
This research was sponsored in part by DARPA PAC/C, by Intel
Corporation, and by Semiconductor Research Corporation.

Deterministic Clock Gating for Microprocessor Power Reduction

Hai Li, Swarup Bhunia, Yiran Chen, T. N. Vijaykumar, and Kaushik Roy
1285 EE Building, ECE Department, Purdue University

<hl, bhunias, yc, vijay, kaushik>@ecn.purdue.edu

Abstract

With the scaling of technology and the need for
higher performance and more functionality, power
dissipation is becoming a major bottleneck for
microprocessor designs. Pipeline balancing (PLB), a
previous technique, is essentially a methodology to clock-
gate unused components whenever a program’s
instruction-level parallelism is predicted to be low.
However, no non-predictive methodologies are available
in the literature for efficient clock gating. This paper
introduces deterministic clock gating (DCG) based on the
key observation that for many of the stages in a modern
pipeline, a circuit block’s usage in a specific cycle in the
near future is deterministically known a few cycles ahead
of time. Our experiments show an average of 19.9%
reduction in processor power with virtually no
performance loss for an 8-issue, out-of-order superscalar
processor by applying DCG to execution units, pipeline
latches, D-Cache wordline decoders, and result bus
drivers. In contrast, PLB achieves 9.9% average power
savings at 2.9% performance loss.

1. Introduction
Present-day, general-purpose microprocessor designs

are faced with the daunting task of reducing power
dissipation since power dissipation is quickly becoming a
bottleneck for future technologies. Lowering power
consumption is important for not only lengthening battery
life in portable systems, but also improving reliability, and
reducing heat-removal cost in high-performance systems.

Clock power is a major component of microprocessor
power mainly because the clock is fed to most of the
circuit blocks in the processor, and the clock switches
every cycle. Considering all the clock signals, the total
clock power is usually a substantial 30-35% of the
microprocessor power [3].

Clock gating is a well-known technique to reduce
clock power. Because individual circuit usage varies
within and across applications [1], not all the circuits are
used all the time, giving rise to power reduction
opportunity. By ANDing the clock with a gate-control
signal, clock gating essentially disables the clock to a
circuit whenever the circuit is not used, avoiding power
dissipation due to unnecessary charging and discharging

of the unused circuits. Specifically, clock gating targets
the clock power consumed in pipeline latches and
dynamic-CMOS-logic circuits used for speed and area
advantages over static logic.

Effective clock gating, however, requires a
methodology that determines which circuits are gated,
when, and for how long. Clock-gating schemes that either
result in frequent toggling of the clock-gated circuit
between enabled and disabled states, or apply clock gating
to such small block that the clock-gating control circuitry
is almost as large as the block itself, incur large overhead.
This overhead may result in power dissipation higher than
that without clock gating. While the concept of circuit-
level clock gating is widely known, good architectural
methodologies for effective clock gating are not.

Pipeline balancing (PLB) is a recent technique, which
essentially outlines a predictive clock-gating methodology
[1]. PLB exploits the inherent variation of instruction
level parallelism (ILP) even within a program. PLB uses
some heuristics to predict a program’s ILP at the
granularity of 256-cycle window. If the degree of ILP in
the next window is predicted to be lower than the width of
the pipeline, PLB clock-gates a cluster of pipeline
components during the window.

In contrast to PLB’s predictive methodology, we
propose a deterministic methodology. Deterministic clock
gating (DCG) is based on the key observation that for
many of the stages in a modern pipeline, a circuit block’s
usage in a specific cycle in the near future is
deterministically known a few cycles ahead of time. DCG
exploits this advance knowledge to clock-gate the unused
blocks. In particular, we propose to clock gate execution
units, pipeline latches of back-end stages after issue, L1
D-cache wordline decoders, and result bus drivers. In an
out-of-order pipeline, whether these blocks will be used is
known at the end of issue based on the instructions issued.
There is at least one cycle of register read stage between
issue and the stages using execution units, D-cache
wordline decoder, result bus driver, and the back-end
pipeline latches. DCG exploits this one-cycle advance
knowledge to clock-gate the unused blocks without
impacting the clock speed.

DCG’s deterministic methodology has three key
advantages over PLB’s predictive methodology: (1)
PLB’s ILP prediction is not 100% accurate; if the
predicted ILP is lower than the actual ILP, PLB ends up

Figure 1. Clock gating a latch element

Figure 2. Clock gating a dynamic logic gate

clock-gating useful blocks and incurs performance loss. If
the predicted ILP is higher than the actual ILP, PLB
leaves unused blocks not clock-gated and incurs lost
opportunity. In contrast, DCG guarantees no performance
loss and no lost opportunity for the blocks whose usage
can be known in advance. (2) PLB’s clock-gating
granularities, both circuit granularity and time granularity,
are coarse; PLB’s circuit granularity is a cluster (i.e.,
many back-end stages from register read through
writeback are considered together). PLB’s time
granularity is a 256-cycle window (i.e., clusters stay
clock-gated for 256-cycle windows). In contrast, DCG
clock-gates at finer granularities of a few (1-2) cycles and
smaller circuit blocks (execution units, D-cache address
decoders, result bus drivers, and pipeline latches).
Because DCG’s blocks are still substantially larger than
the few gates added for clock gating, DCG amortizes the
overhead. PLB’s coarser granularity makes it less
effective and less flexible than DCG, which is a general
technique applicable to non-clustered microarchitectures.
(3) While PLB’s prediction heuristics (FSMs and
thresholds) have to be fine-tuned, DCG uses no extra
heuristics and is significantly simpler.

