
TCP: Tag Correlating Prefetchers

Zhigang Hu
T.J. Watson Research Center

IBM Corporation
zhigangh@us.ibm.com

Margaret Martonosi
Dept. of Electrical Eng.

Princeton University
mrm@ee.princeton.edu

Stefanos Kaxiras
Comm. Sys. and Software

Agere Systems
kaxiras@agere.com

Abstract
Although caches for decades have been the backbone of

the memory system, the speed gap between CPU and main
memory suggests their augmentation with prefetching mecha-
nisms. Recently, sophisticated hardware correlating prefetch-
ing mechanisms have been proposed, in some cases coupled
with some form of dead-block prediction. In many proposals,
however, correlating prefetchers demand a significant invest-
ment in hardware.

In this paper we show that correlating prefetchers that
work with tags instead of cache-line addresses are signifi-
cantly more resource-efficient, providing equal or better per-
formance than previous proposals. We support this claim by
showing that per-set tag sequences exhibit highly repetitive
patterns both within a set and across different sets. Because
a single tag sequence can capture multiple address sequences
spread over different cache sets, significant space savings can
be achieved. We propose a tag-based prefetcher called a Tag
Correlating Prefetcher (TCP). Even with very small history
tables, TCP outperforms address-based correlating prefetch-
ers many times larger. In addition, we show that such a
prefetcher can yield most of its performance benefits if placed
at the L2 level of an aggressive out-of-order processor. Only if
one wants prefetching all the way up to L1, is dead-block pre-
diction required. Finally, we draw parallels between the two-
level structure of TCP and similar structures for branch pre-
diction mechanisms; these parallels raise interesting oppor-
tunities for improving correlating memory prefetchers by har-
nessing lessons already learned for correlating branch pre-
dictors.

1 Introduction

With the widening speed gap between processor and main
memory, memory performance has become a major bottle-
neck for current microprocessors. To address this bottleneck,
computer architects have mainly relied on fast on-chip caches.
However, due to latency, power, and transistor budget con-
straints, on-chip cache sizes are not able to keep up with the
growing data requirements of typical application programs,
leaving many programs suffering high cache miss rates and
subsequent performance degradation.

Aside from efforts to increase cache capacity or optimize
cache organization, many architects have turned to prefetch-
ing mechanisms. Prefetching works by predicting what data
will be required by the processor in the future and fetching
them into caches a priori. Prefetching is somewhat similar to
branch prediction, where addresses of to-be-executed instruc-
tions are predicted and associated instructions pre-loaded into
the processor core. As in branch predictors, prefetching can

be initiated in either hardware [2, 5, 8, 9, 10, 12, 17, 19] or
software [13, 14, 15, 16]. Compared to software prefetching,
hardware prefetchers have the advantage of transparency and
run-time information availability. Due to the lack of program
semantic information, however, many hardware prefetchers
have relied on capturing specific recurring patterns observed
in memory reference streams. For example, stride prefetch-
ers [2] target load instructions that stride through the ad-
dress space. Stream buffers [10] attempt to capture reference
streams formed by consecutive cache lines.

Correlation-based prefetching [5, 8, 9, 12, 19] is a more
general prefetching scheme, attempting to exploit any corre-
lation between a future memory reference and past memory
behavior, including memory reference streams, load instruc-
tion addresses, and branch history. A common drawback in
previous proposals on correlation-based prefetching is the rel-
atively large size of their correlation tables, often 1-2 MB
[9, 12]. These size requirements are comparable to current
on-chip L2 caches and therefore bring up concerns about la-
tency, power, and transistor budget overhead. Moreover, some
prefetchers require instruction addresses, in addition to ad-
dress traces. Passing information about instructions from the
processor core to prefetchers complicates the processor de-
sign.

The large table sizes of these correlation prefetchers are
fundamentally necessitated by the fact that programs refer-
ence many addresses, and thus many items will need to be
tracked and correlated. In this paper we show that tag-based
correlation prefetching can be done effectively and more cost-
efficiently than prior address-based schemes. We follow a se-
quence of steps to establish this claim:

� First, we show that L1 cache tags exhibit strong regular-
ity. This also reiterates the well-known phenomenon of
locality at the tag and page level [1, 11, 18].

� Second, we show that tag sequences, the necessary ingre-
dient for tag correlating prefetching, are highly repetitive
and thus form a solid basis for predictions.

� Third, we show that a single tag sequence covers multiple
address sequences that would necessitate distinct entries
in an address correlating prefetcher.

� Finally, we show with an example design that a tag cor-
relating prefetcher can reconstruct prefetching addresses
with the same accuracy of an address-based prefetcher
many orders of magnitude larger. Specifically, we pro-
pose a small, simple, stand alone, correlation-based
prefetcher which outperforms previous proposals, requir-
ing only few kilobytes of storage. This prefetcher, called

1

a Tag Correlating Prefetcher (TCP), keeps track of per-
cache-set tag sequences and exploits recurring tag corre-
lation patterns for prediction.

Another important contribution of our paper is to investi-
gate the placement of such a prefetcher. In general, we pro-
pose the TCP to be positioned between the L1 and the L2 data
caches. There it can observe miss address streams from the
L1 data cache and issue prefetches to the L2 data cache. The
prefetches only update the L2 data cache, and therefore do not
disrupt the L1 data cache. This position is where we get the
most benefit for the least disturbance to the overall design.

The TCP has a two-level structure: The first level table
stores the tag history at each cache set, while the second level
table tracks tag correlation patterns. This structure closely
resembles the well-known two-level branch predictors [22].
This similarity is important; potentially TCP can benefit from
the large body of mature research on branch predictors.

Using a cycle-accurate simulation of a wide-issue out-of-
order superscalar processor and the whole SPEC2000 bench-
mark suite, we show that a tag correlating prefetcher with a
relatively small 8KB history table, achieves a 14% perfor-
mance improvement over the whole SPEC2000 benchmark
suite. This outperforms a previous proposal with 2MB ta-
ble, which is based on correlations of both addresses and PC
traces. The basic TCP prefetches only up to the L2 level, for
some benchmarks, further improvements are possible by in-
corporating an accurate dead block predictor and prefetching
into L1.

