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Abstract 

With the scaling of technology and the need for 
higher performance and more functionality, power 
dissipation is becoming a major bottleneck for 
microprocessor designs. Pipeline balancing (PLB), a 
previous technique, is essentially a methodology to clock-
gate unused components whenever a program’s 
instruction-level parallelism is predicted to be low. 
However, no non-predictive methodologies are available 
in the literature for efficient clock gating. This paper 
introduces deterministic clock gating (DCG) based on the 
key observation that for many of the stages in a modern 
pipeline, a circuit block’s usage in a specific cycle in the 
near future is deterministically known a few cycles ahead 
of time. Our experiments show an average of 19.9% 
reduction in processor power with virtually no 
performance loss for an 8-issue, out-of-order superscalar 
processor by applying DCG to execution units, pipeline 
latches, D-Cache wordline decoders, and result bus 
drivers. In contrast, PLB achieves 9.9% average power 
savings at 2.9% performance loss. 

1. Introduction 
Present-day, general-purpose microprocessor designs 

are faced with the daunting task of reducing power 
dissipation since power dissipation is quickly becoming a 
bottleneck for future technologies. Lowering power 
consumption is important for not only lengthening battery 
life in portable systems, but also improving reliability, and 
reducing heat-removal cost in high-performance systems.  

Clock power is a major component of microprocessor 
power mainly because the clock is fed to most of the 
circuit blocks in the processor, and the clock switches 
every cycle. Considering all the clock signals, the total 
clock power is usually a substantial 30-35% of the 
microprocessor power [3]. 

Clock gating is a well-known technique to reduce 
clock power. Because individual circuit usage varies 
within and across applications [1], not all the circuits are 
used all the time, giving rise to power reduction 
opportunity. By ANDing the clock with a gate-control 
signal, clock gating essentially disables the clock to a 
circuit whenever the circuit is not used, avoiding power 
dissipation due to unnecessary charging and discharging 

of the unused circuits. Specifically, clock gating targets 
the clock power consumed in pipeline latches and 
dynamic-CMOS-logic circuits used for speed and area 
advantages over static logic.  

Effective clock gating, however, requires a 
methodology that determines which circuits are gated, 
when, and for how long. Clock-gating schemes that either 
result in frequent toggling of the clock-gated circuit 
between enabled and disabled states, or apply clock gating 
to such small block that the clock-gating control circuitry 
is almost as large as the block itself, incur large overhead. 
This overhead may result in power dissipation higher than 
that without clock gating. While the concept of circuit-
level clock gating is widely known, good architectural 
methodologies for effective clock gating are not. 

Pipeline balancing (PLB) is a recent technique, which 
essentially outlines a predictive clock-gating methodology 
[1]. PLB exploits the inherent variation of instruction 
level parallelism (ILP) even within a program. PLB uses 
some heuristics to predict a program’s ILP at the 
granularity of 256-cycle window. If the degree of ILP in 
the next window is predicted to be lower than the width of 
the pipeline, PLB clock-gates a cluster of pipeline 
components during the window.  

In contrast to PLB’s predictive methodology, we 
propose a deterministic methodology. Deterministic clock 
gating (DCG) is based on the key observation that for 
many of the stages in a modern pipeline, a circuit block’s 
usage in a specific cycle in the near future is 
deterministically known a few cycles ahead of time. DCG 
exploits this advance knowledge to clock-gate the unused 
blocks. In particular, we propose to clock gate execution 
units, pipeline latches of back-end stages after issue, L1 
D-cache wordline decoders, and result bus drivers. In an 
out-of-order pipeline, whether these blocks will be used is 
known at the end of issue based on the instructions issued. 
There is at least one cycle of register read stage between 
issue and the stages using execution units, D-cache 
wordline decoder, result bus driver, and the back-end 
pipeline latches. DCG exploits this one-cycle advance 
knowledge to clock-gate the unused blocks without 
impacting the clock speed.  