Using Wattch [2] and a subset of the SPEC2000 suite
[8], we show that DCG saves on average 19.9% of total
processor power and power-delay for an 8-issue, out-of-
order processor with virtually no performance impact. In
contrast, PLB achieves 9.9% average power savings and
7.2% average power-delay savings, while incurring 2.9%
performance loss, which are in line with [1].

This paper makes the following contributions:
• Although some commercial processors may use some

form of clock gating, there is no literature on their
methodology. This paper fills this gap by proposing
DCG, presenting the issues, and evaluating the
deterministic methodology.

• This is the first paper to show that a deterministic
clock-gating methodology is better than a predictive
methodology such as PLB.

• DCG not only achieves more power savings than
PLB, but also incurs no performance loss compared
to PLB’s modest degradation, while being simpler.
The remaining sections are organized as follows.

Section 2 describes basic clock gating, and identifies the
out-of-order-issue pipeline stages to which we apply
DCG. Section 3 presents implementation details for each
pipeline stage. In section 4, we describe our
experimentation methodology. Section 5 presents the
results and compares DCG and PLB. Section 6 discusses
related work and Section 7 concludes the paper.

2. Deterministic clock gating
2.1. Principle of clock gating

The clock network in a microprocessor feeds clock to
sequential elements like flops and latches, and to dynamic

logic gates, which are used in high-performance execution
units and array address decoders (e.g. D-cache wordline
decoder). At a high level, gating the clock to a latch or a
logic gate by ANDing the clock with a control signal
prevents the unnecessary charging/discharging of the
circuit’s capacitances when the circuit is idle, and saves
the circuit’s clock power.

Figure 1 (a) shows the schematic of a latch element.
Cg is the latch’s cumulative gate capacitance connected to
the clock. Because the clock switches every cycle, Cg
charges and discharges every cycle and consumes
significant amount of power. Even if the inputs do not
change from one clock to the next, the latch still consumes
clock power. In figure 1(b), the clock is gated by ANDing
it with a control signal, which we refer as Clk-gate signal.
When the latch is not required to switch state, Clk-gate
signal is turned off and the clock is not allowed to
charge/discharge Cg, saving clock power. Because the
AND gate’s capacitance itself is much smaller than Cg,
there is a net power saving.

A schematic of a dynamic logic cell is shown in
Figure 2 (a). Cg is the effective gate capacitance that
appears as a capacitive load to the clock, and CL is the
capacitive load to the dynamic logic cell. Similar to the
latch, the dynamic logic’s Cg also charges and discharges
every cycle and consumes power.

In addition to Cg, CL also consumes power: at the pre-
charge phase of the clock, CL charges through the PMOS
pre-charge transistor and during the evaluate phase, it
discharges or retains value depending on the input to the
pull-down logic (shown as “PDN” in the figure). Whether
CL consumes power or not, depends on both the current
input and previous output. There are two cases: (1) If CL
holds a “1” at the end of a cycle, and the next cycle output
evaluates to a “1”, then CL does not consume any power.
Precharging an already-charged CL does not consume
power unless there are leakage losses (which we do not
consider in this paper). Because the next output is a “1”,
there is no discharging. (2) If CL holds a “0” at the end of
a cycle, CL consumes precharge power, irrespective of
what the inputs are in the next cycle. Even if the input

Figure 3. Basic superscalar pipeline

does not change, this precharge power is consumed. If the
next output is a “1”, no discharging occurs; otherwise,
more power is consumed in discharging CL.

Figure 2(b) shows the same cell with gated clock. If
the dynamic logic cell is not used in a cycle, Clk-gate
signal prevents both Cg and CL from switching in the
cycle. While clock-gating latches reduces only
unnecessary clock power due to Cg, clock-gating dynamic
logic reduces unnecessary dissipation of not only the
clock power due to Cg, but also the dynamic logic power
due to CL. Here also, because the AND gate’s capacitance
itself is much smaller than Cg + CL, there is a net power
saving.

2.2. Overview of DCG in a microprocessor
In this section, we analyze the opportunity of

deterministic clock gating (DCG) in different parts of a
superscalar microarchitecture. DCG depends on two
factors: 1) opportunity due to existence of idle clock
cycles (i.e., cycles when a logic block is not being used),
and 2) advance information about when the logic block
will not be used in the future.

Figure 3 depicts the general pipeline model for a
superscalar processor [3]. The pipeline consists of 8 stages
with pipeline latches between successive stages, used for
propagating instruction/data from one stage to the next.
While we clock-gate the stages and pipeline latches
marked with a “tick mark” in Figure 3, we do not clock-
gate the stages and latches with a “cross mark” due to lack
of opportunity and/or advance information. Next, we
explain why we do or do not clock-gate each individual
pipeline latch and stage.

2.2.1. DCG for pipeline latches.

Pipeline latches unconditionally latch their inputs at
every clock edge, resulting in high power dissipation. As
the technology scales down, deeper pipeline stages with
more latches are used. Furthermore, the data width (e.g.,
32 vs. 64 bits) also increases with microprocessor
evolution. Consequently, the ratio of the latch power to
the total processor power increases. Because most of the
stage latches have some idle cycles, clock-gating the
latches during these cycles can substantially save
processor power. We now analyze each of the stages to
determine if an idle cycle for the stage can be known in
advance.

We cannot clock-gate the latches following fetch and
decode because before decode we do not know which

instruction is useful and which is useless. In [5], the
authors propose a branch prediction confidence estimation
method to reduce power dissipation due to often-
mispredicted branches. However, we stick to purely
deterministic means of realizing clock gating without
performance loss, and do not apply any confidence
methods, which come at the cost of performance loss.