The rest of the paper is organized as follows. Section 2
introduces the experimental setup used in the paper. Sec-
tion 3 describes the recurring behavior of single cache tags
and tag sequences, which motivates tag correlating prefetch-
ers. Section 4 details the structure and operations of tag cor-
relating prefetchers, while Section 5 gives simulation results
to demonstrate the effectiveness of TCP. In Section 6, some
design issues related to TCP are discussed and several direc-
tions for future work are outlined. In Section 7 we discuss the
related work. Finally, Section 8 offers our conclusions.

2 Simulation Methodology

To evaluate our proposals, we use a modified version of
Simplescalar 3.0 [3, 4] to simulate an aggressive 8-issue out-
of-order processor. The main processor and memory hier-
archy parameters are shown in Table 1. Because contention
can have important influence on performance, we have incor-
porated a simulator modification that accurately models con-
tention at the L1/L2 and memory buses [12].

We evaluate our results using the SPEC CPU2000 bench-
mark suite [21]. The benchmarks are compiled for the Alpha
instruction set using the Compaq Alpha compiler with SPEC
peak settings. For each program, we skip the first 1 billion
instructions to avoid unrepresentative behavior at the begin-
ning of the program’s execution. We then simulate 2 billion
instructions using the reference input set. We include some
overview statistics here for background. Figure 1 shows how
much the performance (IPC) of each benchmark would im-
prove if all accesses to the L2 data cache are cache hits. This
is the target we aim for in our memory optimizations. The
programs are sorted from left to right according to the amount
they would speed up with an ideal L2 data cache. Starting

Processor Core
Clock rate 2GHZ
Instruction Window 128-RUU, 128-LSQ
Issue width 8 instructions per cycle
Functional Units 8 IntALU,3 IntMult/Div,

6 FPALU,2 FPMult/Div,
4 Load/Store Units

Memory Hierarchy
L1 Dcache Size 32KB, 1-way, 32B blocks, 64 MSHRs
L1 Icache Size 32KB, 4-way, 32B blocks
L1/L2 bus 32-byte wide, 2GHZ
L2 I/D each 1MB, 4-way LRU,

64B blocks,12-cycle latency
Memory Latency 70 cycles

Table 1: Configuration of Simulated Processor

0%

50%

100%

150%

200%

250%

300%

350%

400%

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

IP
C

im
p

ro
ve

m
en

t
w

it
h

id
ea

lL
2

d
at

a
ca

ch
e

(%
)

Figure 1: Potential IPC improvement with an ideal L2 data cache for
SPEC2000 benchmarks.

from the next section, we will present simulation results ac-
cording to this benchmark order.

3 The Recurring Behavior of Cache Tags and
Cache Tag Sequences

In this section, we examine the behavior of single cache
tags, and then expand it to tag sequences in each cache set.
The patterns we observe in this section will be exploited in
later sections to build effective hardware prefetchers.

3.1 The Behavior of Cache Tags

The locality of memory references is well-known: pro-
grams tend to access addresses that match or are close to
previously-accessed addresses. Traditionally memory refer-
ence locality has been interpreted in terms of complete ad-
dresses. Since cache tags are formed by the high order bits
of memory addresses, intuitively the rule of locality should
also apply to cache tags. (Note that locality of tags are in ac-
cordance with locality found for virtual pages [1] and TLB
[11, 18]). In the following paragraphs we further formalize
the locality of tags, with formula “A ! B” representing the
relationship that “if A appeared in the recent past, then B will
likely appear in the near future”.

First, temporal locality states that recently re-accessed ad-
dresses are likely to be accessed in the near future. When
re-references to an address occur, the corresponding tag and
index will also re-appear. So temporal locality indicates that
cache tags tend to recur within the same cache set. This line

2

of thought can be represented by the following formula.
A! A

) tag(A)! tag(A) and index(A)! index(A)
Second, spatial locality says that items whose addresses are

near each other tend to be referenced close together in time.
This correlation can be formalized as follows:

A! A+ Æ
Depending on the size of Æ, three situations could occur:

1. tag(A) = tag(A+Æ) and index(A) = index(A+Æ).
This happens when Æ is so small that A and A + Æ re-
main in the same cache line. In this situation tag(A)
re-appears in the same set, accompanying the occurrence
of A+ Æ.

2. tag(A) = tag(A+ Æ) but index(A) 6= index(A+ Æ).
This happens if Æ is big enough to change the index but
not enough to affect the tag. In this situation tag(A) re-
appears in another cache set when A+ Æ is referenced.

3. tag(A) 6= tag(A+ Æ).
This happens if Æ is big enough to change the tag. In
this situation tag(A) will not re-appear when A + Æ is
referenced.

Spatial locality typically refers to two addresses that are
near each other, therefore Æ is usually small enough so that the
third situation rarely occurs. Combining situation 1 and 2, we
can interpret spatial locality as: “cache tags tend to re-appear
either in the same cache set, or in other cache sets.” This
interpretation also applies to temporal locality, where cache
tags recur only in the same cache set. Thus, for both temporal
and spatial locality:

A! A or A! A+ Æ
) tag(A)! tag(A)

To confirm that cache tags do exhibit recurring behavior,
we profiled the SPEC2000 benchmark suite and recorded the
tag access history, both within and across cache sets. Note
that we only track miss address traces from the L1 data cache:
tags corresponding to cache hits are not counted in the pro-
filing. Since cache hits are all instances of tag recurrences,
the tag repetition in the miss address trace represents a lower
bound on the degree of repetition that would be seen in a full
reference trace. We use miss traces in our study because they
are much more amenable for the hardware we propose in Sec-
tion 4.