DCG’s deterministic methodology has three key 
advantages over PLB’s predictive methodology: (1) 
PLB’s ILP prediction is not 100% accurate; if the 
predicted ILP is lower than the actual ILP, PLB ends up 



 
Figure 1. Clock gating a latch element 

Figure 2. Clock gating a dynamic logic gate 

clock-gating useful blocks and incurs performance loss. If 
the predicted ILP is higher than the actual ILP, PLB 
leaves unused blocks not clock-gated and incurs lost 
opportunity. In contrast, DCG guarantees no performance 
loss and no lost opportunity for the blocks whose usage 
can be known in advance. (2) PLB’s clock-gating 
granularities, both circuit granularity and time granularity, 
are coarse; PLB’s circuit granularity is a cluster (i.e., 
many back-end stages from register read through 
writeback are considered together). PLB’s time 
granularity is a 256-cycle window (i.e., clusters stay 
clock-gated for 256-cycle windows). In contrast, DCG 
clock-gates at finer granularities of a few (1-2) cycles and 
smaller circuit blocks (execution units, D-cache address 
decoders, result bus drivers, and pipeline latches). 
Because DCG’s blocks are still substantially larger than 
the few gates added for clock gating, DCG amortizes the 
overhead.  PLB’s coarser granularity makes it less 
effective and less flexible than DCG, which is a general 
technique applicable to non-clustered microarchitectures. 
(3) While PLB’s prediction heuristics (FSMs and 
thresholds) have to be fine-tuned, DCG uses no extra 
heuristics and is significantly simpler. 

Using Wattch [2] and a subset of the SPEC2000 suite 
[8], we show that DCG saves on average 19.9% of total 
processor power and power-delay for an 8-issue, out-of-
order processor with virtually no performance impact. In 
contrast, PLB achieves 9.9% average power savings and 
7.2% average power-delay savings, while incurring 2.9% 
performance loss, which are in line with [1].  

This paper makes the following contributions: 
• Although some commercial processors may use some 

form of clock gating, there is no literature on their 
methodology. This paper fills this gap by proposing 
DCG, presenting the issues, and evaluating the 
deterministic methodology. 

• This is the first paper to show that a deterministic 
clock-gating methodology is better than a predictive 
methodology such as PLB.  

• DCG not only achieves more power savings than 
PLB, but also incurs no performance loss compared 
to PLB’s modest degradation, while being simpler. 
The remaining sections are organized as follows. 

Section 2 describes basic clock gating, and identifies the 
out-of-order-issue pipeline stages to which we apply 
DCG. Section 3 presents implementation details for each 
pipeline stage. In section 4, we describe our 
experimentation methodology. Section 5 presents the 
results and compares DCG and PLB. Section 6 discusses 
related work and Section 7 concludes the paper. 

2. Deterministic clock gating 
2.1. Principle of clock gating 

The clock network in a microprocessor feeds clock to 
sequential elements like flops and latches, and to dynamic 

logic gates, which are used in high-performance execution 
units and array address decoders (e.g. D-cache wordline 
decoder).  At a high level, gating the clock to a latch or a 
logic gate by ANDing the clock with a control signal 
prevents the unnecessary charging/discharging of the 
circuit’s capacitances when the circuit is idle, and saves 
the circuit’s clock power.  

Figure 1 (a) shows the schematic of a latch element. 
Cg is the latch’s cumulative gate capacitance connected to 
the clock. Because the clock switches every cycle, Cg 
charges and discharges every cycle and consumes 
significant amount of power. Even if the inputs do not 
change from one clock to the next, the latch still consumes 
clock power. In figure 1(b), the clock is gated by ANDing 
it with a control signal, which we refer as Clk-gate signal. 
When the latch is not required to switch state, Clk-gate 
signal is turned off and the clock is not allowed to 
charge/discharge Cg, saving clock power. Because the 
AND gate’s capacitance itself is much smaller than Cg, 
there is a net power saving.  

A schematic of a dynamic logic cell is shown in 
Figure 2 (a).  Cg is the effective gate capacitance that 
appears as a capacitive load to the clock, and CL is the 
capacitive load to the dynamic logic cell. Similar to the 
latch, the dynamic logic’s Cg also charges and discharges 
every cycle and consumes power.  

