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Abstract
The choice of data structures is crucial for achieving high perfor-
mance. For applications that are long-running and/or operate on
large data sets, the best choice for main data structures can change
multiple times over the course of a single execution. For example, in
a graph-processing application where the graph evolves over time,
the best data structure for representing the graph may change as
the program executes. Similarly, in a database or a key-value store
application, with changes in relative frequencies of different types
of queries over time, the most efficient data structure changes as
well. We introduce an approach that allows applications to adapt to
current conditions (input characteristics, operations on data, state)
by switching their data structures on-the-fly with little overhead
and without the developer worrying about safety or specifying adap-
tation points (this is handled by our compiler infrastructure). We
use our approach on different classes of problems that are compute-
and memory-intensive: graph algorithms, database indexing, and
two real-world applications, the Memcached object cache and the
Space Tyrant online game server. Our results show that off-the-shelf
applications can be transformed into adaptive applications with mod-
est programmer effort; that the adaptive versions outperform the
original, fixed-representation versions; and that adaptation can be
performed on-the-fly safely and with very little runtime overhead.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features–Frameworks; D.3.3
[Programming Languages]: Processors–Code generation; E.2
[Data]: Data storage representations–Composite structures

General Terms Languages, Performance

Keywords adaptation, runtime data structure selection, space-time
trade-off, input characteristics

1. Introduction
The performance of data-intensive applications is highly dependent
upon the main data structures used. As we demonstrate via a wide
range of experiments, using a single data structure representation
for an entire program run is problematic in many cases: when input
characteristics vary (e.g., a graph algorithm analyzing an input
graph that evolves over time); or when task characteristics vary (e.g.,

workload profile for a key-value store); or when state characteristics
vary (e.g., an online game with a variable number of players).

For example, on a read-mostly workload, the performance of the
Memcached object cache can double by switching to Cuckoo hash-
ing [8, 20], compared to Memcached’s default hashing. However,
to achieve this performance gain, the entire implementation has to
be switched; we allow this switch to be performed on-the-fly. As
a second example, consider running six popular graph algorithms
(described in Section 5) on MovieLens, a naturally-evolving graph
containing movie reviews which in its final state has 3,979,428
edges and 36,526 vertices. Alternate data structures can store the
graphs—adjacency list, adjacency matrix, or shards—each with its
own trade-offs. Using a single data structure representation imposes
a typical performance overhead of 22% compared to our adaptive
version which uses different representations during different execu-
tion intervals. Hence data structure representation cannot be selected
a priori at compile time—rather, it should be selected at runtime,
when the choice of the data structure can be adapted to changing
input or task characteristics.

We propose a programmer-assisted approach to adaptation,
where data structures and algorithms change on-the-fly, safely and
efficiently. Our approach is based on: (1) programming support for
transforming off-the-shelf applications into adaptive applications;
(2) compile-time analyses that automatically identify program points
at which the application can safely switch between alternative algo-
rithms and data structures, relieving developers from a burdensome
and error-prone task; and (3) a runtime component that performs
on-the-fly switching, allowing the application to select the right
implementation to exploit available resources.

Runtime adaptation poses several challenges: guaranteeing safety
of on-the-fly data structure and algorithm changes, imposing low
steady-state overhead, reacting quickly to system and input changes,
minimizing programmer burden. We address these challenges as
follows. Programmers render applications adaptive by indicating
the alternate implementations of a certain data structure, the appli-
cation’s main computation loops, and writing conversion functions
between the alternate data structures (Section 3). Programmers, how-
ever, do not specify where adaptation should be performed, as that
could jeopardize safety, substantially increase programmer burden,
and reduce opportunities for adaptation. Instead, our infrastructure
uses a suite of static analyses to find safe adaptation points and
increase timeliness, i.e., react quickly to a mismatch between the
current data structure and the input or workload characteristics (Sec-
tion 4).

In Section 5 we provide an evaluation of our approach along
multiple dimensions: ease of use, effectiveness, efficiency. For
evaluation we use graph algorithms, database indexing and two
real-world applications, the Memcached high-performance key-
value store and the Space Tyrant online gaming server. We found
that most of the programming effort required to convert off-the-
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Table 1: Worst-case complexity of graph representations.

Data Structure Space Edge Lookup Time
Adjacency List (ADJLIST) O(|V |+ |E|) O(|E|)

Shards (SHARDS) O(|V |+ k1|E|) O(|E|/k2)
Adjacency Matrix (ADJMAT) O(|V |2) O(1)
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Figure 1: MSSP on Google+ graph with varying density: execu-
tion time (top) and memory consumption (bottom).

shelf applications into adaptive applications consists of writing
conversion functions between representations. We then measure
the benefit provided by our approach by showing that, even when
starting with an unfavorable initial data structure choice, applications
detect this and quickly switch to using the best representation. We
also show that the performance of adaptive applications is close to
the best-possible performance on a certain input, i.e., hand-coded
applications where the best representation is found in advance via
profiling on that input.

2. Motivating Applications
This section has two goals. First, we quantify the impact of input
data characteristics, workload characteristics, and data structure
choice on memory usage and execution time. Second, we show
that, with a limited set of experiments, developers can characterize
program behavior to write adaptation policies which will guide
data structure selection at run time. We use three data-intensive
applications: a graph application that computes the Multiple Source
Shortest Path (MSSP); a database application implementing an
Indexed Flat File DB (DBMS); and the Space Tyrant online game
server. Each application is centered around one main data structure
that typically holds a large data set. We explore three alternative
representations for the main data structures and study the sensitivity
of their relative runtime performance and memory demands to the
input characteristics.

2.1 MSSP: A Graph Application
Let G = (V,E,W ) be a graph, where V is the set of nodes, E
is the set of edges, and W holds the edge weights. Graph density,
defined as 2∗|E|

|V |∗(|V |−1)
, is a key characteristic; we use percentages

to indicate density, where a low percentage indicates a sparse graph
and a high percentage a dense graph. The main data structure

Table 2: Best graph representation, by density interval.

Criterion Density
0-2% 2-25% 25-67% 68-100%

Space ADJLIST ADJLIST ADJMAT ADJMAT
Time ADJLIST SHARDS SHARDS ADJMAT

(the input graph G) can be represented in different ways. We
focus on three representations: Adjacency List (ADJLIST), which
stores the outgoing edges of each node in a list; a collection of
Shards (SHARDS), where each shard contains all edges incident to
a distinct subset of nodes in the graph [11, 16]; and Adjacency
Matrix (ADJMAT), which stores the edge weights in a matrix. MSSP
computes the shortest path from each vertex to every other vertex,
and it can be implemented using multiple applications of SSSP, with
each vertex as source.