The top graph of Figure 2 shows the number (log scale)
of unique cache tags in the miss streams of a 32 KB direct-
mapped L1 data cache. The graph on the bottom gives the av-
erage number of times each tag recurs. Taking the art bench-
mark as an example, it has only 98 unique tags, but on average
each tag re-appears about 3 million times in the miss stream.
This means that art actually misses repeatedly on a very small
set of tags, indicating a moderate history table would capture
the whole set of tags. Since each 32 KB address range shares a
unique tag in our experiments (see the L1 cache configuration
in Table 1), the number of unique tags roughly indicates the
size of the program working set: benchmarks with the largest
working sets are apsi, gap, wupwise, lucas, applu, and swim.
The bottom graph shows that tags are highly repetitive, often
recurring thousands of times.

Figure 3 gives corresponding results for complete ad-
dresses. As expected, the number of unique addresses is much

1

10

100

1000

10000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p#
u

n
iq

u
e

ta
g

s
fo

u
n

d
in

th
e

si
m

u
la

ti
o

n
p

er
io

d

1

10

100

1000

10000

100000

1000000

10000000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#t
im

es
ea

ch
ta

g
re

-a
p

p
ea

r

Figure 2: Number of unique tags (top) and average number of times
each tag appears (bottom) in the miss streams of a 32KB direct-
mapped L1 data cache for SPEC2000 benchmarks. Both graphs are
in log scale. Benchmarks are ordered from left to right according to
their performance potential with an ideal L2 data cache.

larger than that of unique tags: typically 2-3 orders of multi-
tude more. Nevertheless, the number of unique tags correlates
well with the number of unique addresses: programs with
the most unique addresses, such as apsi, gap, wupwise, lu-
cas, applu, and swim, also have the largest number of unique
tags. These benchmarks would likely stress both tag corre-
lating prefetchers and address correlating prefetchers. On the
other hand, addresses recur much less frequently than tags.
Because there are fewer unique tags than addresses, history
tables for tags can be much smaller than history tables for ad-
dresses. Because tags recur more frequently than addresses,
each tag history entry has more potential reuse, increasing the
effectiveness of each tag history entry.

A key difference between tags and addresses is that a tag
can appear in different cache sets while an address is confined
to one set. Therefore, the number of recurrences in the bottom
graph of Figure 2 could result from both intra-set and inter-set
recurrences. If a tag re-appears 100 times, it could be that it
shows up in 10 cache sets, and re-appears 10 times in each
cache set it has resided in. It could also be that it appears in
only 1 cache set, but re-appears 100 times in that cache set, or
vice versa. To separate these cases, we show on the top of Fig-
ure 4 the average number of sets each cache tag touches and
on the bottom the average number of times each tag appears
in each set it touches. Based on the previous analysis on local-
ity, the top graph roughly indicates degree of spatial locality

3

1

10

100

1000

10000

100000

1000000

10000000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#
u

n
iq

u
e

ad
d

re
ss

es
in

th
e

si
m

u
la

ti
o

n
p

er
io

d

1

10

100

1000

10000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#
ti

m
es

ea
ch

ad
d

re
ss

re
-a

p
p

ea
r

Figure 3: Number of unique addresses (top) and average number
of times each address appears (bottom) for SPEC2000 benchmarks.
Both graphs are in log scale. Note the difference in y-axis scales
compared to Figure 2.

of the programs, while the bottom graph correlates to tempo-
ral locality. In the top graph, the upper limit is 1024, which is
the total number of cache sets in our L1 data cache (See Table
1). Many benchmarks, such as gzip, apsi, wupwise, lucas and
swim, are near this upper limit. In these benchmarks each tag
can be found in almost every set of the L1 data cache, indicat-
ing a high degree of spatial locality. On the other hand, tags in
these benchmarks repeat rather infrequently within each sets
they touched: only a few 10s of times, indicating a low de-
gree of temporal locality. In benchmarks such as fma3d and
eon, each tag touches only a small number of cache sets, but
it repeats thousands of times in each set, indicating that these
benchmarks have good temporal locality but relatively poor
spatial locality.

Overall, we find that for SPEC2000 benchmarks, on
average (geometric mean) each benchmark has 576 unique
tags: each tag spreads into 609 cache sets, and recurs 94 times
within each cache set it touches. These numbers confirm our
earlier interpretation of the rule of locality: that cache tags
tend to re-appear either in the same set, or across different
sets. This behavior can be summarized as the following
formula:

tag(A)! tag(A)

0

128

256

384

512

640

768

896

1024

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

av
er

ag
e

#s
et

s
ea

ch
ta

g
ap

p
ea

rs
in

1

10

100

1000

10000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

av
er

ag
e

#t
im

es
a

ta
g

ap
p

ea
rs

w
it

h
in

a
si

n
g

le
se

t

Figure 4: Average number of sets in which a cache tag appears (top)
and average number of times a cache tag appears in a single set (bot-
tom) for SPEC2000 benchmarks.

3.2 The Behavior of Cache Tag Sequences

In the previous section, we examined the recurrence behav-
ior of single cache tags. Tags can be viewed as per-cache-set
tag sequences, where the sequence length is 1. In this section
we investigate the behavior of longer tag sequences. We fo-
cus on sequence lengths of 3 in our experiments. Targeting
tag sequences at each cache set has many potential benefits
for a prefetcher. First, when predicting the next tag based
on previous tags in the same cache set, the index is implic-
itly designated so requires no prediction or tracking. Second,
the time interval between consecutive misses in a cache set is
typically larger than a memory access latency, providing suffi-
cient time for a timely prefetching. Finally, the characteristics
of per-cache-set sequences, as will be explored in this section,
enable effective and hardware-efficient predictions of future
tags.