In addition to Cg, CL also consumes power: at the pre-
charge phase of the clock, CL charges through the PMOS 
pre-charge transistor and during the evaluate phase, it 
discharges or retains value depending on the input to the 
pull-down logic (shown as “PDN” in the figure). Whether 
CL consumes power or not, depends on both the current 
input and previous output. There are two cases: (1) If CL 
holds a “1” at the end of a cycle, and the next cycle output 
evaluates to a “1”, then CL does not consume any power. 
Precharging an already-charged CL does not consume 
power unless there are leakage losses (which we do not 
consider in this paper). Because the next output is a “1”, 
there is no discharging. (2) If CL holds a “0” at the end of 
a cycle, CL consumes precharge power, irrespective of 
what the inputs are in the next cycle. Even if the input 



 
Figure 3. Basic superscalar pipeline 

does not change, this precharge power is consumed. If the 
next output is a “1”, no discharging occurs; otherwise, 
more power is consumed in discharging CL.  

Figure 2(b) shows the same cell with gated clock. If 
the dynamic logic cell is not used in a cycle, Clk-gate 
signal prevents both Cg and CL from switching in the 
cycle. While clock-gating latches reduces only 
unnecessary clock power due to Cg, clock-gating dynamic 
logic reduces unnecessary dissipation of not only the 
clock power due to Cg, but also the dynamic logic power 
due to CL. Here also, because the AND gate’s capacitance 
itself is much smaller than Cg + CL, there is a net power 
saving. 

2.2. Overview of DCG in a microprocessor 
In this section, we analyze the opportunity of 

deterministic clock gating (DCG) in different parts of a 
superscalar microarchitecture. DCG depends on two 
factors: 1) opportunity due to existence of idle clock 
cycles (i.e., cycles when a logic block is not being used), 
and 2) advance information about when the logic block 
will not be used in the future. 

Figure 3 depicts the general pipeline model for a 
superscalar processor [3]. The pipeline consists of 8 stages 
with pipeline latches between successive stages, used for 
propagating instruction/data from one stage to the next. 
While we clock-gate the stages and pipeline latches 
marked with a “tick mark” in Figure 3, we do not clock-
gate the stages and latches with a “cross mark” due to lack 
of opportunity and/or advance information. Next, we 
explain why we do or do not clock-gate each individual 
pipeline latch and stage.  

2.2.1. DCG for pipeline latches.  

Pipeline latches unconditionally latch their inputs at 
every clock edge, resulting in high power dissipation. As 
the technology scales down, deeper pipeline stages with 
more latches are used. Furthermore, the data width (e.g., 
32 vs. 64 bits) also increases with microprocessor 
evolution. Consequently, the ratio of the latch power to 
the total processor power increases. Because most of the 
stage latches have some idle cycles, clock-gating the 
latches during these cycles can substantially save 
processor power. We now analyze each of the stages to 
determine if an idle cycle for the stage can be known in 
advance. 

We cannot clock-gate the latches following fetch and 
decode because before decode we do not know which 

instruction is useful and which is useless. In [5], the 
authors propose a branch prediction confidence estimation 
method to reduce power dissipation due to often-
mispredicted branches. However, we stick to purely 
deterministic means of realizing clock gating without 
performance loss, and do not apply any confidence 
methods, which come at the cost of performance loss.  

At the end of decode, we can determine how many of 
the instructions, out of those fetched, are in the predicted 
path. That is, if the third instruction in a fetched block is a 
branch and the branch is predicted to be taken then the 
instructions from the fourth instruction to the end of the 
fetched block are thrown away. Only the first three 
instructions enter the rename stage. Hence, we can 
determine the number of instructions that will enter the 
rename stage at the end of decode and clock-gate the 
unnecessary parts of the rename latch. We have the entire 
rename stage to setup the clock-gate control of the rename 
latch. 

Because we can identify which and how many 
instructions are selected to issue only at the very end of 
issue, we do not have enough time to clock-gate the issue 
latch. We can clock-gate the latches for the rest of the 
pipeline stages (i.e., register read (Rf), execute (Ex), 
memory access (Mem) and writeback (WB)). At the 
beginning of the each of the stages we know how many 
instructions are entering the stage, and we can exploit the 
time during the stage to set up the clock-gate control for 
these latches. 

2.2.2. DCG for pipeline stages. 

Fetch stage uses the decoders in the instruction cache 
and decode stage uses instruction decoder, both of which 
are often implemented with dynamic logic circuits. 
However, we cannot clock-gate fetch and decode logic, 
because fetch and decode occur almost every cycle. We 
do not know which instructions are useless until we 
decode them, which is too late to clock-the decode stage. 
Rename stage consumes little power and so we do not 
consider rename stage for clock gating.   