Space and time trade-off. Table 1 shows the space requirements
and edge weight lookup times for the three graph representations.
The ADJLIST representation exploits graph sparsity to achieve a
compact form, but has the highest worst-case edge weight lookup
time which increases with graph density. The SHARDS representation
uses additional space and in return has lower worst-case edge lookup
time; note that k1 depends on shard size and graph density, while
k2 depends on graph density. Finally, the ADJMAT representation
uses the most space and performs edge weight lookup in constant
time, i.e., independent of graph density. Thus, it is expected that
input graph density, which is not known at compile time, will affect
runtime memory consumption and execution time, and there is
an inherent trade-off between space and time among these three
representations.

We studied the space and time costs of using the three repre-
sentations for computing MSSP on a real-world graph, Google+
circles [14]. The graph consists of 23,628 nodes representing users,
and 39,242 edges representing links to users in his/her circle. Fig-
ure 1 plots the execution time and memory consumption for all three
representations and demonstrates the expected space–time trade-off
among the three representations. For clarity we only show “inter-
esting” graph density ranges, around crossover points (2%, 9% and
68% for time; 20% and 25% for space), i.e., densities at which one
representation starts to outperform another.

Stability across input sizes. To see how the space-time trade-off
manifests for representations at different input sizes, we conducted
a series of experiments: we varied the graph size from 10,000 to
25,000 nodes, in increments of 5,000; and we varied the density
by changing the number of edges. This helps identify crossover
points, i.e., threshold densities where one representation starts
outperforming another. Table 2 summarizes our findings. The
thresholds found in this experiment clarified which representation is
a better choice for what density ranges. For example, when the graph
density is less than 2%, ADJLIST is the “better” representation as
it is both more memory- and time-efficient than ADJMAT. Similarly,
in the last interval (> 68%) ADJMAT is the clear winner as it takes
less memory and is faster. SHARDS wins the race of time-efficiency
between 2% and 25%. Between 25% and 67%, however, ADJMAT is
more memory-efficient while SHARDS is more time-efficient, hence
the best representation depends on operational constraints, e.g.,
is memory limited? Is performance critical so it is worth trading
off space for time? With our approach, the best representation is
chosen automatically, at runtime, based on density and operational
constraints.
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Table 3: Runtime performance of representations for DBMS.

Data Structure Insert Search
BTREE Slow Fast
AVLTREE Slow Intermediate
RBTREE Fast Slow

Table 4: Workload characteristic vs. best representation.

Criterion Percentage of Insert Operations
0-37% 37-62% 62-100%

Time BTREE AVLTREE RBTREE

2.2 DBMS: An Indexed Flat File DB
We now illustrate the impact of data structure choice on database
operations’ performance. For our experiments, the data is stored
in a flat file on disk, however the database indexes are stored in
memory, in a tree (along with file offsets so data could be accessed
in O(1) time after an offset value is fetched from the tree). There
are numerous ways to store the indexes; we chose three popular data
structures: BTree (BTREE) of order 5, AVL Tree (AVLTREE), and
Red Black Tree (RBTREE). The database operations are real-world
social network queries, as explained shortly.

Time requirements. Although the three indexing data structures
have the same worst-case time complexity for insert and search
operations—O(log n), where n is the number of nodes—they have
different insertion and search times due to their rebalancing policy
(Table 3).

We measured the execution time of insert and search operations
on a social network database, with the data and queries from
the BG Benchmark [3]. Our workload consisted of two actions,
initiate friend request (user X sends a friend request to user Y),
and search friendship (find if X and Y are friends). Initiate friend
request requires an insert (SQL INSERT operation) while search
friendship requires a search (SQL SELECT operation). We populate
the initial network with 10,000 users and 100 friend requests for
each user. We generated a workload of 5,000,000 operations which
varies the insert/search ratios, from 10% inserts–90% searches to
90% inserts–10% searches. Similar to MSSP, we varied workload
size from 1,000,000 queries to 5,000,000 queries and found that
crossover points are stable across workload sizes. We summarize
our findings in Table 4: each representation has an interval where it
is the most suitable. With our approach, the best representation is
chosen automatically, at runtime, based on workload.

2.3 Space Tyrant: An Online Game Server
Space Tyrant is an online multiplayer game server, where players
move their ships around a 2D universe. The game state is kept
in a map divided into sectors and information for each sector is
stored in a LIST, which is backed up periodically on the disk. We
found an alternative, compressed method of representing sectors
in memory, CLIST, in which only the occupied sectors are stored,
along with their neighboring sectors. Let G = {U, S} be a game
where U is the number of users, and S is the number of points in
the space represented as sectors. Game crowding, defined as U

S
, is a

key characteristic for choosing the map representation.

Space and throughput trade-off. Table 6 shows the worst-case
space complexity and the sector information look-up time for each
representation. The CLIST representation exploits the crowding
property of the map to reduce memory consumption, however it
causes sector lookups to cost more. The LIST representation requires
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Figure 2: Space Tyrant with different crowding percentages.

Table 5: Best sector representation, by crowding interval.

Criterion Crowding
0-8% 8-35% 35-100%

Space CLIST CLIST LIST
Time CLIST LIST LIST

Table 6: Worst-case complexity of sector representations.

Data Structure Space Sector Lookup Time
List (LIST) O(|S|) O(1)

Compressed List (CLIST) O(|U |) O(|U |)

more space but performs the sector lookup in constant time. We
studied the throughput and space costs of the two representations
during game plays with 1-million sector maps. For each game
play, we varied the number of users from 10,000 to 900,000, thus
increasing crowding from 1% to 90%. Figure 2 shows that for low
crowding, i.e., below 8%, CLIST is a better representation in terms
of both the throughput and the memory consumption; however,
above 35%, LIST is better in terms of both memory and time.

Stability across game sizes. We studied the stability of the
crossover points by varying the game size from 500,000 to 1,000,000.
The crossover points remain consistent across different game sizes.
We summarize the findings in Table 5.

In summary, these results prove that none of the eight data
structure representations yields the best performance in terms of
memory consumption and/or execution time for all input data and
workload characteristics, and runtime data structure selection is
the solution for optimal performance and resource use.

3. Overview
We now present our approach for transforming off-the-shelf appli-
cations into adaptive applications that safely and efficiently switch
between data structure representations to optimize their operation
(higher speed, lower memory usage, etc.) and adapt to changes in
input, workload, or state.