As in the previous section, we start by measuring the num-
ber of unique sequences. If tag sequences were totally ran-
dom, then the expected number (the upper limit) of three-tag
sequences would be roughly the number of unique tags cubed.
If the correlation between tags is strong, however, each tag
would tend to appear together with some other specific tags.
With correlation, the number of unique three-tag sequences
will be much less than the upper limit. Figure 5 shows the
number of unique three-tag sequences observed in our simu-
lation, as a percentage of the upper limit. In most benchmarks,
the number of unique sequences is much smaller than the up-

4

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

th

re
e-

ta
g

 s
eq

u
en

ce
s

o
b

se
rv

ed
 /

th

re
e-

ta
g

 s
eq

u
en

ce
s

p
o

ss
ib

le

67%30%

Figure 5: Number of three-tag sequences actually observed as
a percentage of total number of possible three-tag sequences for
SPEC2000 benchmarks.

per limit, typically less than 5%. This indicates strong tag
correlations in most benchmarks. In crafty and twolf, the tag
sequences behave quite randomly, so the number of unique
sequences is large. We further note that these results do not
particularly coincide with the application’s memory footprint.
In fact, crafty and twolf access fewer unique tags than most of
the SPEC2000 benchmarks.

The top graph of Figure 6 shows the absolute number of
unique three-tag sequences that appeared in the miss address
streams of a 32 KB direct-mapped L1 data cache. The fma3d
benchmark has the fewest unique three-tag sequences, while
mcf has the most, with more than 7 million unique sequences.
The bottom graph of Figure 6 gives the average number of
times each three-tag sequence recurs. There is a wide variety
among different benchmarks: from just above 10 for bzip2
to over 200,000 for art. In many benchmarks, each three-tag
sequence appears thousands of times, indicating a very repet-
itive behavior that can be exploited by a history-based predic-
tor.

Figure 7 further splits these recurrences into two cate-
gories: intra-set and across-set. The top graph gives the aver-
age number of sets in which each three-tag sequence appears.
For example, in the swim benchmark, on average a tag se-
quence appears in 264 sets, about a quarter of total cache sets.
These results have great impact on the space requirement of
the history table. To illustrate this issue, let us consider two
extremes. At one extreme, consider first if each three-tag se-
quence appears in every cache set, in other words, if each
cache set has the same tag sequence history. Here, we can
use a single table for all cache sets: no per-cache-set table
is required. Sharing one history table among different cache
sets greatly reduces space requirements. At the other extreme,
consider if every three-tag sequence appears in only one set,
so that each set has its own specific sequences. Here, history
from different cache sets cannot be shared: they will simply
contend for space thus leading to a larger capacity require-
ment.

The bottom graph in Figure 7 gives the average number
of times a tag sequence appears within each set. The more
frequently each sequence appears, the more effective it will
be to prefetch based on them. For example, each sequence
in fma3d is re-referenced about 75,000 times. This indicates
that if we store a tag sequence the first time we see them, and

1

10

100

1000

10000

100000

1000000

10000000

100000000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#
u

n
iq

u
e

3-
ta

g
-s

eq
u

en
ce

s
fo

u
n

d
in

th
e

si
m

u
la

ti
o

n
p

er
io

d
1

10

100

1000

10000

100000

1000000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

#t
im

es
ea

ch
3-

ta
g

-s
eq

u
en

ce
ap

p
ea

r

Figure 6: Number of unique three-tag sequences (top) and aver-
age number of times each sequence appears (bottom) for SPEC2000
benchmarks.

always keep it in the history, then potentially it can be reused
thousands of times.

Figure 7 indicates a key difference between tag sequences
and address sequences: a tag sequence can appear in differ-
ent sets while an address sequence can not. In other words,
a tag sequence that appears in different sets implies multiple
different address sequences.

Overall in this section we demonstrated that per-cache-set
tag sequences exhibit recurring behavior: if a tag sequence
occurred in the past, it tends to re-appear in the future, either
in the same cache set, or in other sets. This behavior can be
formulated as follows:

tag(A1); tag(A2); :::; tag(Ak)
! tag(A1); tag(A2); :::; tag(Ak)

4 TCP: Design Overview

In the previous section we described the recurring behavior
of cache tag sequences. There is a strong correlation between
a tag and its preceding tags, and this correlation is highly
repetitive. In this section we describe a predictor that exploits
this repetitive correlation to predict the next tag, according to
previous tags just seen in the miss trace at a cache set. We
name this prefetcher the “tag correlating prefetcher”. We start
by describing the structure of the prefetcher, and then present
simulation results in the next section to show its effectiveness.

Figure 8 depicts the structure of a tag correlating address
predictor. It is organized as a two-level structure, similar to
conventional two-level branch predictors [22]. The first level
table, the Tag History Table (THT), tracks the previous k tags

5

0

32

64

96

128

160

192

224

256

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

av
er

ag
e

#s
et

s
a

th
re

e-
ta

g
-s

eq
u

en
ce

 a
p

p
ea

rs
 in

264

1

10

100

1000

10000

100000

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

pav
er

ag
e

#t
im

es
a

3-
ta

g
-s

eq
u

en
ce

ap
p

ea
rs

in
ea

ch
se

t

Figure 7: Average number of sets a sequence appears in (top) and av-
erage number of times a sequence appears in each set it touches (bot-
tom) for SPEC2000 benchmarks. The upper limit in the top graph is
1024, which is the total number of sets in L1 data cache.

that appeared in the miss trace at each cache set. The second
level table, the Pattern History Table (PHT), stores tag corre-
lation patterns observed in the past.

The THT is indexed by the miss index (the index portion
of current miss address). Each row in the table corresponds
to a set in the L1 data cache. Thus, THT lookup can occur in
parallel with an L1 cache lookup. There are k entries per row
(set); each entry stores a previous tag in order of time. That
is, tag1 is the oldest and tagk is the most recent. THT size,
therefore, is:

(number of sets in d1) � k � sizeof(tag).
The index of the PHT is formed by the tag sequence ob-

tained from the first level table, together with the current miss
tag, and optionally the miss index. Figure 9 shows the in-
dexing scheme that we use for the remainder of this paper.
The higher m bits are taken from (the lower m bits of) a trun-
cated addition (as in [12]) of all tags in the tag sequence, while

tag1 tag2 ... tagktag index offset

miss address:

tag tag'

Tag History Table Pattern History Table (8-way)

indexing
function

Figure 8: Structure of a two-level tag correlating address predictor.