At the end of decode, we can determine how many of
the instructions, out of those fetched, are in the predicted
path. That is, if the third instruction in a fetched block is a
branch and the branch is predicted to be taken then the
instructions from the fourth instruction to the end of the
fetched block are thrown away. Only the first three
instructions enter the rename stage. Hence, we can
determine the number of instructions that will enter the
rename stage at the end of decode and clock-gate the
unnecessary parts of the rename latch. We have the entire
rename stage to setup the clock-gate control of the rename
latch.

Because we can identify which and how many
instructions are selected to issue only at the very end of
issue, we do not have enough time to clock-gate the issue
latch. We can clock-gate the latches for the rest of the
pipeline stages (i.e., register read (Rf), execute (Ex),
memory access (Mem) and writeback (WB)). At the
beginning of the each of the stages we know how many
instructions are entering the stage, and we can exploit the
time during the stage to set up the clock-gate control for
these latches.

2.2.2. DCG for pipeline stages.

Fetch stage uses the decoders in the instruction cache
and decode stage uses instruction decoder, both of which
are often implemented with dynamic logic circuits.
However, we cannot clock-gate fetch and decode logic,
because fetch and decode occur almost every cycle. We
do not know which instructions are useless until we
decode them, which is too late to clock-the decode stage.
Rename stage consumes little power and so we do not
consider rename stage for clock gating.

The issue stage consists of the issue queue, which
uses an associative array and a wakeup/select
combinational logic. There are many papers on reducing
the issue queue power. [1] clock-gates the issue queue
using its predictive scheme. [6] proposes a scheme in
which issue queue entries that are either deterministically
determined to be empty, or deterministically known to be
already woken-up, are essentially clock-gated. Because
[6] already presents a deterministic method to clock-gate
the issue queue, we do not explore applying DCG to the
issue queue.

Register read stage consists of a register file
implemented using an array. However, only at the very
end of issue, we know how many instructions are selected

Figure 4. Schematic of a selection logic cell with the clock

gate signals extracted from it

Figure 5. Clock gating of the execution units

Figure 6. Timing diagram for clock gating

and are going to access the register file in the next cycle.
Hence, there is no time to clock-gate the register file.

We can clock gate the execution units, which are
often implemented with dynamic logic blocks for high
performance. Based on the instructions issued, we
deterministically know at the end of issue which unit is
going to be used in the cycle after the register read stage.
Hence, we can clock gate the rest of the unused execution
units, by setting the clock gate control during the read
cycle. Modern caches use dynamic logic for wordline
decoding and the writeback stage uses result bus driver to
route result data to the register file. Instructions that enter
the execute stage go through the memory and writeback
stages. We can use the same clock gate control used in
execute to clock-gate the relevant logic in these stages.
The control signal needs to be delayed by one and two
clock cycle(s) respectively for the memory and writeback
stages.

3. Implementation of DCG
3.1. Execution units

At the end of instruction issue, we know which
execution units will be used in the execute stage, a few
cycles into the future. The selection logic in a
conventional issue queue not only selects which
instructions are to be issued based on execution unit
availability, but also matches instructions to execution
unit. Hence, we leverage the selection logic to provide

information about which execution units will remain
unused and clock-gate those units.

Figure 4 shows the schematic of selection logic
associated with one type of execution units [6]. The
request signals (REQ) come from the ready instructions
once the wakeup logic determines which instructions are
ready. The selection logic uses some selection policy to
select a subset of the ready instructions, and generates the
corresponding grant signals (GRANT). In our
implementation, we send the GRANT signals to the clock-
gate control.

Figure 5 shows the pipeline details of the control.
Because instructions selected in cycle X use the execution
units in cycle X+2 (as shown in Figure 6), we have to pass
the GRANT signals down the pipeline through latches for
proper timing of clock gating. We extend the pipeline
latches for the issue and read stages by a few extra bits to
hold the GRANT signals. We note that the gated clock
line (output of the AND gates in Figure 5) that feeds the
execution units may be skewed a bit because of the delay
through the latch and the AND gate. This skew affects
only the precharge phase and not the evaluate phase.
Therefore, DCG is likely not to lengthen execution unit
latencies.

The control for clock gating execution units is simple
and the overhead of the extended latches and the AND
gates is small compared to the execution units (e.g., 32- or
64-bit carry look-ahead adders) themselves. Therefore, the
area and power overhead of the control circuitry are easily
amortized by the significant power savings achieved.

If execution units keep toggling between gated and
non-gated modes, the control circuitry keeps switching,
resulting in an increased overhead due to the power
consumed by the control circuitry. Current charging and
discharging may also cause large di/dt noise in the supply
line. To alleviate these problems, we apply sequential
priority policy for execution units: Among the execution
units of the same type, we statically assign priorities to the
units, so that the higher-priority units are always chosen to
be used before the lower priority units. Thus, most of the
time the (lower-) higher-priority units stay in (gated) non-
gated mode, minimizing the control power overhead. As
described in [3], this sequential priority policy is easy to
implement and does not affect overall performance.

3.2. Pipeline latches
We clock-gate pipeline latches at the end of rename,

register read, execute, memory and writeback stages. For
rename, the number of clock-gated latches in any cycle is
known from the decode stage in the previous cycle. For
latches in the other stages, the number of clock-gated
latches in any cycle is known from the issue stage. We
augment the issue stage to generate a one-hot encoding of
how many instructions are issued every cycle. The
encoding has a "0" to represent an empty issue slot, and a

Figure 7. Clock gating of pipeline latches

Figure 8. Clock gating of D-cache decoder

Figure 9. Clock gating of result bus driver

"1" to represent a full issue slot for an issued instruction,
for all the issue slots of the pipeline. Much like the
execution units, the clock the one-hot encoding is passed
down the pipe via extended pipeline latches.

