is used, the
per-machine replica store can be used as the prefetch buffer.



When no replication is used, a separate prefetch buffer needs
to be used.

Updates. Update threads first dequeue the thread-private mem-
ory object from the commit queue and asynchronously commit
the data back to the DSM. With speculation, the update
thread must atomically perform the mis-speculation check
(discussed in Section II-A) that involves detecting write-read,
read-write, and write-write dependencies for all the data in
the thread-private memory object and then perform the write
back to the DSM. Therefore, when speculation is used, the
update threads work in a commit mode. Finally, for programs
with asynchronous parallelism, the update must still perform
a commit, but as discussed in Section II-B, it suffices to
atomically perform only the write-write dependency check
before the update. Note that since the mis-speculation check
and update into the DSM need to be performed atomically,
batch updates into the DSM can be performed efficiently.

Computation. Computations are performed by compute
threads. When speculation is used, the compute threads imple-
ment the copy-in, copy-out model to allow concurrent compute
threads to execute in isolation. Under this model, the compute
threads copy all the data used by the computation into a thread-
local private memory. Once the computation is complete, the
entire private memory (which also contains the results of the
computation) are pushed into a commit queue, to be handled
asynchronously by the update threads. Similar mechanism
is also used for applications with asynchronous parallelism.
Figure 7 summarizes the overview of the prototype. The core
components of the framework are:

1) Object based DSM;

2) Speculation via SpiceC’s copy-in, copy-out model;
3) Separate computation and commit phases; and

4) Prefetch, Compute, and Update thread pools.

The numbering in Figure 7 indicates the flow of execution.
The compute thread first populates the prefetch queue with the
IDs of objects to be prefetched and returns to its computation
task. The prefetch threads asynchronously fetch the necessary
data from the DSM into the prefetch-buffer. When the com-
pute thread needs a data item, it first looks up the prefetch
buffer and brings it into the per-machine replication stores as
appropriate; the compute thread then continues with its task.
Once completed, the compute thread pushes the results of the
computation into the update queue and starts working on the
next computation. The update threads dequeue the data from
the update queue and commit or discard the results of the
computation depending on the success or failure of the mis-
speculation check.

B. The ABC?Algorithm

For each of the decisions the runtime needs to make, we
consider the various parameters that we evaluated in Section
II. To vary the number of prefetch threads, we propose to
monitor the length of the prefetch queue, which contains the
IDs of objects that need to be prefetched. Finally, to vary the
number of update threads, we monitor the length of update
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Fig. 7: The ABC?system design showing the DSM, Prefetch,
Compute & Update threads.

Adapt Prefetching:
// At the start of the prefetch task:

0. if(prefetch_g.length > PQ_Threshold):
1 wakeup_more_prefetchers()

2. else:

3 sleep_extra_prefetchers()

Adapt Updates:
// At the start of update task:

0. if(update_g.length > UQ_Threshold):
1. wakeup_more_udapters ()

2. else:

3. sleep_extra_updaters()

Fig. 8: The ABC?Algorithm.

queue, which contains the results of computations that need
to be written back to the DSM.

The adaptive ABC?algorithm monitors the various param-
eters listed above to adapt the computation model and com-
munication resources. There are two independent parts to the
algorithm, both of which are initiated simultaneously at start of
the application. The two independent parts adaptively control
the prefetch threads, and update threads. The listing in Figure
8 presents the adaptive algorithm. To adapt prefetching and
updates, more threads are used depending upon the current
queue sizes. In these experiments, the maximum number of
prefetch threads was experimentally bounded at 25 and the
number of update threads was bounded at 64.

Each of the parameters like prefetch and update queue
lengths are monitored as needed in Figure 8. We now briefly
discuss the benefits and generality of monitoring these param-
eters.

1) Prefetch-queue length: To turn on or turn off prefetch-

ing on demand, we simply leverage the presence of
the prefetch queue. We will always have at least one
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Fig. 9: Speedups without and with ABC?.

prefetcher active. If this prefetcher observes many pend-
ing data objects to be prefetched, by querying the prefetch
queue length, it will wake up more prefetchers. If
prefetchers find no work to do, they simply go to sleep
until woken up again.

Update-queue length: Update threads are dynamically
adjusted in a manner similar to that used for prefetch
threads, with the exception that the update threads mon-
itor the length of the update queue.