(tag1+ ... + tagk) [1:m] index[1:n]

Figure 9: The indexing scheme of the pattern history table. “in-
dex[1:n]” stands for the lowest n bits from index.

the lower n bits are taken from the miss index. Choosing n
between 0 and 10 achieves a trade off between sharing and
separating history from different cache sets. In the case when
n is 0, all cache sets share the history entries. On the other
hand, when n is 10, which (for our L1 cache) means to use
the full miss index, each cache set has its own private space
for correlation history. Each entry in the PHT has two fields:
tag and tag0. Tag0 is the predicted successor to tag. The
size of the PHT can be calculated using the following for-
mula: (number ofPHT sets)� (ways per PHT set)�2�
sizeof(tag).

Given such a structure, the operation of the TCP prefetcher
consists of two basic functions: update and lookup. We de-
scribe these two operations in more details below, assuming
a cache miss to L1 data cache is just observed. The miss in-
dex (the index part of the miss address) and the miss tag (the
tag part of the miss address) are denoted as missindex and
misstag respectively.

� Update: Update is the operation to refresh the THT and
PHT when new misses occur so that the history informa-
tion stored in these tables is always up-to-date.

1. First, missindex is used to access the THT, and a
tag sequence (tag1; tag2; :::; tagk) is located. This
sequence is updated to (tag2; :::; tagk;misstag),
establishing (tag2; :::; tagk;misstag) as the most
recent tag history in this cach set.

2. Second, tag sequence (tag1; tag2; :::; tagk), com-
bined with missindex (see Figure 9), is used to
index into the PHT and a set (row) in the PHT is
located.

3. Third, among all the entries within the PHT set, the
one tagged with tagk is located.

4. Finally, the tag0 (next tag) field of the entry is up-
dated to misstag. This establishes misstag as the
most up-to-date next tag following the sequence of
(tag1; tag2; :::; tagk).

� Lookup: Lookup is the operation to decide a prefetch ad-
dress based upon the knowledge that the immediate past
tag sequence is (tag2; :::; tagk;misstag) at this cache
set.

1. First, the sequence (tag2; :::; tagk;misstag),
combined with the missindex, is used as the PHT
index to locate a PHT set.

2. Second, from the PHT set, the entry tagged with
misstag is selected and its tag0 field is pre-
dicted as the next tag that follows the tag sequence
(tag2; :::; tagk;misstag).

3. Finally, the predicted next tag tag0, combined
with the current miss index missindex, forms a
complete cache line address and subsequently a
prefetch to this address is issued to L2.

6

CPU

L1

TCP L2 controller

L2

Main memory

L1/L2 bus

L2/main memory bus

Figure 10: Overall system structure with a tag correlating prefetcher.

Since the address predictor requires the miss address
streams, it must be placed after the L1 data cache, as shown
in Figure 10. The predictor can be integrated with the L2 data
cache controller. It observes the miss traces from the L1 data
cache and issues prefetch requests to the L2 data cache. The
L2 first checks whether the target data is already in itself. If
found, the prefetch is completed and no further operation is
required. Otherwise, a request is sent to the main memory to
load the data into L2, but L1 is not updated.

Prefetching all the way up to L1 is more complex because
not only do the benefits increase but also the risks from wrong
prefetches. We discuss this case in a subsequent section.

Having studied the structure and operations of tag correlat-
ing prefetchers, in the next section we present some simula-
tion results to show the effectiveness of TCP prefetchers.

5 Simulation Results

In this section we present simulation results for two con-
figurations of TCP. In both these cases, the tag history ta-
ble (THT) is organized as a 1024-set, direct-mapped struc-
ture, with each set storing 2 previous tags (k = 2 in Figure
8). The two cases differ by their pattern history tables. One
(marked as TCP-8K) has a 8 KB PHT with 256-set, 8-way set
associative and using no bits from the miss index. The other
(marked as TCP-8M) has a 8 MB PHT with 262144-set, 8-
way set associative and using the full miss index. Note that in
both TCPs, each cache set can utilize a maximum of 8KB for
storing history. The difference is that in TCP-8K, this 8KB
storage is shared by all cache sets, while in TCP-8M, it is pri-
vate to each cache set. Because of its size, we do not consider
TCP-8M to be a realistic design point; rather we include it as
an “idealized” view of how no-sequence-sharing affects each
benchmark.

5.1 Basic Results

Figure 11 gives the performance results of TCP-8K and
TCP-8M, compared to a DBCP with a 2 MB correlation his-
tory table. Dead-block correlating prefetcher (DBCP) [12], is
a correlation based prefetcher that correlates the liveness of a
cache line and the next tag with PCs of memory instructions,
in addition to addresses. Note that in [12], a critical miss pre-
dictor [20, 6] is proposed to filter the correlation entries. In
our experiment, this filter is not incorporated in either DBCP
or TCP. In general, the two TCP prefetchers both out-perform
DBCP. On average, DBCP achieves about 7% performance
improvement, while TCP-8K and TCP-8M can achieve about

-20%

0%

20%

40%

60%

80%

100%

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

g
eo

m
ea

n

IP
C

 im
p

ro
ve

m
en

t
(%

)

DBCP-2M TCP-8K TCP-8M
177%

276% 337%

313%

Figure 11: IPC for TCP with 8KB PHT and 8MB PHT vs. DBCP
with 2MB correlation table.