Programmers need to add a handful of annotations to the source
code, to indicate alternative representations (data structures &
implementations); mark the application’s long-running, compute-
intensive loop(s); use a progress indicator (variable holding the value
of “progress bar”); and write representation conversion functions.
This annotated source code is passed through our static analyzer
and compiler, which: find safe adaptation points in the source
code; perform a source-to-source translation to instrument the code
to permit adaptation; and add the transition logic. This code is
then compiled with a normal C compiler, e.g., gcc, to yield the
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1 #pragma __ADAPT_DS(GRAPH)("ADJMAT")
2 #pragma __ADAPT_DS(GRAPH)("ADJLIST")
3 #pragma __ADAPT_DS(GRAPH)("SHARD")
4 #pragma __ADAPT_LONG_RUNNING("LR")
5 #pragma __ADAPT_LOOP("AL")
6 typedef struct { //first representation
7 ...
8 } ADJMAT;
9

10 typedef struct { //second representation
11 ...
12 } ADJLIST;
13
14 typedef struct { //third representation
15 ...
16 } SHARD;
17
18 void computeMSTK_ADJMAT( ADJMAT∗ graph,
19 int∗ progress)
20 {
21 int totalNodes = graph−>totalNodes;
22 Edge∗ edge;
23
24 LR:{
25 AL: while(∗progress < totalNodes) {
26 check4adapt(progress);
27 edge = findMinimumEdge(graph);
28 check4adapt(progress);
29 markEdgeUsed(graph,edge);
30
31 ∗progress = addEdgeInTree(graph,edge);
32 check4adapt(progress);
33 }
34 }
35 }
36
37 ...
38
39 callOP1(void∗ graph, int startDS, int∗ progress) {...}

Figure 3: Excerpt from Minimum Spanning Tree (MST-K);
code in green is inserted automatically by our compiler.

adaptive application that will adapt by safely switching among
representations.

Running example: Minimum Spanning Tree using Kruskal’s al-
gorithm (MST-K). In Figure 3 we show an excerpt from the MST-
K application, which computes the minimum weight spanning tree
(MST) using Kruskal’s algorithm. The input is an undirected graph,
while the output is a subgraph whose total weight is less than or
equal to every other spanning tree. Three alternate data structure
representations are used for holding the large graph in the memory:
ADJLIST, ADJMAT and SHARDS, as indicated by the programmer
on lines 1–3. The function computeMSTK_ADJMAT, as the name
suggests, finds the MST in the ADJMAT representation; similar func-
tions, for ADJLIST and SHARDS representations have been writ-
ten as well. The progress argument (line 19) holds the value of a
“progress bar” for the execution—in this case, the length of the
longest tree in the MST. The algorithm’s main part is implemented
as a long-running loop LR (line 24) whose counter gets incremented
each time an edge is successfully added to the subgraph repre-
sented in graph data structure. MST-K is a greedy algorithm, try-
ing to add an edge of minimum value to the tree and terminating
when the spanning tree has every node connected (an MST has
been constructed); findMinimumEdge (line 27) finds the minimum
weight edge in the graph which is not yet in the spanning tree
and markEdgeUsed (line 29) marks that edge for possible addition.

The function addEdgeInTree (line 31) checks if adding the edge to
the spanning tree connects two trees and does not form a cycle,
and returns the length of the longest spanning tree. The calls to
check4adapt (lines 26, 28, and 32) and the definition of callOP1
(line 37) are inserted automatically by our source-to-source compiler
after the static analysis.

Programming model. Our approach is designed to minimize
programmer’s burden. To support adaptation, programmers use just
four simple annotations, as shown in the following table, to indicate
alternative definitions of data structures, as well as long-running
code that should be subject to adaptation. Our compiler will use
these annotations to generate code that adapts in a safe and flexible
manner. In addition, while programmers need to write functions
for converting between representations, they do not need to invoke
these functions—for safety and timeliness reasons, these functions
are invoked automatically by the runtime system.

Annotation Purpose
progress progress indicator
__ADAPT_DS(DSname)(ConcreteRep) mark data type

for adaptation
__ADAPT_LONG_RUNNING long-running block
__ADAPT_LOOP adaptive loop

First, the programmer should define a variable (named progress
in our examples) which tracks execution progress, e.g., the amount
of input processed or the amount of result produced. Second, the
long-running computation should be prepared to start process-
ing from a certain progress value rather than assuming it starts
from scratch (note the compute MSTK_ADJMAT( ADJMAT∗ graph,
int∗ progress) in Figure 3) so the computation can resume at the
new representation after a representation switch.

__ADAPT_DS is used to mark a data type for adaptation; the
DSname parameter is used as a common name to identify alternate
representations, while ConcreteRep indicates the type of the concrete
representation. For example, in Figure 3 we use the #pragma
__ADAPT_DS’s on lines 1–3 to indicate that ADJMAT, ADJLIST, and
SHARD are alternative implementations of the same conceptual type,
GRAPH.

The compute-intensive code, usually the program’s main loop,
is a lexical scope marked via __ADAPT_LONG_RUNNING (lines 4
and 24). This annotation indicates to our compiler that it should find
adaptation opportunities in that scope (or in code transitively called
from it, e.g., callees).

Programmers can annotate a loop with __ADAPT_LOOP to tell
the compiler that it should find adaptation opportunities inside that
loop’s body, i.e., break out of the loop upon the first occurrence
of check4adapt( progress) (check4adapt(progress) is actually an if
(check4adapt( progress))return;), transfer control to the code asso-
ciated with the new representation, and begin execution from the
same “progress” state. In the Figure 3 example, if the runtime sys-
tem indicates a switch is needed from ADJMAT to ADJLIST, we
break out of the loop on line 25 and control is transferred from
computeMSTK_ADJMAT to computeMSTK_ADJLIST. Loop annota-
tions are particularly useful when programs contain nested loops:
programmers can control the granularity of adaptation, i.e., loops
marked with __ADAPT_LOOP will permit fine-grained adaptation.

Static analysis and compilation. Our static analysis and compiler
do the heavy-lifting of carrying out safe and efficient adaptation.
The static analysis, explained in Section 4.1, finds program points
where adaptation can be performed while avoiding issues such as
type safety violations, inconsistent intermediate results, or long
adaptation delays. The source-to-source compiler is responsible for
(a) inserting transition code, i.e., the code that will perform the
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runtime conversion between data structure representations, based
on the manual annotations and the results of the static analysis;
and (b) inserting potential adaptation points (check4adapt). These
insertions are guided by pragmas, as explained next. In Figure 3,
the long-running loop is marked with LR. After static analysis, a
check4adapt(progress) adaptation check is inserted at appropriate
safe points where the adaptation could be triggered. A custom
function callOP1 is added, which is responsible for converting
the in-memory data structures to the new representation. All calls
to computeMSTK_ADJMAT are then replaced by callOP1 and the
second parameter of callOP1, startDS, represents the current data
structure representation. When compute-intensive code executes,
at check4adapt(progress), it checks whether the switch is necessary
and if required, the program switches to another representation and
the operation is resumed from the point indicated by progress.