The issue stage consists of the issue queue, which 
uses an associative array and a wakeup/select 
combinational logic. There are many papers on reducing 
the issue queue power. [1] clock-gates the issue queue 
using its predictive scheme. [6] proposes a scheme in 
which issue queue entries that are either deterministically 
determined to be empty, or   deterministically known to be 
already woken-up, are essentially clock-gated.  Because 
[6] already presents a deterministic method to clock-gate 
the issue queue, we do not explore applying DCG to the 
issue queue.  

Register read stage consists of a register file 
implemented using an array. However, only at the very 
end of issue, we know how many instructions are selected 



 
Figure 4. Schematic of a selection logic cell with the clock 

gate signals extracted from it 

 
Figure 5. Clock gating of the execution units 

 
Figure 6. Timing diagram for clock gating 

and are going to access the register file in the next cycle. 
Hence, there is no time to clock-gate the register file. 

We can clock gate the execution units, which are 
often implemented with dynamic logic blocks for high 
performance. Based on the instructions issued, we 
deterministically know at the end of issue which unit is 
going to be used in the cycle after the register read stage. 
Hence, we can clock gate the rest of the unused execution 
units, by setting the clock gate control during the read 
cycle. Modern caches use dynamic logic for wordline 
decoding and the writeback stage uses result bus driver to 
route result data to the register file. Instructions that enter 
the execute stage go through the memory and writeback 
stages. We can use the same clock gate control used in 
execute to clock-gate the relevant logic in these stages. 
The control signal needs to be delayed by one and two 
clock cycle(s) respectively for the memory and writeback 
stages. 

3. Implementation of DCG 
3.1. Execution units 

At the end of instruction issue, we know which 
execution units will be used in the execute stage, a few 
cycles into the future.  The selection logic in a 
conventional issue queue not only selects which 
instructions are to be issued based on execution unit 
availability, but also matches instructions to execution 
unit. Hence, we leverage the selection logic to provide 

information about which execution units will remain 
unused and clock-gate those units. 

Figure 4 shows the schematic of selection logic 
associated with one type of execution units [6]. The 
request signals (REQ) come from the ready instructions 
once the wakeup logic determines which instructions are 
ready.  The selection logic uses some selection policy to 
select a subset of the ready instructions, and generates the 
corresponding grant signals (GRANT). In our 
implementation, we send the GRANT signals to the clock-
gate control.  

Figure 5 shows the pipeline details of the control. 
Because instructions selected in cycle X use the execution 
units in cycle X+2 (as shown in Figure 6), we have to pass 
the GRANT signals down the pipeline through latches for 
proper timing of clock gating. We extend the pipeline 
latches for the issue and read stages by a few extra bits to 
hold the GRANT signals. We note that the gated clock 
line (output of the AND gates in Figure 5) that feeds the 
execution units may be skewed a bit because of the delay 
through the latch and the AND gate. This skew affects 
only the precharge phase and not the evaluate phase. 
Therefore, DCG is likely not to lengthen execution unit 
latencies. 

The control for clock gating execution units is simple 
and the overhead of the extended latches and the AND 
gates is small compared to the execution units (e.g., 32- or 
64-bit carry look-ahead adders) themselves. Therefore, the 
area and power overhead of the control circuitry are easily 
amortized by the significant power savings achieved.  

If execution units keep toggling between gated and 
non-gated modes, the control circuitry keeps switching, 
resulting in an increased overhead due to the power 
consumed by the control circuitry. Current charging and 
discharging may also cause large di/dt noise in the supply 
line. To alleviate these problems, we apply sequential 
priority policy for execution units: Among the execution 
units of the same type, we statically assign priorities to the 
units, so that the higher-priority units are always chosen to 
be used before the lower priority units. Thus, most of the 
time the (lower-) higher-priority units stay in (gated) non-
gated mode, minimizing the control power overhead. As 
described in [3], this sequential priority policy is easy to 
implement and does not affect overall performance. 