Figure 7 shows the clock-gating control for the stages
following issue queue. The outputs of the extended
latches carrying the one-hot encoding are AND’ed with
the clock line to generate a set of gated clock inputs for
pipeline latches corresponding to individual issue slots.
Note that the clock line for the extra latches themselves is
not gated.

Extensions to the pipeline latches and the extra AND
gates for the control are small compared to the pipeline
latches (containing issue-width x number of operands per
instruction x operand width bits, e.g., 8 x 2 x 64 = 1024
bits) themselves, and clock drivers, respectively. Hence,
the impact of the extra control logic on area and power is
not significant.

3.3. D-cache wordline decoder
D-cache wordline decoders are clock-gated using the

load/store issue information; similar to the way the
pipeline latches are gated. The number of load/store
instructions issued in a cycle is one-hot encoded and
passed down the pipeline through some extra latches
added to the regular pipeline latches. A load instruction
issued at cycle X uses the D-cache in cycle X+3. The
load/store queue does not delay the load; the load accesses

the cache and the queue simultaneously. Therefore, in
cycle X, the one-hot encoding deterministically identifies
how many ports would be used in cycle X+3, allowing
DCG to work.

Stores, however, may be delayed in the load/store
queue waiting until commit, so that the timing of store
accesses to the cache may not be pre-determinable.
Depending upon the load/store queue details, there are
two possibilities: (1) an upcoming store access may be
known in the previous cycle, giving time for the clock-
gate control to be set up. (2) If no advance knowledge is
available, the store may have to be delayed by one cycle
to allow for clock-gate control set up. Because stores,
unlike loads, do not produce values for the pipeline, this
delay will result in virtually no performance loss.

If in one cycle, we find that the number of loads and
stores to use the D-cache in the next cycle is less than the
number of ports, we clock gate the ports, which are
unused in the next cycle. As before, the amount of extra
logic for controlling the clock is small compared to the
large wordline decoders.

Figure 8 shows the schematic of a port decoder,
which is implemented in three stages [7]. In the first stage,
a set of NAND gates is used to implement 3x8 decoders.
The second stage consists of a large number of NOR gates
equal to the number of rows and the third stage consists of
wordline drivers. The 3x8 decoders and the NOR gates
are usually implemented in dynamic logic due to speed
and area advantage and hence, can be clock-gated. In our
experiments, we modified Wattch [2] to incorporate
dynamic logic port decoder for D-cache.

3.4. Result bus driver
To route the results to the register file, writeback

stage drives large capacitive load arising from the result
bus. When the input of the result bus transitions back and
forth between the two logic levels, power is consumed to
charge/discharge the load capacitance of result bus driver.

Figure 9 shows the schematic of clock-gating the
result bus driver. Here, CL is the load capacitance rising
from the result bus. In Figure 9(a), the result bus driver
uses static logic, and clock gating is implemented at the
pipeline latch which feeds the driver. While the result bus
is not used, Clk-gate signal isolates the input data from
the result bus. Hence, CL is not charged/discharged even if
the input switches spuriously. A clock-gating schematic
for result bus driver using dynamic logic is shown in
Figure 9(b). Here, clock gating can be implemented
directly to the result bus drivers. If the result bus is not
used in a particular clock cycle, Clk-gate signal prevents
CL from switching, and reduces power.

Result bus drivers in writeback stage are clock gated
by using the similar way as the pipeline latches. The
number of instructions executed in a cycle is one-hot
encoded and passed down the pipeline through some extra

Table 1. Baseline processor configuration
Processor 8-way issue, 128-entry windows, 64-entry

load/store queue, 6 integer ALUs, 2 integer
multiply/divide units, 4 floating point ALUs, 4
floating point multiply/divide units

Branch
prediction

2-level, 8192-entry in first level, 8192-entry in
second level, 4B history; 32-entry RAS, 8192-
entry 4-way BTB, 8 cycle mispredict penalty

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-
cycle L2, both LRU

Main
memory

Infinite capacity, 100 cycle latency;
Split transaction, 32-byte wide bus

latches added to the pipeline latches. The instruction
executed in cycle X goes though writeback stage at cycle
X+2. So the execution units’ control signals can be used
but need to be delayed by two cycles. The amount of extra
logic is small compared to the large result bus driver.

4. Experimental methodology
4.1. Architectural simulation

We modified Wattch to perform our simulations [2].
We assume that the execution units, D-cache wordline
decoders and result bus drivers use dynamic logic for
performance and area considerations. We estimate overall
processor energy using Wattch scaled for a 0.18µm
technology. The baseline processor configuration is
summarized in Table 1.

We use pre-compiled Alpha Spec2000 binaries [8] to
analyze DCG’s performance and power. We use ref inputs,
fast-forward 2 billion instructions, and simulate 500
million instructions.

4.2. DCG power calculation
For each of the execution units, pipeline latches, D-

Cache wordline decoders and result bus drivers, the
circuit’s power is added if the circuit is not clock-gated. If
the circuit is clock-gated in a cycle, zero power is added.
Thus, we assume that there is no leakage loss.

There is power overhead associated with DCG’s
control circuitry. We include the power overhead due to
the extended pipeline latches when calculating latch
power consumption. Apart from latches, DCG adds some
extra AND gates. These AND gates can be designed with
minimum size so that their power overhead is negligible,
compared to large drivers for the clock tree.