2)

C. Evaluation of ABC?

We now evaluate the ABC?framework on a cluster of 6 8-
core Dell T410 machines each with 8 GB memory, running
Ubuntu 10.04, Kernel v2.6.32-21. We use the dyDSM [10] as
the underlying DSM. Our goal is to compare the speedups
achieved by the adaptive framework with those of the fastest
configurations from the study in Sections II-A and II-B. The
speculative benchmarks are run with 4 compute threads while
the asynchronous benchmarks are run with 5 compute threads,
while adaptively varying prefetch and update threads. In this
evaluation, we consider the following different configurations:

e Basic, which is the basic configuration without prefetch
or update threads: without ABC?, prefetching and updates
are handled by the computation thread itself.

Optimal, which is the fastest configuration from the
motivation in Section II-A and Section II-B.

Average, where the maximum number of prefetch and
update threads is set to the respective average numbers
as measured in the ABC?version.

We show that for each benchmark, our adaptive framework
(a) automatically selects the optimal fastest configuration seen
in the study above; and (b) achieves speedups comparable to
the fastest configuration.

Speedup over serial baseline. We first show that parallel
benchmarks running on 6 machines with tt ABC? achieve sig-
nificant speedups over the Basic version without ABC?. The
speedups in this experiment are baselined to the serial versions
of their benchmarks. Both the serial and parallel versions fetch
data from the DSM and update data back into the DSM. In the
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Fig. 10: Performance evaluation of ABC?.

serial versions of the benchmarks, the network communication
is handled by the computation thread itself. Figure 9 compares
the speedups of the Basic, Optimal and ABC2. First, we
see that without ABC?, the Basic versions of speculative
benchmarks, on an average, achieve speedups of 18x while
the asynchronous benchmarks achieve 30x speedup. Next, we
see that the best achievable speedups with prefetch and update
threads from the study in Section II is significantly higher: an
average of 40x for speculative benchmarks and 47x for asyn-
chronous benchmarks. On an average, this is an improvement
over the Basic version by 22x for speculative benchmarks
and 17x for asynchronous benchmarks. This clearly shows that
ABC?algorithm is beneficial for performance. This apparently
very large increase is because these benchmarks are mostly
network-bound due to the DSM communication. Therefore,
providing dedicated resources for network IO in the form of
prefetch and update threads hides the network communication
latency while simultaneously allowing the computations to
make progress with overall speedup.

Speedup over parallel baseline. We now evaluate the speedup
benefits of ABC? for the parallel versions of the benchmarks.
The baseline in this experiment is the parallel benchmark
running on 6 machines without dedicated prefetching or update
threads; the fetches and updates are handled by the computa-
tion thread itself. This baseline allows us to evaluate the spe-
cific benefit of the ABC? algorithm dynamically adapting the
prefetch and update threads for parallel programs. Therefore,
the speedups presented here are over and above the speedups
achieved by the parallel program without adaptive commu-
nication. Figure 10 compares the speedups of the Optimal
configuration from Section II with the speedups achieved by
the ABC? algorithm. We see that the ABCZalgorithm achieves
speedups between 1-6% of that achieved in the study, except
in the case of WS and HS, where ABC?achieves speedups
within 15% of that in the study. As seen in Figures 6d and 6e,
WS and HS have optimal running times with zero prefetchers,
while the adaptive algorithm uses about 3 prefetchers for both
WS and HS, as seen in Figure 11. The prefetching overhead
results in lower speedups in these two cases.
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Fig. 11: Concurrently active prefetch threads.

Adaptive Prefetching and Updates. Finally, we evaluate the
specific improvements accrued by ABC? adaptively varying
prefetch and update threads. Comparing the speedups achieved
using the average numbers for prefetch and update threads
obtained from Figures 11 and 12 with the speedups obtained
by the ABC?, we see that ABC2always gives better speedups
close to the optimal in the study. This indicates that a higher
maximum number for prefetch and update threads employed
by ABC?is important and useful in achieving better speedups.

Figures 11 and 12 show the average and maximum number
of concurrently active prefetch and update threads as measured
by the ABC?algorithm. We see that the ABCZalgorithm uses,
on an average, 5 prefetch threads. On an average, all the
asynchronous benchmarks use just 2 update threads while
the speculative benchmarks use 16 update threads, except for
KM, which uses only 2 update threads. The update phase of
asynchronous benchmarks is significantly shorter compared to
the speculative benchmarks: for GC, SSSP and MIS, since a
node’s value is calculated based on its neighbors, the mis-
speculation check involves the node and all its neighbors.
Therefore, speculative updates are network-bound and time
consuming, but not CPU-bound. Hence, with fewer update
threads, more commit requests can get queued to the update
queue. But as can be seen from the Adapt Updates section
in Figure 8, when the update queue length is greater than a
threshold, the ABC?algorithm wakes up more update threads.
This does not happen often with asynchronous benchmarks
since there is no mis-speculation check in their updates. With
KM, the mis-speculation check only involves the single cluster
data; there is no notion of neighbors in this case. Therefore,
the mis-speculation check is fast and hence fewer number
of update threads are sufficient to keep the update queue
length below the set threshold. Also, the maximum numbers
show that occasionally the ABC?algorithm uses a maximum of
25 prefetch threads and 49 update threads. The vertical bars
show the standard deviation around the average number of
prefetch and update threads. The average, standard deviation
and the maximum are indicative of the dynamically varying
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number of prefetch and update threads in the ABC?algorithm.
The standard errors for the average number of prefetch and
update threads are 0.0036 and 0.0054, indicating a very high
confidence in the average numbers shown.