14% and 15% respectively. Comparing TCP-8K and TCP-
8M, we find that sharing history entries across cache sets leads
to lower performance for some benchmarks, such as facerec,
gcc, art, mcf, and ammp. On the other hand, it performs better
for benchmarks like applu, mgrid, and swim. This difference
can be explained by investigating the effect of sharing history
entries between cache sets. For example, in the swim bench-
mark, each tag sequence appears in an average of 264 cache
sets (see Figure 7). On the other hand, each sequence recurs
rather infrequently within each set: an average of 7 times. In
TCP-8K, where all entries are shared across all cache sets,
each entry can be reused about (264 � 7� 1) times. However,
in TCP-8M, since each set has its own storage, each entry
can be reused only (7 � 1) times. Since in swim sharing en-
tries among cache sets is beneficial rather than detrimental,
TCP-8K performs better than TCP-8M. Conversely, for the 5
benchmarks in which TCP-8M is better, each tag sequence is
shared by a much less number of cache sets: in this case the
benefit of sharing history entries is outweighed by the adverse
effect of contention and aliasing between history entries from
different cache sets.

In conventional caches without prefetchers, every L2 ac-
cess is originated from a L1 cache miss, which means an as-
sociated load/store instruction is already stalled. If the L2 ac-
cess hits, the overall latency is �10 cycles, which can usu-
ally be tolerated by an aggressive superscalar out-of-order
core. However, if the L2 access misses, the long latency to
the main memory, which could be hundreds of cycles, will
fill the instruction window up with dependent instructions
and thus stall the whole processor. With a tag correlating
prefetcher, some of the original L2 accesses will be pre-issued
by the prefetcher and thus will hit when accessed. The rest of
the original L2 accesses are not captured by the prefetcher
and are still initiated by L1 cache misses. We name these
two categories of L2 accesses as “prefetched original” and
“non-prefetched original” L2 accesses respectively. In addi-
tion, prefetches could lead to extra L2 accesses, for exam-
ple, when the predicted addresses are never used later. Figure
12 gives the amount of “prefetched original”, “non-prefetched
original”, and “prefetched extra” L2 accesses for SPEC2000
benchmarks with TCP-8K (top) and TCP-8M (bottom), all
normalized to the number of original L2 cache accesses. An
ideal prefetcher would have 100% “prefetched original”, 0%
“non-prefetched original”, and no “prefetched extra” L2 ac-

7

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%
fm

a3
d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

A
s

p
er

ce
n

ta
g

e
o

f
o

ri
g

in
al

 L
2

ac
ce

ss
es

prefetched original non-prefetched original prefetched extra

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

A
s

p
er

ce
n

ta
g

e
o

f
o

ri
g

in
al

 L
2

ac
ce

ss
es

prefetched original non-prefetched original prefetched extra

Figure 12: The amount of the three categories of L2 accesses for
TCP-8K (top) and TCP-8M (bottom). Data is normalized to the num-
ber of original L2 accesses (when no prefetchers are used).
cesses. The prefetcher in the fma3d benchmark satisfies these
requirements, even though the performance potential is small
(recall that benchmarks are ordered from left to right by their
performance potentials with ideal L2 caches). For TCP-8K,
benchmarks like ammp, swim, mgrid, gcc benefit most from
the prefetcher: the “prefetched original” percentages are high
while the extra traffic is relatively light. For TCP-8M, the best
performing benchmarks are ammp, mcf, art, gcc, and facerec.

5.2 Design Variations

The basic results in the previous section focused on two
particular configurations, yet there is still a large design space
left to be explored. This section covers some interesting de-
sign variations.

5.2.1 Varying PHT Configurations

The size of the pattern history table decides how much tag cor-
relation history can be stored. Enlarging the PHT can reduce
the aliasing between different tag patterns and thus improve
the prefetcher effectiveness. The top graph in Figure 13 gives
the performance of SPEC2000 benchmarks using TCPs with
varying PHT sizes. As shown in the graph, when the PHT is
not indexed by the miss index, quadrupling the PHT size from
2KB to 8KB leads to a 6% performance improvement. Fur-
ther increasing the PHT size beyond 8KB has a diminishing
effect. For PHTs indexed with full miss index, the saturating

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

2KB 8KB 32KB 128KB 512KB 2MB 8MB

Size of pattern history table

av
er

ag
e

IP
C

 f
o

r
S

P
E

C
20

00

PHT index using 0 bits from miss index

PHT index using full miss index

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

0 1 2 3

miss index bits in PHT index

av
er

ag
e

IP
C

 f
o

r
S

P
E

C
 2

00
0

Figure 13: Average performance of SPEC2000 with different sizes
of PHT (top) and different indexing schemes of PHT (bottom).

point is near 2 MB. The bottom graph in Figure 13 evaluates
how the number of miss index bits used affects the perfor-
mance of a 8 KB PHT. Using 0 or 1 bit from the miss index
have similar performance, but using more bits will degrade
the performance. As illustrated in Figure 9, using bits from
the miss index essentially divides the PHT into separate sub-
tables, each storing history from a group of cache sets. If the
PHT is already small and the number of index bits is large,
the sub-tables will eventually become too small to track tag
history effectively, leading the performance to degrade.

5.2.2 Prefetching into L1

Basic tag correlating prefetchers only prefetch data up to the
L2 data cache. For the highest performance possible we need
to bring the data as close to the processor as possible, i.e., L1,
in a timely manner. However, this is not a simple proposi-
tion because of the restrictions we face going up the memory
hierarchy. Specifically, capacity, bandwidth, and scheduling
considerations are considerable at that level and if not prop-
erly taken into account can invalidate many of the benefits of
the prefetches, or even worse degrade performance by inter-
fering with other critical data.

Because the L1 is much smaller than the L2, prefetching
the wrong data into it can create significant disruption. In
addition, prefetching the correct data at the wrong time is
equally disruptive. Both these mishaps are not as pronounced
in a large set-associative L2. Furthermore, because for the
SPEC2000 the occupancy of L1-L2 bus is higher than the oc-
cupancy of the L2-memory bus, prefetches into L1 are com-
peting with other accesses. If prefetches are given low priority
on the L1-L2 bus, many of them can be delayed, canceled, su-
perseded by accesses, overflow the outgoing prefetch buffer,
etc. In all these situations the benefit of prefetching is lost.