4.3. Simulation environment for PLB
For comparison, we also implemented pipeline

balancing method (PLB), which is proposed for a
clustered pipeline [1]. We adapted PLB to a non-clustered
8-wide issue out-of-order superscalar shown in Table 1. In
our PLB implementation, we use the same clock-gating
granularity as the PLB paper, except our pipeline is not
clustered. Accordingly, there are three possible issue
widths: 8-wide issue, 6-wide issue and 4-wide issue. 8-
wide issue is the normal mode, while 6-wide and 4-wide
are used for low-power mode. When the predicted IPC

(Instructions per Cycle) is low, the machine transfers to 6-
wide or 4-wide issue.

To be consistent with experiments reported in [1], we
choose issue IPC (IIPC – Instructions issued per cycle) as
the primary trigger, and floating point issue IPC (FPIPC –
floating point instructions issued per cycle) and mode
history (used to reduce spurious transitions between two
issue modes) as the secondary trigger. We also choose the
same state machine and threshold values for triggering as
in [1]. Based on the experiments of [1], the sampling
window size is 256 cycles.

In 4-wide issue mode, we disable half of issue slots,
including 3 integer ALU units, 1 integer multiply/divide
unit, 2 FPUs, 2 FP multiply/divide units, and 1 memory
port. In 6-wide issue mode, 1 integer ALU unit, 1 FPU
and 1 FP multiply/divide unit are disabled. Cache ports
are left intact because memory bandwidth is important for
both integer and FP performances.

Reducing the issue width from 8 to 6 and 4 results in
some performance loss. PLB does not reduce the issue
width below 4 because of high performance degradation
that ensues.

The PLB paper reduced power for only the execution
units and issue queue. But DCG clock-gates execution
units, cache, result bus and pipeline latches. If we
compare DCG and PLB as they stand, the differences in
their effectiveness will include not only the differences in
their methodologies but also the fact that they optimize
different pipeline components. To isolate the differences
in their methodology, we show two versions of the PLB
scheme; we show the savings for the original scheme
under PLB-orig. We have extended PLB to clock gate
pipeline latches, D-cache wordline decoder and result bus
in addition to the execution units and issue queue, in the
scheme called PLB-ext. For the D-cache, we modified the
heuristic to reduce the number of ports from 2 to 1
whenever the issue width reduces from 8 to 4. In PLB-ext,
we assume that the appropriate number of pipeline latches
and result buses are clock gated whenever the issue width
reduces from 8 to 6 to 4. Note that while PLB-orig and
PLB-ext clock gate the issue queue, DCG does not.

The PLB paper based its power calculation on
estimating power consumption percentage from execution
units and issue queue for the Alpha 21464 and multiplying
by usage coefficients to get power saving for 4-wide and
6-wide issue. To allow for direct comparison between
PLB and DCG, we use Wattch to calculate power saving
for PLB-orig and PLB-ext, as we do for DCG. However,
our PLB numbers are in line with those in [1].

4.4. Optimal number of integer ALU units
Usually a superscalar processor is designed with the

same number of integer ALUs as its issue. This number is
intended to achieve high performance by ensuring that if
all ready instructions happen to use integer units, they

0%

5%

10%

15%

20%

25%

30%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is
e

sw
im

m
ig

ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si
xt

ra
ck

ap
si

P
ro

ce
ss

or
 P

ow
er

 S
av

in
g DCG PLB-orig PLB-ext

Figure 10. Total processor power savings

-5%

0%

5%

10%

15%

20%

25%

30%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is

e
sw

im
m

ig
ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

siP
ro

ce
ss

or
 P

ow
er

-D
el

ay
 S

av
in

g DCG PLB-orig PLB-ext

Figure 11. Total processor power-delay savings

need not wait. This case may be a rarity for most
applications and some integer units may remain unused
almost all the cycles. These unused execution units, on the
other hand, dissipate similar amount of power as the used
ones. Therefore, a processor with as many integer ALUs
as its issue width may not be optimal for power and
performance together.

Measuring the impact of clock gating in a processor
with redundant execution units may exaggerate the
technique’s effectiveness. To determine the optimal
configuration in terms of the number of integer units for
the 8-wide issue processor, we observed the effect of
reducing number of integer units on processor
performance starting with 8 integer units. In the worse
case, the relative performance is 98.8% with 6 integer
ALU units and 92.7% with 4 integer units. Although a
configuration with 4 units should dissipate less power
than one with 6 units, the former suffers significant
performance loss. With respect to both power and
performance 6 integer units seem to be optimal for 8-wide
issue processor, we use this configuration in all our
experiments. For the other execution units also, we choose
the number of units based on power-performance
consideration.

5. Results
In this section, we present power and performance

results obtained from Wattch simulation for both DCG
and PLB methods. We compare the effectiveness of DCG
with that of PLB in section 5.1. The result shows that
DCG not only achieves higher power savings than PLB,
but also incurs no performance loss due to its
deterministic nature, while PLB incurs some performance
loss. We isolate the power saving for execution units,
pipeline latches, D-cache wordline decoders and result
bus drivers and present them in sections 5.2 through 5.5.
Finally, in section 5.6, we discuss the effectiveness of
DCG for future generation processors with deeper
pipelines.

5.1. Effectiveness of DCG
In this section, we compare power savings and

power-delay saving of DCG against that of PLB.
Recall from section 4.3 that PLB-orig clock gates

only the execution units and issue queue, but PLB-ext
clock gates the issue queue in addition to the same
pipeline components as DCG – execution units, pipeline
latches, D-cache wordline decoders and result bus. Not
considering the issue queue advantage of PLB-ext, the
difference between PLB-ext and DCG comes entirely
from the non-predictive nature and the finer granularity of
DCG, and not from the choice of which pipeline
components to clock gate.