3.2. Pipeline latches 
We clock-gate pipeline latches at the end of rename, 

register read, execute, memory and writeback stages.  For 
rename, the number of clock-gated latches in any cycle is 
known from the decode stage in the previous cycle. For 
latches in the other stages, the number of clock-gated 
latches in any cycle is known from the issue stage.  We 
augment the issue stage to generate a one-hot encoding of 
how many instructions are issued every cycle. The 
encoding has a "0" to represent an empty issue slot, and a 



 
Figure 7. Clock gating of pipeline latches 

Figure 8. Clock gating of D-cache decoder 

 
Figure 9. Clock gating of result bus driver 

"1" to represent a full issue slot for an issued instruction, 
for all the issue slots of the pipeline. Much like the 
execution units, the clock the one-hot encoding is passed 
down the pipe via extended pipeline latches.  

Figure 7 shows the clock-gating control for the stages 
following issue queue.  The outputs of the extended 
latches carrying the one-hot encoding are AND’ed with 
the clock line to generate a set of gated clock inputs for 
pipeline latches corresponding to individual issue slots. 
Note that the clock line for the extra latches themselves is 
not gated. 

Extensions to the pipeline latches and the extra AND 
gates for the control are small compared to the pipeline 
latches (containing issue-width x number of operands per 
instruction x operand width bits, e.g., 8 x 2 x 64 = 1024 
bits) themselves, and clock drivers, respectively. Hence, 
the impact of the extra control logic on area and power is 
not significant.  

3.3. D-cache wordline decoder 
D-cache wordline decoders are clock-gated using the 

load/store issue information; similar to the way the 
pipeline latches are gated. The number of load/store 
instructions issued in a cycle is one-hot encoded and 
passed down the pipeline through some extra latches 
added to the regular pipeline latches. A load instruction 
issued at cycle X uses the D-cache in cycle X+3. The 
load/store queue does not delay the load; the load accesses 

the cache and the queue simultaneously. Therefore, in 
cycle X, the one-hot encoding deterministically identifies 
how many ports would be used in cycle X+3, allowing 
DCG to work.  

Stores, however, may be delayed in the load/store 
queue waiting until commit, so that the timing of store 
accesses to the cache may not be pre-determinable. 
Depending upon the load/store queue details, there are 
two possibilities: (1) an upcoming store access may be 
known in the previous cycle, giving time for the clock-
gate control to be set up. (2) If no advance knowledge is 
available, the store may have to be delayed by one cycle 
to allow for clock-gate control set up. Because stores, 
unlike loads, do not produce values for the pipeline, this 
delay will result in virtually no performance loss.  

If in one cycle, we find that the number of loads and 
stores to use the D-cache in the next cycle is less than the 
number of ports, we clock gate the ports, which are 
unused in the next cycle. As before, the amount of extra 
logic for controlling the clock is small compared to the 
large wordline decoders. 

Figure 8 shows the schematic of a port decoder, 
which is implemented in three stages [7]. In the first stage, 
a set of NAND gates is used to implement 3x8 decoders. 
The second stage consists of a large number of NOR gates 
equal to the number of rows and the third stage consists of 
wordline drivers. The 3x8 decoders and the NOR gates 
are usually implemented in dynamic logic due to speed 
and area advantage and hence, can be clock-gated. In our 
experiments, we modified Wattch [2] to incorporate 
dynamic logic port decoder for D-cache.  

3.4. Result bus driver 
To route the results to the register file, writeback 

stage drives large capacitive load arising from the result 
bus. When the input of the result bus transitions back and 
forth between the two logic levels, power is consumed to 
charge/discharge the load capacitance of result bus driver.  

Figure 9 shows the schematic of clock-gating the 
result bus driver. Here, CL is the load capacitance rising 
from the result bus. In Figure 9(a), the result bus driver 
uses static logic, and clock gating is implemented at the 
pipeline latch which feeds the driver. While the result bus 
is not used, Clk-gate signal isolates the input data from 
the result bus. Hence, CL is not charged/discharged even if 
the input switches spuriously. A clock-gating schematic 
for result bus driver using dynamic logic is shown in 
Figure 9(b). Here, clock gating can be implemented 
directly to the result bus drivers. If the result bus is not 
used in a particular clock cycle, Clk-gate signal prevents 
CL from switching, and reduces power.  