Adaptation policies. To specify adaptation points, programmers
define a transition policy file that defines which representation
should be used for which interval—the system then monitors the
input/workload and triggers adaptation automatically. For example,
to reduce processing time, the programmer specifies graph density
intervals as shown on the left:

/∗ reduce TIME ∗/ or /∗ reduce MEMORY ∗/
ADJLIST [0,2) ADJLIST [0,25)
SHARD [2,67) ADJMAT [25,100]
ADJMAT [67,100]

/∗ HYSTERESIS ∗/
TIME 2

To reduce memory, the programmer specifies intervals as shown
on the right. We also support a hysteresis value (2 seconds in our
example); the system waits for the specified time before switching,
to avoid too frequent representation changes due to frequent changes
in the input characteristics.

Releasing physical memory: When switching representations,
after the conversion is finished, our runtime system releases the
memory holding the old representation via malloc_trim (similar to
application-directed releases [6]). This is particularly important
when adapting in response to memory pressure, e.g., from ADJMAT
to ADJLIST.

4. Static Analysis
We use static analysis for safety (automatically finding points where
it is safe to switch representations) as well as timeliness (respond-
ing faster to adaptation requests). The analysis frees the program-
mer from worrying about adaptation’s safety and timeliness—an
intractable manual job for any non-trivial program.

4.1 Safety Analysis
The safety analysis prevents the computation code from using
mixed data structure representations, as that would be a violation
of type safety. We illustrate this on the MST-K example with an
excerpt of code from function findMinimumEdge. In a nutshell, the
function takes an input graph, sorts its unused edges by calling
createSortedEdgeList and returns the first element of the list. We
show the function and add a comment to assume we perform a data
representation switch from ADJMAT to ADJLIST at line 51:

48 Edge∗ findMinimumEdge(ADJMAT∗ graph)
49 {
50 EdgeList∗ edgeList; // graph in ADJMAT representation
51 // switch ADJMAT to ADJLIST
52 edgeList = createSortedEdgeList(∗graph); // type−unsafe!
53
54 return edgeList[0]−>edge; ...

Clearly, performing a switch at line 51 would violate type safety:
since the current function’s activation record (findMinimumEdge’s
stack layout) is set up to assume ∗graph has type ADJMAT and
createSortedEdgeList takes an ADJMAT argument, performing the
switch would invoke createSortedEdgeList with an ADJLIST argu-
ment, which is a violation of type safety—note that ADJMAT and
ADJLIST differ in size and representation hence have different mem-
ory layouts.

We solve this problem by enforcing representation consistency,
a concept originally used to enforce type safety for live program
updates [24]. In particular, we use static analysis to annotate each
program point with the set ∆ of adaptable types used concretely
in that point’s delimited continuation1 and prohibit switching to
a new type when the representation assumed by the continuation
contains the old type. We now illustrate the analysis by showing the
analysis-inferred ∆’s in the MST-K example.

27 edge = findMinimumEdge(graph);
48 Edge∗ findMinimumEdge(ADJMAT∗ graph)
49 {
50 EdgeList∗ edgeList;
51 ∆ = {ADJMAT, . . .}; cannot switch
52 edgeList = createSortedEdgeList(∗graph);
53 ∆ = {. . .}, ADJMAT 6∈ ∆; OK to switch
54 return edgeList[0]−>edge;
55 }

On line 51, ∆ contains ADJMAT because the code in the contin-
uation (edgeList = createSortedEdgeList(graph)) assumes the ADJMAT
representation. The ∆ on line 53 does not contain ADJMAT as the
remaining code in the delimited continuation does not use the graph,
hence no representation assumptions are made. To construct ∆’s,
we have extended the static analysis in [24] to track concrete uses
of adaptable data types (as they are marked with an __ADAPT_DS).

Safety condition: We can now provide our formal safety con-
dition: a type-safe switch from representation type τ to τ ′ can be
performed at program point n if:

∆n ∩ {τ} = ∅

This check is performed statically. In our example, the condition
∆n ∩ {ADJMAT} = ∅ is satisfied at line 53, hence our compiler
will insert a check4adapt call to trigger a representation change if
needed.

4.2 Improving Timeliness
After annotating the program with the type-safety analysis results
we are left with a set of program points where a switch is safe.
However, a safe switching point does not ensure timeliness, as we
will illustrate shortly.

We first introduce some terminology. We name “IR” the inter-
mediate result of the computation, e.g., the partially-constructed
spanning tree in the MST-K example. We say that the IR is “dirty” if
it has been modified and a representation change will require recom-
puting the changes made to the IR since the last increment—such
recomputations are called “killing” the IR.

The key mechanism we introduce for improving timeliness is to
use contextual effects [19] to figure out if the IR is dirty and should
be killed (in other words, if the last computation increment should
be discarded, or can be used before waiting for the next computation

1 The continuation is delimited by the scope of an adaptive loop, as
check4adapt can break out of the loop, effectively “cutting” the concrete
uses in the current iteration or subsequent iterations.
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increment). In a nutshell, contextual effects are sets that characterize
each function and each program point. For functions, the important
part of contextual effects is a set named ε that captures whether
that function modifies the IR. In MST-K where the IR is stored in
graph, some functions, e.g., addEdgeInTree, do write to the IR, hence
we have {graph} ∈ εaddEdgeInTree; others, e.g., findMinimumEdge, do
not write to the IR, hence {graph} 6∈ εfindMinimumEdge. The ε effects
are chained together to compute, at each program point, a prior
effect α, i.e., the effect of code that has executed so far, and a
future effect ω, i.e., the effect of code that will execute. To explain
how contextual effects help improve timeliness, we will again use
the MST-K example in Figure 3. For the sake of this example, let
us assume that all points in LR’s loop body are type-safe so the
representation can be switched at any point (of course, in practice
only type-safe points will be used to improve timeliness). For each
line in LR’s body, the next code excerpt indicates the prior contextual
effect α (which captures whether the program has modified graph)
and ω (which captures whether the program will modify graph):

26 α = ∅, ω = {graph}
27 edge = findMinimumEdge(graph); // doesn’t modify the IR (graph)
28 α = ∅, ω = {graph}
29 markEdgeUsed(graph,edge);
30 α = {graph}, ω = {graph}
31 ∗progress = addEdgeInTree(graph, edge);
32 α = {graph}, ω = ∅

If we inspect the α and ω annotations on lines 26–32 we see
that it is OK to perform the representation switch at lines 26 or 28
without “killing” the graph, because the code has not yet written to
graph (findMinimumEdge does not change graph). Similarly, it is OK
to perform the switch at line 32 without killing the graph, because
the code has written to the graph and will not perform any further
writes. However, if we perform the switch at line 30, we have to kill
the graph since it is dirty—it has changed and it will change. Hence
we can perform a static check to determine whether the switch
should kill the IR or not; in the MST-K case, {graph} 6∈ αn ∩ ωn.
For this, we have extended the static analysis in [19] to track writes
to the IR.