In Figure 10, we plot the total power savings
achieved by DCG (left bar), PLB-orig (middle bar) and
PLB-ext (right bar) as a percentage of the total processor

power for the base case processor, which does not
implement any clock gating. Y-axis represents power
savings computed as a percentage of total power. DCG
achieves average savings of 20.9% and 18.8% for integer
and floating-point (FP) programs, respectively. In contrast,
corresponding savings for PLB-orig are 6.3% and 4.9%,
falling considerably behind DCG. Our PLB-orig numbers
are in line with those in [1]. PLB-ext improves a little
upon PLB-orig and saves 11.0% and 8.7% power on
average. The lower savings of PLB-ext compared to that
of DCG clearly shows that DCG's deterministic
methodology is superior to PLB's predictive methodology,
for clock gating the same pipeline components.

DCG achieves the highest savings for mcf and lucas,
because these two programs stall frequently due to
unusually high cache miss rates, affording large
opportunity for gating.

The difference in power savings between DCG and
PLB for a particular program largely relies on the
utilization of different execution units in the program. For
some integer programs, such as perlbmk, power savings
achieved by PLB-orig and PLB-ext are much smaller than
that achieved by DCG. While these programs have high
utilization of the integer units, they seldom use the FP
units. These unused FP units can be easily clock-gated
using DCG, but PLB does not clock-gate the units
because of PLB’s coarser granularity (i.e., the integer
units of the corresponding “cluster” are in use, so the FP
units are not disabled).

Figure 11 shows the power-delay savings achieved
for the processor by DCG, PLB-orig and PLB-ext
methods computed as a percentage of the base case
processor’s power-delay. Y-axis represents the percentage
power-delay savings. The corresponding bars follow the
same trends as the plot in Figure 10 with one key

0%

20%

40%

60%

80%

100%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is

e
sw

im
m

ig
ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

si

In
t
E

xe
c.

 U
n
it
 P

ow
er

 S
av

in
g

DCG PLB-ext

Figure 12. Integer execution unit power savings

0%

20%

40%

60%

80%

100%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is

e
sw

im
m

ig
ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

siF
P
 E

xe
c.

 U
n
it
 P

ow
er

 S
av

in
g DCG PLB-ext

Figure 13. FP execution unit power savings

0%

10%

20%

30%

40%

50%

60%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is

e
sw

im
m

ig
ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

si

P
ip

el
in

e
L

at
ch

es
 P

ow
er

 S
av

in
g

DCG PLB-ext

Figure 14. Pipeline latch power savings

difference. Because of the impact on performance in PLB,
power-delay bars for PLB-orig and PLB-ext are shorter
than the corresponding power bars in Figure 10. Because
DCG incurs virtually no performance degradation, power-
delay saving for DCG is the same as its power saving.
PLB-orig suffers 2.9% performance loss for both integer
and FP programs, delivering 3.5% and 2.0% power-delay
savings, respectively. PLB-ext, on the other hand, does a
little better than PLB-orig in terms of power-delay (8.3%
and 5.9% respectively) since it saves more power by
gating more components. To summarize, DCG is a more
effective technique than PLB, considering power and
delay together.

In the following sections, we deal with power saving
in individual components. We show that DCG's savings
comes from all, not any one, of the components. We also
show that for each of the components, DCG achieves
more savings than PLB-ext, indicating that DCG is
uniformly effective across all the pipeline components
considered.

5.2. Execution units
In this section we discuss power saving in integer and

FP units with DCG and PLB-ext.
In initial simulations, we observed that the utilization

of integer execution units for the integer benchmarks is on

average 35%, while the FP units have almost no
utilization for these programs. On the other hand, for the
FP benchmarks, average utilizations of the FP units is
about 23% while the integer units are used for about 25%
of the cycles on average. DCG allows us to clock-gate an
execution unit for all its idle cycles (section 3.1). Hence,
we expect to achieve about 65% and 75% power saving in
the integer units for the integer and FP benchmarks,
respectively. We also expect to save almost all and 77%
of the FPUs’ power in FPUs for integer and FP
benchmarks, respectively.

PLB-ext clock-gates half of the pipeline resources
gated when the processor works in 4-wide issue mode. In
6-wide issue mode, we disable 1 integer ALU, 1 FPU, and
1 FP multiply/divide unit, which constitute 1/4 of the total
functional units. Hence, PLB-ext can save 50% and 25%
of total execution (integer and FP) unit power in 4-wide
and 6-wide issue modes, respectively.

Figure 12 shows the power savings in integer
execution units by using DCG (left bar) and PLB-ext
(right bar). The Y-axis corresponds to power saving
obtained as a percentage of total integer units’ power for
the base case processor. As expected, the total power
saving for the integer units is about 72.0% on average.
The smaller power saving in PLB-ext can be attributed to
PLB’s predictive nature and granularity limitation. On
average, PLB saves 29.6% of integer execution unit
power, which is significantly less than DCG’s savings.

Figure 13 shows similar plot for FP execution units.
Y-axis represents power savings in the FPUs calculated as
the percentage of total power dissipated in the FPUs.
DCG (left bar) achieves 77.2% total power saving for FP
programs on average, and close to 100% power saving for
most integer benchmarks. Power saving for FPUs with
PLB-ext (right bar) is much less than the saving achieved
with DCG. On an average, PLB-ext saves 23.0% of FPUs’
power for FP benchmarks while, for some integer
programs, DCG saves the entire FPU power. PLB, on the
contrary, only gets less than 25% power saving for some
integer benchmarks such as eon ad perlbmk. This is
because the trigger condition for PLB for switching issue
modes depends on both IIPC and FPIPC. Although these
benchmarks seldom use FPUs, processor works in 8-wide
or 6-wide issue mode because of high IIPC. Hence, the
FPUs cannot be disabled and power saving in FPUs with
PLB is significantly smaller for integer benchmarks than
achievable with DCG.