To address the problem of timely prefetching, we incorpo-
rated a timekeeping dead block predictor from [8]. To address
the second problem, we added an extra L1/L2 bus solely for
prefetching. The result of these enhancements is a hybrid pre-
dictor that works in the following way: after a prediction is
made, the predicted data is prefetched into L2 immediately,

8

-20%

0%

20%

40%

60%

80%

100%

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

IP
C

 im
p

ro
ve

m
en

t
(%

)

TCP-8K Hybrid-8K

314%

272%

Figure 14: IPC for prefetching into L2 (TCP-8K) vs. prefetching
into L1 (Hybrid-8K).

but will update L1 only after the corresponding cache line is
predicted dead. Figure 14 compares the performance of such
a hybrid prefetcher to the base TCP prefetcher. The hybrid
prefetcher further improves performance for gcc, art, applu,
mgrid, swim, and mcf. From [8], we find that the timekeeping
dead block predictor also works best for these benchmarks.
Overall, Figure 14 tells us that, with an aggressive out-of-
order superscalar processor, since the main memory latency
is the major performance bottleneck while the L2 latency is
tolerable, prefetching into L2 would gain the most benefit of
prefetching. Prefetching further into L1 cache is beneficial,
but only when an accurate dead block predictor and sufficient
L1/L2 bandwidth is available.

6 Future Work

Tag correlating prefetchers capture recurring patterns of
multiple-tag sequences in the miss address streams. There
is one particular pattern worth special attention: (per-cache-
set) strided tag sequences. As the name implies, strided tag
sequences refer to the sequences in which the tags exhibit a
constant stride. If strided sequences are common, more space-
efficient designs could be devised for them. Figure 15 gives
the percentage of strided three-tag sequences in SPEC2000
benchmarks. Swim sees the most strided sequences: over
12% of all three-tag sequences are strided. In other bench-
marks, strided sequences are much less frequent, typically
less than 2% of total sequences. Overall, even though per-
cache-set strided sequences are typically infrequent, they do
happen in most benchmarks and even frequent in some bench-
marks. One possible future work is to further investigate
strided and other special sequences and exploit them to im-
prove the performance or hardware-efficiency of tag correlat-
ing prefetchers. Also note that only intra-set strided tag se-
quences are considered here, those strided sequences across
cache set boundary are orthogonal to what we have discussed
here and are an interesting phenomenon that we plan to ex-
plore in future work.

A second avenue for future work concerns the number of
prefetch targets. In [9], Joseph and Grunwald proposed a
Markov prefether that stores multiple targets for each predic-
tion. Such a prefetcher can improve prediction accuracy but
increase the memory traffic since multiple prefetches will be
issued for each prediction. In the design of tag correlating

0%

2%

4%

6%

8%

10%

12%

14%

fm
a3

d

eo
n

eq
u

ak
e

g
zi

p

cr
af

ty

vo
rt

ex

si
xt

ra
ck

p
er

lb
m

k

m
es

a

ap
si

g
al

g
el

g
ap

b
zi

p
2

w
u

p
w

is
e

p
ar

se
r

vp
r

fa
ce

re
c

tw
o

lf

g
cc

lu
ca

s

ar
t

ap
p

lu

m
g

ri
d

sw
im m
cf

am
m

p

%
st

ri
d

ed
3-

ta
g

-s
eq

u
en

ce

Figure 15: Percentage of strided three-tag sequences for SPEC2000
benchmarks.

prefetchers, there is a similar trade-off for storing multiple
targets, which we hope to investigate.

Since not all cache misses affect performance equally, a
critical miss filter may also be useful in future investiga-
tions. Many researchers have tried to identify those misses
that are critical for program performance and devise optimiza-
tions targeting them [20, 6]. Prefetchers can benefit from
such a critical miss predictor in many ways. For example,
only prefetches for critical misses will be issued, so that the
prefetch-induced extra traffic can be reduced. In [12], only
the correlation patterns of critical misses are stored, so that
the space-efficiency can be improved. We expect TCPs also
benefit from a critical miss predictor, something we plan to
explore in future work.

A final direction for future work is to utilize knowledge
from the large body of work on two-level correlation-based
branch predictors. Because of the similarity between the
structure of TCPs and branch predictors, such knowledge
would help to improve the indexing and correlating effective-
ness of TCP.

7 Related Work

Software prefetching, and more generally, compile-time
analysis of memory access behavior, has been studied by
many researchers [7, 13, 14, 15, 16]. Mowry et al. success-
fully predict what data references will likely miss in scien-
tific codes that mainly employ matrices [15]. Ghosh et al.
describe methods for generating and solving equations that
give a detailed representation of cache misses in loop-oriented
scientific code. Such a framework can be utilized to decide
what addresses should be prefetched and when to start the
prefetches. Other work, [13, 14, 16], target pointer-intensive
applications and applications with recursive data structure and
propose to insert compile-time prefetch instructions.

Compared to software prefetching, hardware prefetching
[2, 5, 8, 9, 10, 12, 17, 19] usually requires extra hardware to
track correlations between memory references with previous
memory references and other information, such as memory
instruction addresses and branch history. Baer and Chen pro-
posed a early notion of correlation-based hardware prefetch-
ing for paged virtual-memory systems [1]. They also investi-
gated a prefetching mechanism that captures load instructions
that have constant strides [2]. Jouppi proposed a stream buffer

9

that can be effective when there is a large amount of sequen-
tiality in the reference stream [10]. Charney and Reeves are
the first to propose a generalized correlation-based hardware
prefetching for caches [5]. In their scheme, the prefetcher
is positioned between L1 and L2, and prefetches to L2 only.
Joseph and Grunwald proposed a Markov model for prefetch-
ing and proposed to store multiple targets with each predic-
tion [9]. Lai et al. were the first to propose a hardware pre-
dictor for dead blocks based on both PC traces and previous
memory addresses [12]. They were also the first to propose
prefetching according to per-cache-set memory reference be-
havior. Solihin et al. proposed to use a user level thread for
prefetching and store the correlation history in memory, in-
stead of specific hardware tables [19]. Hu et al. proposed a
general methodology, exploiting time information to analyze,
predict, and optimize memory behavior and applied it to build
a hardware-efficient dead block predictor, which can be used
in a hardware prefetcher [8].