Timeliness condition: We can now provide our formal timeliness
condition: a type-safe switch can be performed at program point n
without killing the IR if:

{IR} 6∈ αn ∩ ωn

Safety proofs and analysis infrastructure. Our safety condition
is an instance of a property called “con-freeness” while the time-
liness condition is an instance of a property called “transactional
version consistency”. In this paper we just apply these properties
— their formal definitions and proofs of correctness can be found
elsewhere [19, 24]. The static analyses are inter-procedural, flow-
sensitive, though context- and path-insensitive; the pointer analysis
is Steensgaard [23]. The analyses and the source-to-source compiler
are built on top of the Ginseng infrastructure, which can handle
arbitrary C programs [18].

5. Evaluation
We evaluate our approach along multiple dimensions. We show
that it is easy to use (off-the-shelf applications can be converted to
adaptive applications with modest programmer burden), efficient
(applications adapt quickly to changes in input or system charac-
teristics, and their performance is nearly identical to using the best
representation at all times) and imposes minimal time and memory
overhead.

Applications. We used graph algorithms, database operations, and
two real-world applications. The six graph algorithms were: Be-

Table 7: Application size and programming effort.

Program Size Step 3 Step 4
Annotations Other

DS DS LONG_ LOOP
(LOC) (LOC) (input) (IR) RUNNING (LOC)

PP 1,066 565 3 0 3 3 14
MSSP 596 ” 3 0 3 3 13
BC 629 ” 3 1 3 3 15
MST-K 425 ” 3 0 3 3 13
BFS 506 ” 3 0 3 3 10
MST-B 795 ” 3 0 3 3 19
DBMS 2,566 386 3 0 3 3 6
ST 9,027 215 2 0 2 2 0
MEMC 11,722 192 2 0 2 0 216

Table 8: Static analysis results: safe adaptation points discov-
ered (second row) and analysis time (third row).

Program M
SS

P

B
C

M
ST

-K

B
FS

M
ST

-B

PP D
B

M
S

ST M
E

M
C

Safe points 3 4 3 3 4 2 4 4 5
Analysis time (sec.) 0.38 0.39 0.24 0.34 0.41 0.36 0.59 8.1 11

tweenness Centrality (BC) computing the importance of a node in a
network; Breadth First Search (BFS), the classical graph traversal;
Boruvka’s algorithm (MST-B) finds the minimum spanning tree; Pre-
flow Push (PP) finds the maximum flow in a network starting with
each individual node as source; MSSP and MST-K were described
in Sections 2 and 3. The alternative data structure representations
were ADJLIST, ADJMAT and SHARDS. For database operations, we
used the indexed flat file-based DBMS benchmark described in
Section 2, with AVLTREE, BTREE and RBTREE as alternative repre-
sentations. Space Tyrant (ST), an online game server, was described
in Section 2.3; the alternate data structures were LIST and CLIST.
Memcached (MEMC) is a high-performance object caching system
used widely in the construction of high-traffic websites. The stock
Memcached uses hash tables to store the objects in a key-value store;
we name this representation (JH) after Jenkin’s hash; as an alternate
representation we used Cuckoo hashing (CH), a complete redesign
of Memcached by Fan et al. [8, 20] which can deliver more than
double throughput compared to stock Memcached on read-mostly
workloads (≥ 95% reads).

5.1 Effort and Safety of Manual Adaptation
Programming effort. Converting an off-the-shelf application into
an adaptive application is a four-step process:

Step 1. Identify alternate representations, beyond the existing (sin-
gle) representation. These alternate representations may already
exist in the source code though turned off by a compiler #define,
or off-the-shelf (e.g., as in Memcached), or have to be imple-
mented.

Step 2. Run the application with a variety of input/workload char-
acteristics to expose the trade-offs and construct the Adaptation
Policy.

Step 3. Implement alternate representations’ conversion functions.
If a data structure has N different representations, there will be
N*(N-1) conversion functions.

Step 4. Annotate the source code with pragmas, and add support
for incremental computation.

We report this effort in Table 7. We assume the implementation of
alternate representations is available (Step 1) hence we only focus
on the programming effort for adaptation itself (Steps 3 and 4). The
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Table 9: DBMS: throughput of non-adaptive versions and the
adaptive version under input-triggered adaptation; values in
bold represent the best representation for that workload.

Phase 1 2 3 4 5 OverallWorkload Breakup
%INSERT–%SELECT

20–
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50

80–
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da
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e

T
hr
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gh

pu
t BTREE (queries/sec) 5,847 725 384 683 5,151 860

RBTREE (queries/sec)
4,752 897 492 801 4,231 1,033

AVLTREE
(queries/sec) 4,315 920 422 867 3,854 980

Adaptive Throughput
(queries/sec) 5,725 895 465 843 4,977 1,035

Latency (seconds) 1.57 2.12 3.43 5.24
Overhead(queries/sec) 122 25 27 24 175

conversion code size (“Step 3” column in Table 7) depends on the
number of alternate representations. For graph applications, the 6
conversion functions for PP amounted to a total of 565 LOC; we
were able to reuse that conversion code for the rest of the graph
algorithms. The 6 conversion functions for DBMS amounted to 386
LOC, while the 2 conversion functions for ST and MEMC amounted
to 215 and 192 LOC, respectively.

“Step 4” code consists of adaptation annotations and support for
incrementalization. For annotations (the four grouped columns in
Table 7) the input data structure names have to be marked using
__ADAPT_DS; indicating the IR is not required when it has the same
type as the input— this was the case for 8 out of our 9 programs;
for BC only, we used one annotation to indicate the IR (column
5). Identifying the long-running section was straightforward for
all these applications: we had one such scope per data structure
representation (hence 3 per application for graphs and DBMS,
2 per application for ST and MEMC), which we marked with
__ADAPT_LONG_RUNNING (column 6). In each long-running scope
for graph application, DBMS and ST, we found one loop which
needed to be made adaptive, indicated via __ADAPT_LOOP (column
7).

Incrementalization and other changes. This effort is shown in
the last column of Table 7. We modified the compute-intensive
functions, so they could be executed in incrementalized fashion
(the progress variable from Section 3). Increments are “IR units”
to be completed toward the final result. Increments have two
benefits: (1) enabling the runtime system to stop and start the
execution from a particular state and (2) avoiding recomputation
after a transition (note that killing the IR means recomputing that
increment). Increments emerge naturally, e.g., in the Multiple Source
Shortest Path (MSSP) algorithm which computes SSSP from each
vertex to every other vertex, one unit means computing the SSSP
from one vertex; similarly, in the Preflow Push (PP) algorithm which
computes the maximum flow starting from each vertex, one unit
means computing the flow in the network with one vertex as source.
Finally, for Memcached, we had to write 216 LOC to create a new
cache manager which can use either hashing technique (CH or JH);
we believe this effort is acceptable, as we effectively had to merge
two off-the-shelf Memcached implementations.