5.3. Pipeline latches
In this section, we discuss power saving for clock

gating pipeline latches with both DCG and PLB methods.
We have observed that the utilization of pipeline latches is
about 60% on average. Because DCG allows us to clock
gate a latch for all its unused cycles (section 3.2), we
expect to save about 40% of latch power. The extra

0%

10%

20%

30%

40%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl

bm
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
w

up
w

is
e

sw
im

m
ig

ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

siD
-c

ac
h

e
P

ow
er

 S
av

in
g DCG PLB-ext

Figure 15. D-cache power savings

0%

20%

40%

60%

80%

100%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is

e
sw

im
m

ig
ri

d
ap

pl
u

m
es

a
ga

lg
el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

siR
es

ul
tb

us
 P

ow
er

 S
av

in
g

DCG PLB-ext

Figure 16. Result bus power savings

10%

15%

20%

25%

30%

35%

gz
ip vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rl
bm

k
ga

p
vo

rt
ex

bz
ip

2
tw

ol
f

w
up

w
is

e
sw

im
m

ig
ri
d

ap
pl

u
m

es
a

ga
lg

el ar
t

fa
ce

re
c

lu
ca

s
si

xt
ra

ck
ap

siP
ro

ce
ss

or
 P

ow
er

 S
av

in
g

8-stage 20-stage

Figure 17. Processor power saving for deeper pipelines

pipeline latches required for implementing control in
DCG, are not clock-gated, but account for merely 1% of
total latch power. Though this overhead is small, we
consider the overhead in all our experiments.

PLB-ext clock-gates 1/4 and 1/2 of the pipeline
latches for each stage, when the issue width reduces from
8 to 6 and from 8 to 4, respectively. This reduction
ensures that the pipeline stages have the right number of
latches to accommodate for the low-power-modes issue
widths. Hence, PLB-ext can save 17% and 33% of
pipeline latch power when the processor works in 6-wide
and 4-wide issue, respectively.

Figure 14 shows the latch power savings for DCG
(left bar) and PLB-ext (right bar). The Y-axis corresponds
to the power savings computed as a percentage of total
power dissipated in pipeline latches without any clock
gating. The power saving achieved with DCG includes the
power overhead due to DCG’s extended latches is 41.6%,
as expected. PLB-ext achieves 17.6% power saving in
pipeline latches, which is noticeably smaller than the
saving obtained using DCG.

mcf and lucas stand out in terms of DCG’s savings.
Recall that mcf and lucas stall frequently due to high
cache miss rates, affording large opportunity for clock-
gating the pipeline latches.

5.4. D-cache wordline decoder
In this section, we present power saving results in D-

cache wordline decoder. In DCG, we expect to disable a
wordline decoder for almost all the cycles for which the
corresponding cache port is not used. Simulations about
the utilization of memory ports demonstrate about 40%
average usage of a memory port for the processor
configuration considered. Because the wordline decoders
consume about 40% of total D-cache power, we expect to
save about 25% of cache power with DCG.

In PLB-ext, we disable one memory port when the
processor switches its issue width from 8 to 4, resulting in
50% of decoder power and 20% of total cache power
saving. To avoid undue impact on performance, we keep
both the memory ports enabled when reducing issue width
from 8 to 6. Hence, the 6-wide issue mode does not
contribute to power saving in D-cache decoder.

Figure 15 shows the D-cache power saving results for
DCG (left bar) and PLB-ext (right bar). The Y-axis
represents power savings as a percentage of total D-cache
power for the processor with no clock gating. DCG
achieves 22.6% power saving on average, which closely
matches the expected saving. On the other hand, PLB-ext
achieves merely 8.1% savings.

5.5. Result bus drivers
In this section, we compare power saving in the result

bus drivers for DCG and PLB-ext. We have observed that
the utilization of result bus is about 40% on average.
Because we can save power in all the unused cycles, we

expect to save about 60% of power consumed in the bus
driver using DCG.

For PLB-ext, we disable 2 (or 4) of the 8 result buses,
when the processor changes issue width from 8 to 6 (or 4).
Because the number of enabled result buses is the same as
the issue width, PLB-ext does not suffer from any power
loss in the low power modes. Hence, we can obtain about
25% and 50% result bus power saving for the processor
running with issue width 6 and 4, respectively.

Figure 16 shows power savings in result bus for DCG
(left bar) and PLB-ext (right bar). The Y-axis represents
power savings as a percentage of total result bus power
for the base case processor. DCG achieves 59.6% average
power savings, which is according to the expected value.
The average power saving with PLB-ext is about 32.2%
which is less than DCG’s savings. The difference in
power saving between the two methods comes from the
inherent limitations of PLB-ext.

5.6. DCG for deeper pipelines
One important trend in high performance processor

design is to lengthen the processor pipelines to
accommodate for higher clock rates. In this section, we
discuss the impact of DCG on a deeper pipeline. Because
the advance knowledge of resource usage does not change
with pipeline, DCG should perform as well or better with
deeper pipelines.

 All the resources, which we can gate for the baseline
architecture, can also be gated for longer pipelines, but the
opportunity to gate the extra latches depends on which
stages in the basic pipeline are lengthened. In particular if
a new pipeline stage is introduced for any step except
fetch, decode or issue, pipeline latches at the end of those
stages can be gated using DCG, making DCG an equally
or more effective technique for processors of future
generations. It is worth noting that PLB method too
remains valid for deeper pipelines, but DCG is expected
to provide more savings than PLB.