IV. RELATED WORK

Distributed Shared Memory or DSM is a prominent choice
of memory models for programming distributed systems. In
essence, this software layer superimposes an abstraction of
shared memory over the physical memories from multiple
machines in a cluster. This allows programmers to write
applications using the familiar abstraction of shared memory
systems. Additionally, the scalability of clusters coupled with
the shared memory abstraction makes DSMs an attractive
option for scalable distributed computing without resorting to
specialized programming models or frameworks.

Dynamic data prefetching in the context of distributed
systems has also been studied [11], [12] in various research
and engineering communities. Our work differs by providing
a runtime that monitors dynamic parameters and dynamically
turns on/off prefetching as needed. Further, our designation of
separate threads on each machine specifically for prefetching
allows us to dynamically scale prefetching on demand. This
further allows for optimal allocation of physical CPU cores
to computation and communication needs of the application.
There are other strategies based on Markov models [13] etc.,
that do not need any input from the user, but those models are
not the primary focus of this evaluation.

DSMs are not the only programming/memory model for
distributed parallel programming. MapReduce [14] is a popu-
lar programming model that consists of two distinct phases of
computation: map and reduce. The map operation distributes
work across the cluster while the reduce operation aggregates
the results from the across cluster. However, MapReduce
cannot be applied to every program that can be parallelized,
thereby limiting it to a smaller set of applications than possible
with DSM. Another approach is to use distributed memory
(DM) (in contrast to distributed shared memory (DSM))



model. With DM, the programmer has to explicitly manage
and move data between various compute nodes. HipG [15]
is an example of a graph processing framework that uses
DM. HipG contains DM extensions similar to those proposed
in SpiceC [4] and works in two phases, like MapReduce.
The Message Passing Interface (MPI) [16] is a popular DM
programming model. Compared to DSM based systems, the
programmer burden in programming for these systems is very
high. For example, with the exception of transferring atomic
data types and their arrays, simply creating the wrappers to
allow serialized communication of incrementally complex data
structures can be daunting enough to deter the use of this
system for larger programs.

Traditional clusters were built from commodity single core
CPUs and the DSMs proposed for those systems were not
designed to exploit the presence of multiple cores. For in-
stance, systems like ORCA, Shasta, TreadMarks and Emerald
[11, [2], [17], [3] were all successful DSM systems for clusters
of uniprocessor machines. This work is focused not on the
DSMs perse, but rather on novel approaches to exploit new
opportunities afforded by multi-core machines. Specifically,
we explore the dynamic balance between communication and
computation for speculative and asynchronous applications
on DSMs. Prior systems do not provide explicit support for
speculative or asynchronous parallelism, like we do. Finally,
to the best of our knowledge, none of the older systems moni-
tored dynamic, runtime characteristics of data and applications
to automatically adapt communication and computation for
optimal performance. To tolerate latencies, prior work has
explored lazy vs. eager release consistency models [17]. Other
work has looked at dynamically adapting between single and
multiple writer protocols [18], [19] or adapting to dynamic
sharing patterns, which again relies on some release con-
sistency model [18] in the context of regular applications.
This work focusses on irregular applications; for speculative
applications, we rely on the SpiceC [4] model, which is a lazy
release, multiple-writer protocol. Asynchronous applications
by definition require no strict consistency models; we use the
multiple writer model for both speculative and asynchronous
applications, with primary focus on ABC?: Adaptively Balac-
ing Communication and Computation.

V. CONCLUSION

In this paper, we motivate the need to delicately balance
computation and communication for applications with specu-
lative and asynchronous parallelism. To address this problem,
we propose to enable fine-tuned balance between computation
and communication: we propose the separation of concerns
into prefetch, compute and update threads. To dynamically
adapt the system based on the runtime application and data
characteristics, we proposed a scheme to monitor data sharing,
hit-rates and fetch-times. An evaluation of the ABC?model
shows that the adaptive scheme achieves performance close to
that of the optimal case.
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