Note that although some of our test applications are sizable,
only a very small section of code (the main data structure and the
compute-intensive functions) needed to be identified and annotated.
This was straightforward even though we were not familiar with the
code, and we believe it is even easier for developers already familiar
with the code.

Analyses’ effectiveness. Finding safe and timely adaptation points
manually is impractical for any nontrivial program; reasoning about
safety is particularly difficult in the presence of nested loops and
aliasing. Our two analyses eliminate this programmer burden: in

Table 8 we show the number of safe adaptation points discovered
by our analyses. All these points are type-safe; furthermore, the
presence of multiple points increases adaptation timeliness (Sec-
tion 5.5).

Programmer-defined adaptation points and their safety. Our
static analyses find program points where representation switching
is safe, i.e., type-safe and IR-safe. However, since static analyses
must be conservative, we investigated if the programmer could have
found better opportunities for adaptation that were missed by our
analysis. For this, we manually added adaptation points where we
thought it was safe to do so, and then constructed a dynamic analysis
that traced type and IR accesses to check whether the points were
really safe; after the execution, we inspected the trace to find type-
and IR-safety violations. We found 1 additional adaptation point in
MSSP, BFS and PP; and 2 points in BC that were missed by our
static analyses. However, in MST-K (Figure 3), line 30, which we
thought was safe, was actually found IR-unsafe by the dynamic
analysis; of course, line 30 had already been deemed unsafe by the
static analyses.

Analysis time. The “Analysis time” row of Table 8 presents the
sum of static analysis and source-to-source compilation times — at
most 11 seconds for our examined applications.

5.2 Dataset and System Specification
Real-world datasets. For graph applications we used real-world
graphs from the Konect [14] repository. We used snapshots of
MovieLens (evolving graph) from 1999 to 2004; the final snapshot
has 3,979,428 edges representing reviews from 8,286 users for
28,240 movies (1.7% density). For the DBMS application, we used
the data and queries from the BG Benchmark [3] (Section 2). For
Memcached we used YCSB [7] to generate key-value queries. For
Space Tyrant, we used a large map with various degrees of crowding
and a game “controller” which drives game play by adding/removing
users and generating commands for each user.

System specification. All experiments were run on a 6-core ma-
chine (Intel Xeon CPU X5680) with 24GB RAM. This system ran
CentOS 5.11 with kernel version 2.6.18-398.el5. Applications were
compiled with GCC 4.1.2.

5.3 Benefits of Adaptation
DBMS. In this scenario we study how adaptive applications re-
spond to the mismatch between the data structure and workload
(query) characteristics. We chose a workload size of 5,000,000
queries partitioned into 5 equal sets (execution phases) with differ-
ent INSERT–SELECT ratios. The first set has 20% INSERTs–80%
SELECTs, while the remaining sets have ratios 50–50, 80–20, 50–50,
and 20–80, respectively. We start the program with the BTREE repre-
sentation; as the workload varies, the adaptive version detects the
mismatch, and switches to the most appropriate representation.

The results are presented in Table 9. Note that the adaptive
version’s throughput is close to the best non-adaptive version in
each phase, as it adapts to the appropriate version shortly after the
beginning of the phase. The overall throughput is computed by
dividing the total number of queries processed in all 5 phases over
total time taken to complete the phases. The overall throughput
of the adaptive version is 1,035 queries/sec, virtually the same
as the best performing representation (RBTREE at 1,033) and 20%
higher than worst-performing representation (BTREE at 860) for the
entire execution. For the last phase (phase 5), Table 9 contains no
latency value as there was no representation change at the end of the
execution.

To visualize the adaptation, in Figure 4 we show how the
throughput varies over time around the interesting (adaptation)
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Figure 4: DBMS: query throughput before, during, and after
adaptation.

Table 10: Non-adaptive and adaptive execution times under
input-triggered adaptations for MovieLens graph.

Non-adaptive Execution time
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P 2 1,270 800 910 837 43 37
3.4 2,508 1,639 1,415 1,445 35 30

2 2,103 1,344 1,654 1,380 36
Overall 5,881 3,783 3,980 3,668 103

B
C

2 1,197 691 803 727 32 36
3.4 2,399 1,471 1,278 1,311 28 33

2 2,044 1,204 1,419 1,241 37
Overall 5,639 3,366 3,500 3,286 106

M
ST

K 2 430 261 304 298 14 37
3.4 844 638 511 546 19 35

2 771 473 544 504 31
Overall 2,044 1,372 1,358 1,354 104

B
FS

2 1,394 929 1,041 961 22 32
3.4 2,718 1,814 1,695 1,733 17 38

2 2,323 1,678 1,839 1,718 40
Overall 6,436 4,421 4,575 4,421 110

M
ST

B 2 1,203 739 844 778 15 39
3.4 2,375 1,534 1,370 1,404 18 34

2 2,060 1,245 1,548 1,277 32
Overall 5,637 3,518 3,762 3,466 105

PP

2 72 26 36 35 7 9
3.4 138 62 58 64 1 6

2 186 119 163 125 6
Overall 395 207 256 230 21

region between phase 1 and phase 2, i.e., while changing to a
more INSERT-heavy workload. Before the transition, as workload
characteristics change, the throughput drops due to the mismatch
between the characteristics and the current representation. During
the transition, the throughput briefly drops to 0, and then after the
transition to AVLTREE, the throughput stabilizes. The figure reveals
that (1) the mismatch is detected early on during the change in
workload characteristics, and (2) the transition time is low, relative
to the total execution time.

Graph Applications. We use MovieLens as the evolving input
graph. The final (year 2004) snapshot has 1.7% density, thus making
ADJLIST the best representation (lowest memory consumption and
execution time). However, at the end of 2002, the density was
3.4%, thus making SHARDS the most time-efficient representation.
As initial density is less than 2%, the execution starts with ADJLIST
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Figure 5: Graph applications: memory consumption before,
during, and after adaptation for BC.

in the first phase. Then, during execution, the density increases to
3.4% in the second phase, and decreases back to 1.7% in the third
phase.

The result of this experiment is summarized in Table 10: for
each algorithm, we show the maximum density; completion time, in
seconds, for the non-adaptive and adaptive versions; the transition
latency between phases (again, no transition after phase 2); and the
overhead, computed as the difference between phase completion
time for the adaptive version and the non-adaptive version at the
same representation. As we can see, during each phase, the per-
formance of the adaptive version is close to the best performing
representation in that phase as our system selects the most appro-
priate version. The overall execution time for non-adaptive versions
is calculated as the sum of execution times for each phase. For the
adaptive version, the overall execution time is the sum of execution
times for each phase, plus the time required for transitions. The
overall time of the adaptive version is less than the execution times
of the ADJMAT, ADJLIST and SHARDS by an average of 38%, 2%,
and 5% respectively. For the PP application, the execution time of
the adaptive version is 11% more than ADJLIST, and 41% less than
ADJMAT, the worst choice. Hence, the adaptive version proves to be
a better choice than using a single data structure for the entire execu-
tion. In addition, we observe that the maximum transition latency is
just 43 seconds, which represents 1.1% of the total execution time
for MSSP.