Result bus drivers in writeback stage are clock gated 
by using the similar way as the pipeline latches. The 
number of instructions executed in a cycle is one-hot 
encoded and passed down the pipeline through some extra 



Table 1. Baseline processor configuration  
Processor 8-way issue, 128-entry windows, 64-entry 

load/store queue, 6 integer ALUs, 2 integer 
multiply/divide units, 4 floating point ALUs, 4 
floating point multiply/divide units 

Branch 
prediction 

2-level, 8192-entry in first level, 8192-entry in 
second level, 4B history; 32-entry RAS, 8192-
entry 4-way BTB, 8 cycle mispredict penalty 

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-
cycle L2, both LRU 

Main 
memory 

Infinite capacity, 100 cycle latency;  
Split transaction, 32-byte wide bus 

latches added to the pipeline latches. The instruction 
executed in cycle X goes though writeback stage at cycle 
X+2. So the execution units’ control signals can be used 
but need to be delayed by two cycles. The amount of extra 
logic is small compared to the large result bus driver. 

4. Experimental methodology 
4.1. Architectural simulation 

We modified Wattch to perform our simulations [2]. 
We assume that the execution units, D-cache wordline 
decoders and result bus drivers use dynamic logic for 
performance and area considerations. We estimate overall 
processor energy using Wattch scaled for a 0.18µm 
technology. The baseline processor configuration is 
summarized in Table 1.  

We use pre-compiled Alpha Spec2000 binaries [8] to 
analyze DCG’s performance and power. We use ref inputs, 
fast-forward 2 billion instructions, and simulate 500 
million instructions. 

4.2. DCG power calculation 
For each of the execution units, pipeline latches, D-

Cache wordline decoders and result bus drivers, the 
circuit’s power is added if the circuit is not clock-gated. If 
the circuit is clock-gated in a cycle, zero power is added. 
Thus, we assume that there is no leakage loss. 

There is power overhead associated with DCG’s 
control circuitry. We include the power overhead due to 
the extended pipeline latches when calculating latch 
power consumption. Apart from latches, DCG adds some 
extra AND gates. These AND gates can be designed with 
minimum size so that their power overhead is negligible, 
compared to large drivers for the clock tree. 

4.3. Simulation environment for PLB 
For comparison, we also implemented pipeline 

balancing method (PLB), which is proposed for a 
clustered pipeline [1]. We adapted PLB to a non-clustered 
8-wide issue out-of-order superscalar shown in Table 1. In 
our PLB implementation, we use the same clock-gating 
granularity as the PLB paper, except our pipeline is not 
clustered. Accordingly, there are three possible issue 
widths: 8-wide issue, 6-wide issue and 4-wide issue. 8-
wide issue is the normal mode, while 6-wide and 4-wide 
are used for low-power mode. When the predicted IPC 

(Instructions per Cycle) is low, the machine transfers to 6-
wide or 4-wide issue. 

To be consistent with experiments reported in [1], we 
choose issue IPC (IIPC – Instructions issued per cycle) as 
the primary trigger, and floating point issue IPC (FPIPC – 
floating point instructions issued per cycle) and mode 
history (used to reduce spurious transitions between two 
issue modes) as the secondary trigger. We also choose the 
same state machine and threshold values for triggering as 
in [1]. Based on the experiments of [1], the sampling 
window size is 256 cycles. 

In 4-wide issue mode, we disable half of issue slots, 
including 3 integer ALU units, 1 integer multiply/divide 
unit, 2 FPUs, 2 FP multiply/divide units, and 1 memory 
port. In 6-wide issue mode, 1 integer ALU unit, 1 FPU 
and 1 FP multiply/divide unit are disabled. Cache ports 
are left intact because memory bandwidth is important for 
both integer and FP performances. 

Reducing the issue width from 8 to 6 and 4 results in 
some performance loss. PLB does not reduce the issue 
width below 4 because of high performance degradation 
that ensues. 

The PLB paper reduced power for only the execution 
units and issue queue. But DCG clock-gates execution 
units, cache, result bus and pipeline latches. If we 
compare DCG and PLB as they stand, the differences in 
their effectiveness will include not only the differences in 
their methodologies but also the fact that they optimize 
different pipeline components. To isolate the differences 
in their methodology, we show two versions of the PLB 
scheme; we show the savings for the original scheme 
under PLB-orig. We have extended PLB to clock gate 
pipeline latches, D-cache wordline decoder and result bus 
in addition to the execution units and issue queue, in the 
scheme called PLB-ext.  For the D-cache, we modified the 
heuristic to reduce the number of ports from 2 to 1 
whenever the issue width reduces from 8 to 4. In PLB-ext, 
we assume that the appropriate number of pipeline latches 
and result buses are clock gated whenever the issue width 
reduces from 8 to 6 to 4. Note that while PLB-orig and 
PLB-ext clock gate the issue queue, DCG does not. 