8 Conclusions

This paper began by characterizing the locality and pre-
dictability of tag sequences appearing in the L1 cache miss ad-
dress traces of an aggressive superscalar processor. We have
shown that tags appearing in L1 exhibit strong regularity. This
is a reiteration of the well-known phenomenon of locality,
but one that is particular useful because of the new hardware
structures it suggests. Tag sequences, the necessary ingredient
for tag correlating prefetching, are also highly repetitive and
thus a solid basis for predictions. In particular, we observe
and quantify how tag sequences kept on a per-cache-set basis
can show repetitive patterns that recur not only in that cache
set, but typically in many other sets as well.

These observations suggest first that tag correlations can be
useful for memory prefetch. Second, they also suggest a two-
level approach: tag sequences are tracked from the miss traces
of individual cache sets in a tag history table (THT), but are
made available to all cache sets through a second hardware
structure called a pattern history table (PHT). Together, this
two-level approach comprises our proposed scheme for Tag
Correlating Prefetch (TCP).

By sharing patterns through the PHT, TCP can be very ef-
fective at improving performance even with very small table
sizes. An 8KB TCP offers a 14% performance improvement
for the SPEC2000 benchmark suite, and outperforms previous
proposals that are megabytes in size.

The two-level THT-PHT structure of a tag correlating
prefetcher is quite similar to the correlating tables used in
hardware branch prediction. This paper has explored some
of the indexing and PHT design questions first answered for
branch prediction. We find that most benchmarks benefit from
PHT sharing, although there are some that are better when
each cache set indexes its own pattern histories. Overall, we
feel that the parallels between two-level branch predictors and
TCP are interesting, and also hint that even more performance
improvements may be possible by further exploiting the par-
allels between them.

9 Acknowledgments

We would like to thank An-Chow Lai for insightful discussions
and for providing us with detailed bus models for SimpleScalar.

Martonosi’s research is supported in part by NSF ITR Grant CCR-
0086031, by research support from Intel Corp., and by an IBM Uni-
versity Partnership Award. We also wish to acknowledge the Hel-
lenic Air Force for facilitating one of the authors to work during the
time he served there. Our thanks to the anonymous referees for pro-
viding helpful comments as well.

References

[1] J.-L. Baer and T.-F. Chen. Dynamic Improvements of Locality
in Virtual Memory Systems. IEEE Transactions on Software
Engineering, 1976.

[2] J.-L. Baer and T.-F. Chen. An effective on-chip preloading
scheme to reduce data access penalty. In Proc. Supercomputing
’91, pages 176–186, Nov. 1991.

[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Computer Architecture News, pages 13–25, June
1997.

[4] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Tech. Report TR-
1308, Univ. of Wisconsin-Madison Computer Sciences Dept.,
July 1996.

[5] M. J. Charney and A. P. Reeves. Generalized correlation-based
hardware prefetching. Technical Report EE-CEG-95-1, School
of Electrical Engineering, Cornell University, 1995.

[6] B. Fields, S. Rubin, and R. Bodik. Focusing Processor Policies
via Critical-Path Prediction. In Proc. 28th Annual Intl. Symp.
on Computer Architecture, July 2001.

[7] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations:
An analytical representation of cache misses. In International
Conference on Supercomputing, pages 317–324, 1997.

[8] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the
Memory System: Predicting and Optimizing Memory Behav-
ior. In Proc. 29th Annual Intl. Symp. on Computer Architec-
ture, May 2002.

[9] D. Joseph and D. Grunwald. Prefetching using markov predic-
tors. In 24th Annual International Symposium on Computer
Architecture, June 1997.

[10] N. Jouppi. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. In Proc. ISCA-17, May 1990.

[11] G. B. Kandiraju and A. Sivasubramaniam. Going the Distance
for TLB Prefetching: An Application-driven Study. In Proc.
29th Annual Intl. Symp. on Computer Architecture, May 2002.

[12] A.-C. Lai, C. Fide, and B. Falsafi. Dead-Block Prediction and
Dead-Block Correlating Prefetchers. In Proc. 28th Annual Intl.
Symp. on Computer Architecture, July 2001.

[13] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roedi-
ger. Spaid: Software prefetching in pointer and call-intensive
environments. In Proc. Micro-28, pages 231–236, 1995.

[14] C.-K. Luk and T. C. Mowry. Compiler based prefetching
for recursive data structures. In Proceedings of the 7th Int’l
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), pages 222–233, Oct.
1996.

[15] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation
of a compiler algorithm for prefetching. In Proc. ASPLOS-V,
pages 62–73, Oct. 1992.

[16] T. Ozawa, Y. Kimura, and S. Nishizaki. Cache miss heuristics
and preloading techniques for general-purpose programs. In
Proc. Micro-28, Dec. 1995.

[17] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based
prefetching for linked data structures. In Proc. ASPLOS-VIII,
Oct. 1998.

[18] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-based
TLB preloading. In Proc. ISCA-27, June 2000.

[19] Y. Solihin, J. Lee, and J. Torrellas. Using a User-Level Mem-
ory Thread for Correlation Prefetching. In Proc. 29th Annual
Intl. Symp. on Computer Architecture, May 2002.

[20] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson. Locality
vs. Criticality. In Proc. 28th Annual Intl. Symp. on Computer
Architecture, July 2001.

[21] The Standard Performance Evaluation Corporation. WWW
Site. http://www.spec.org, Dec. 2000.

[22] T. N. Yeh and Y. Patt. A Comparison of Dynamic Branch Pre-
dictors that Use Two Levels of Branch History. In Proc. ISCA-
20, May 1993.

10