Figure 17 shows the DCG power savings for a deeper
pipeline. The Y-axis corresponds to DCG power savings
computed as a percentage of the total processor power for
the base case processor, which does not implement any
clock gating. The left and right bars are for an 8- and 20-
stage processor, respectively. On average, the 20-stage
pipeline achieves 24.5% power savings, which is larger
than the 8-stage processor’s 19.9% savings.

6. Related work
As discussed extensively throughout the paper,

pipeline balancing is a predictive methodology to clock-
gate unused components whenever the ILP is predicted to
be low [1]. Brooks et. al. discuss value-based clock gating
[9] and operation packing in integer ALUs [10]. Clock-
gating has been used in FP functional units in commercial
processors [3]. Several papers have proposed schemes to
reduce cache energy and power [11, 12, 13, 14, 15].

Circuit-level clock gating focuses on clock-gating
finite state machines (FSM) [16]. The limitation of gated-
clock FSM is that its power saving heavily depends on the
FSM characteristics. However, the approach is not
effective for general-purpose microprocessor pipelines.

7. Conclusions
In this paper, we introduced deterministic clock

gating (DCG) based on the key observation that for many
of the stages in a modern pipeline, a circuit block’s usage
in a specific cycle in the near future is deterministically
known a few cycles ahead of time. Using this advance
information, DCG clock-gates unused execution units,
pipeline latches, D-Cache port decoders, and result bus
drivers.

Pipeline balancing (PLB), a previous technique, is
essentially a methodology to clock-gate unused
components whenever a program’s instruction-level
parallelism is predicted to be low. Our experiments show
an average of 19.9% reduction in processor power with
virtually no performance loss for an 8-wide issue out-of-
order superscalar processor by applying DCG. In contrast,
PLB achieves 9.9% average power savings and 7.2%
average power-delay savings, at 2.9% performance loss.

Because DCG’s clock-gating granularity is finer than
PLB’ cluster-based granularity, DCG achieves more
power savings than PLB. DCG’s deterministic nature

guarantees virtually no performance loss compared to
PLB’s modest degradation due to its predictive nature.
Unlike PLB’s heuristics, DCG does not require fine-
tuning of any threshold values, making DCG simpler to
implement.

As high-performance microprocessor pipelines get
deeper and power becomes a more critical factor, DCG’s
effectiveness and simplicity will continue to be important.

Reference
[1] R. I. Bahar, and S. Manne, “Power and energy reduction via

pipeline balancing”, In Proc. of 28th Int’l Symp. on Computer
Architecture (ISCA), Jul. 2001, pp. 218-229.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework
for architectural-level power analysis and optimizations”, In Proc.
of 27th Int’l Symp. Computer Architecture (ISCA), Jul. 2000, pp.
83-94.

[3] M. Gowan, L. Biro, and D. Jackson, “Power considerations in the
design of the Alpha 21264 microprocessor”, In proc. of 35th Design
Automation Conference (DAC), Jun. 1998, pp. 726-731.

[4] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors”, In Proc. of 24th Annual Int’l Symp. on
Computer Architecture (ISCA), Jun. 1997, pp. 206-218.

[5] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating:
speculation control for energy reduction”, In Proc. of 25th Int’l
Symp. on Computer Architecture (ISCA), Jun. 1998, pp. 132-141.

[6] D. Folegnani and A. Gonzalez, “Energy-effective issue logic”, In
Proc .of 28th Int’l Symp. on Computer Architecture (ISCA), Jul.
2001, pp. 230-239.

[7] G. Rienman and N. Jouppi, “Cacti 2.0: An enhanced access and
cycle time model for on-chip caches”,
http://research.compaq.com/wrl/people/jouppi/CACTI.html

[8] D. Weaver, “Pre-compiled little-endian Alpha ISA SPEC2000.
binaries”,
http://www.eecs.umich.edu/~chriswea/benchmarks/spec2000.html

[9] D. Brooks and M. Martonosi, “Value-based clock gating and
operation packing: dynamic strategies for improving processor
power and performance”, ACM Transactions on Computer
Systems, May 2000, 18(2), pp. 89-126.

[10] D. Brooks, and M. Martonosi, “Dynamically exploiting narrow
width operands to improve processor power and performance”, In
Proc. of 5th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Jan. 1999, pp. 13-22.

[11] D. H. Albonesi, “Selective cache ways: On-demand cache resource
allocation”, In Proc. of 32nd Annual IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO 32), Nov.1999, pp. 248-259.

[12] C.-L. Su and A. M. Despain, “Cache design trade-offs for power
and performance optimization: A case study”, In Proc. of 1995 In’l
Symp. on Low Power Electronics and Design (ISLPED), 1995, pp.
63-68.

[13] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dynamic
management techniques to reduce energy in high-performance
processors”, In Proc. of 1999 Int’l Symp. on Low Power
Electronics and Design (ISLPED), Aug. 1999, pp. 64 – 69.

[14] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache:
An energy efficient memory structure”, In Proc. of 30th Annual
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO 30), Dec.
1997, pp. 184-193.

[15] M. Powell, A. Agrawal, T. N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via selective direct-
mapping and way prediction”, In Proc. of 34th Annual Int’l Symp.
on Microarchitecture (MICRO), Dec. 2001, pp. 54-65.

[16] J. C. Monteiro, “Power optimization using dynamic power
management”, In Proc. of the XII Symp. on Integrated Circuits and
Systems Design (ICSD), Sep. 1999, pp. 134-139.