To visualize the adaptation, in Figure 5 we show how the memory
consumption of graph applications varies over time. We consider
two scenarios. First, using the 1999 MovieLens graph, we start in
the ADJMAT representation. Since its density is low, a mismatch is
detected and the representation is switched to ADJLIST. Second,
we use a MovieLens snapshot from 2002 when it had 3.4% density.
Under this scenario we start with ADJLIST; our system then switches
to SHARDS, the most time-efficient representation. In both scenarios,
we observe that the mismatch is detected at a very early stage and
the system switches to the most efficient representation.

Space Tyrant. We study how the adaptive version quickly recti-
fies the mismatch between the current crowding level (Section 2.3)
and the current data structure. In a real-world gameplay users join,
play and leave the game. We used a controller which emulates
this scenario and controlled the number of players in the game,
thus maintaining the crowding value. We started the game with 1%
crowding and CLIST representation; after 10 seconds the controller
increases the crowding to 10%; after 20 seconds the controller re-
moves players to bring crowding back to 1%. The results of this
experiment are summarized in Table 11: for each time interval, we
show the crowding range; total number of commands executed; the
transition latency between intervals (no latency from 1 to 10 sec-
onds as there was no transition); and the overhead, computed as the
difference between the average throughput for the adaptive version
and the best non-adaptive version. We can see that, in two out of
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Table 11: Space Tyrant: throughput under input-triggered
adaptation; values in bold represent the best representation for
that phase; units for throughput and overhead are thousand
commands/sec.

Time 1-10 10-20 20-30 OverallCrowding 1% 1-10% 10-1%
Non-Adaptive Throughput
(Kcmd/s)

LIST 2,551 1,388 1,278 1,739
CLIST 4,975 1,958 1,849 2,927

Adaptive Throughput (Kcmd/s) 4,970 2,241 1,860 3,024
Latency (seconds) 0.132 0.206
Overhead (Kcmd/s) 5
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Figure 6: Space Tyrant: throughput of the adaptive version.

three time periods, the performance of the adaptive version is better
than the non-adaptive version, since there is a mismatch in that time
period. In the first period, from 0 to 10 seconds, there was no transi-
tion required, since the controller maintained 1% crowding. The low
overhead incurred during this time period, (5,000 commands/second,
i.e., 0.01%), indicates the efficiency of the adaptive version running
with the same representation as the best non-adaptive version. In
the second and third time periods, the adaptive version has better
performance, since there was a mismatch between the crowding
value and its corresponding best representation, hence the overhead
is subsumed by increased performance due to switching. The overall
throughput is computed by dividing the total number of commands
executed in all 3 time periods by 30 seconds. Overall, the throughput
of the adaptive version is 3.18% better than CLIST and 42% better
than LIST.

To visualize the adaptation, in Figure 6 we show how the
throughput varies during game play. Before the first transition, the
throughput is decreasing as crowding is increasing from 1% to
10%. When it crosses 8%, the adaptation logic quickly detects the
mismatch, and triggers the transition from CLIST to LIST. Similarly,
between seconds 23 and 24, the adaptation logic detects the change
in crowding, and triggers the change from LIST to CLIST.

Memcached. This application is a high-performance object cache
used by sites such as YouTube, Facebook, Twitter, and Wikipedia
[17]. We considered two different hashing techniques as alternate
representations: Jenkin’s hash (JH) used in stock Memcached, and
Cuckoo hashing (CH) used in its MemC3 variant [8, 20]. Atikoglu et
al. [2] have analyzed Memcached use at Facebook, and found that
the distribution of request type ratios (GET:SET) range from 30:1
to 8:37. JH has faster SETs and slower GETs than CH [8, 20]. We
studied the behavior of Memcached using both representations on
workloads with fixed size (10 million) and found that JH is the better
representation when the GET percentage is below 44% while CH is
the better representation above 44%.

To realize the benefits of adaptation, we used YCSB [7] to gener-
ate 300 million queries, in three phases of 100 million. The SET–GET
split is 70%–30% in the first phase, 30%–70% in the second phase,

and 70%–30% in the third phase. Table 12 summarizes the results.
For each phase, we show the workload characteristics; throughput
for non-adaptive and adaptive versions; the transition latency after
phases 1 and 2 (no latency for phase 3 since there was no transition).
The table shows that during each phase the performance of the non-
adaptive version is close to the best-performing representation in the
phase, as our system quickly detects the workload characteristics and
switches to the best-performing representation. The overall through-
put is computed by dividing the total number of queries processed
in all 3 phases over total completion time. The overall throughput of
the adaptive version is 2.58% higher than JH and 6.45% higher than
CH. The overhead is subsumed by the benefits of adapting to the best
hashing technique in each phase; these findings clearly show the
benefit of adaptation. Figure 7 shows the throughput of the adaptive
version: before, during, and after the transition between phase 1
and phase 2. Before the transition the throughput drops due to rep-
resentation mismatch. During the transition, the throughput drops
to around 30,000 queries per second, as the transfer of key-values
from one hash to another takes place. After the transition to CH, the
throughput increases again. We conclude the following from this
figure: first, the mismatch is detected early during the change in
workload characteristics; second, although the throughput decreases
during the transition, transition time is low compared to the total
execution time; third, there is significant performance improvement
after the transition.

Table 12: Memcached: throughput under input-triggered adap-
tation; values in bold represent the best representation for
that phase; units for throughput and overhead are million
queries/sec.

Phase 1 2 3 OverallWorkload Breakup (%GET–%SET) 30–70 70–30 30–70
Non-Adaptive Throughput
(Mqueries/s)

JH 1.65 1.27 1.67 1.51
CH 0.95 1.86 0.95 1.45

Adaptive Throughput (Mqueries/s) 1.45 1.59 1.64 1.55
Latency (seconds) 0.001 0.001
Overhead (Mqueries/s) 0.25 0.27 0.03
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Figure 7: Memcached: throughput before, during and after
transition.

5.4 Overhead of our Approach
The superior performance of the adaptive version is in part achieved
because the overhead of our approach is low. The overhead of
adaptation has two components: the overhead imposed by the
runtime system; and the overhead of switching between the data
structure representations.

Runtime overhead. We measured the overhead of the runtime sys-
tem as follows. For graph applications, we computed the difference
in execution time between the adaptive version and the non-adaptive
version for the same data structure in the respective execution phase;
the sum of the overheads in each phase gives the execution overhead
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Table 13: Conversion overhead.

Application Conversion time Memory
overhead (seconds) overhead (MB)

min max min max
Graph 3.65 5.84 0.35 30.12
DBMS 4.25 6.54 7.62 7.62

Space Tyrant 2.84 2.84 0 0
Memcached 3.16 3.82 0.07 0.07

of the runtime system for a particular graph application. For DBMS,
ST, and MEMC, we found the difference in throughput between the
adaptive and non-adaptive versions executing with the same repre-
sentation in the corresponding phase; the average of the overhead
in each phase gives the execution overhead. We note from Table 9
(last row) that the DBMS overhead imposed by our system is on
average 4% of the throughput in each phase. Similarly, Table 10
(last column) shows that for all graph applications, the execution
time overhead imposed by our runtime system is on average 5.2%
of the total execution time. Memcached has higher overhead (15%)
than other applications, as the mismatch check is performed at the
end of every query. The memory overhead of the runtime system
itself ranges between 9 to 23 KB, which is negligible compared to
the memory used by the rest of the application.

Conversion overhead. We measured the time and memory over-
heads incurred during representation changes. For graph applica-
tions, we used BC running on MovieLens graph’s first snapshot
(1.7% density). For DBMS, we used a workload of 5,000,000 queries
with 50% INSERTs and 50% SELECTs with 1,000 initial records in
the database. For MEMC we used 100 million queries, 30% GETs
and 70% SETs. For ST, we used the same game play as for measuring
the benefits of adaptation. The memory overhead is the additional
memory required to carry out the transition between data structures.
The time overhead is the duration of the conversion. In Table 13 we
show the minimum and maximum time/memory overheads across
all adaptations. The results show that conversion time is approxi-
mately 1% of the total execution time. We also infer that although
there is a memory spike (at most 30.12 MB) for some conversion
scenarios, it lasts for a short time (less than 2% of total execution
time). The additional memory required to handle transition for Space
Tyrant is zero, as there was no additional data structure required to
carry out the transition.

5.5 Timeliness Improvements due to Static Analysis
To quantify the benefits of the timeliness-improving static analysis,
we ran all the benchmarks as follows: all start in the wrong repre-
sentation, so an adaptation will be triggered when deemed safe. We
measured response time as the difference between the time the input
monitor has signaled an adaptation and the time when the program
reaches a safe adaptation point. We performed this experiment in
two settings: first, the program with the safety analysis enabled and
a single adaptation point in the main loop; second, using our normal
compilation scheme, with both the safety and timeliness analyses
enabled, hence the compiler could discover additional adaptation
points. We present the average and maximum (worst-case) response
times in Table 14. On average, the timeliness analysis reduces re-
sponse time by 45%. For Space Tyrant, Memcached and DBMS,
(the “Others” column) this benefit is less apparent since adaptation
can occur at the end of each query. For graph algorithms, however,
where a long-running block consists of several compute-intensive
statements, the benefit is clear, e.g., in one MST-B scenario, the re-
sponse time without the timeliness analysis was 43.17 seconds while

Table 14: Response time without/with timeliness analysis.

Analysis Response time (sec.)
MSSP BC MST-K BFS MST-B PP Others

Safety avg. 6.32 2.17 3.62 3.57 4.52 2.18 <0.001
Only max 13.87 11.43 8.35 7.42 43.17 4.21 <0.001
Safety+ avg. 4.51 1.23 2.17 2.01 1.13 0.57 <0.001

Timeliness max 5.11 5.72 3.56 2.77 6.41 1.02 <0.001

with the analysis it was just 0.57 seconds, out of a total execution
time of 874 seconds.

6. Related Work
Our prior work used manual switching between two data structures
on small-scale graph algorithms [15]. Therefore it lacked static anal-
ysis and compilation, which imposes high programming burden
(programmers must control adaptation timing and data transforma-
tions), does not guarantee safety, and does not attempt to increase
timeliness.

Brainy [9] profiles applications using alternative C++ STL data
structures, to find the best data structure implementation for a
certain input on a certain architecture. Chameleon [22] collects JVM
profiling information on Java collections use, and uses a set of rules
to find optimization opportunities (e.g., use ArrayList instead of
LinkedList when get()s are frequent). Based on profiling results,
Chameleon can recommend and implement solutions in the next
run. These approaches are offline, hence do not support adaptation
when input characteristics change across runs, or when available
resources change during a run.

CoCo [28] allows Java container implementations to be switched
at runtime depending on predefined conditions (usually container
size). Programmers must identify abstraction and concretization
operations; the compiler generates objects to profile and replace
containers; the runtime system (JVM) effects the on-the-fly trans-
fer between containers. We aimed to avoid manual identification
of abstraction and concretization operations, because it is tedious,
error-prone and discourages programmers from using off-the-shelf
code [24]. Second, CoCo can replace containers that have a stan-
dard, albeit narrow interface: ADD or GET, while we allow general
replacement of data structures and their associated implementa-
tion, with no interface constraints. Third, CoCo does not consider
adaptation for space or the time-space trade-off.

PetaBricks [1] combines language, compiler and runtime support
to specify HPC computations as sequences of rules (code regions
and their input/output). The compiler generates legal rule com-
positions while the runtime system permits sequential or parallel
tasks. An autotuner finds optimal algorithms and decompositions
on a certain platform and for a certain input size. PetaBricks offers
more principled support for region decomposition and region depen-
dencies, but existing implementations have to undergo significant
effort to be converted to PetaBricks programs, whereas we target
off-the-shelf programs. Our approach offers algorithmic and data
structure choice: the programmer just specifies alternate implemen-
tations while decisions regarding data structure selection are made
on-the-fly (autotuning is not required). PetaBricks checks consis-
tency dynamically by observing the output, whereas we enforce
consistency statically.

Other compiler-enabled adaptations include altering an appli-
cation’s contentiousness [25, 26] so it can be colocated with other
applications without interfering with their performance; and data
spreading, a self-adaptation that permits application speedups by
using more cache when available [10]. Runtime-enabled adapta-
tions have mainly focused on co-locating applications that have
complementary resource needs so they can run together with mini-
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mal interference [27]; or managing contention, guided by last level
shared cache and lock contention [4, 5, 12, 13, 21, 29].

7. Conclusion
We show that, for data-intensive applications, the best choice of main
data structure depends on input characteristics, memory availability,
and operations being performed on the data structure. Since a
fixed, compile-time choice of data structure is not appropriate, we
introduce an approach for developing adaptive applications that
dynamically switch between data structures to suit the running
conditions. Our experience with a variety of applications shows that
static analysis is highly effective at reducing the manual burden for
locating safe and timely adaptation points. Experiments demonstrate
that our approach allows applications to adapt and switch to the best
representation quickly, with little runtime and memory overhead.
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