The PLB paper based its power calculation on 
estimating power consumption percentage from execution 
units and issue queue for the Alpha 21464 and multiplying 
by usage coefficients to get power saving for 4-wide and 
6-wide issue. To allow for direct comparison between 
PLB and DCG, we use Wattch to calculate power saving 
for PLB-orig and PLB-ext, as we do for DCG. However, 
our PLB numbers are in line with those in [1]. 

4.4. Optimal number of integer ALU units 
Usually a superscalar processor is designed with the 

same number of integer ALUs as its issue. This number is 
intended to achieve high performance by ensuring that if 
all ready instructions happen to use integer units, they 
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Figure 10. Total processor power savings 
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Figure 11. Total processor power-delay savings 

need not wait. This case may be a rarity for most 
applications and some integer units may remain unused 
almost all the cycles. These unused execution units, on the 
other hand, dissipate similar amount of power as the used 
ones. Therefore, a processor with as many integer ALUs 
as its issue width may not be optimal for power and 
performance together.  

Measuring the impact of clock gating in a processor 
with redundant execution units may exaggerate the 
technique’s effectiveness. To determine the optimal 
configuration in terms of the number of integer units for 
the 8-wide issue processor, we observed the effect of 
reducing number of integer units on processor 
performance starting with 8 integer units. In the worse 
case, the relative performance is 98.8% with 6 integer 
ALU units and 92.7% with 4 integer units. Although a 
configuration with 4 units should dissipate less power 
than one with 6 units, the former suffers significant 
performance loss. With respect to both power and 
performance 6 integer units seem to be optimal for 8-wide 
issue processor, we use this configuration in all our 
experiments. For the other execution units also, we choose 
the number of units based on power-performance 
consideration. 

5. Results 
In this section, we present power and performance 

results obtained from Wattch simulation for both DCG 
and PLB methods. We compare the effectiveness of DCG 
with that of PLB in section 5.1. The result shows that 
DCG not only achieves higher power savings than PLB, 
but also incurs no performance loss due to its 
deterministic nature, while PLB incurs some performance 
loss. We isolate the power saving for execution units, 
pipeline latches, D-cache wordline decoders and result 
bus drivers and present them in sections 5.2 through 5.5. 
Finally, in section 5.6, we discuss the effectiveness of 
DCG for future generation processors with deeper 
pipelines. 

5.1. Effectiveness of DCG 
In this section, we compare power savings and 

power-delay saving of DCG against that of PLB.  
Recall from section 4.3 that PLB-orig clock gates 

only the execution units and issue queue, but PLB-ext 
clock gates the issue queue in addition to the same 
pipeline components as DCG – execution units, pipeline 
latches, D-cache wordline decoders and result bus. Not 
considering the issue queue advantage of PLB-ext, the 
difference between PLB-ext and DCG comes entirely 
from the non-predictive nature and the finer granularity of 
DCG, and not from the choice of which pipeline 
components to clock gate. 

In Figure 10, we plot the total power savings 
achieved by DCG (left bar), PLB-orig (middle bar) and 
PLB-ext (right bar) as a percentage of the total processor 

power for the base case processor, which does not 
implement any clock gating. Y-axis represents power 
savings computed as a percentage of total power. DCG 
achieves average savings of 20.9% and 18.8% for integer 
and floating-point (FP) programs, respectively. In contrast, 
corresponding savings for PLB-orig are 6.3% and 4.9%, 
falling considerably behind DCG. Our PLB-orig numbers 
are in line with those in [1]. PLB-ext improves a little 
upon PLB-orig and saves 11.0% and 8.7% power on 
average. The lower savings of PLB-ext compared to that 
of DCG clearly shows that DCG's deterministic 
methodology is superior to PLB's predictive methodology, 
for clock gating the same pipeline components.  

DCG achieves the highest savings for mcf and lucas, 
because these two programs stall frequently due to 
unusually high cache miss rates, affording large 
opportunity for gating.  

The difference in power savings between DCG and 
PLB for a particular program largely relies on the 
utilization of different execution units in the program. For 
some integer programs, such as perlbmk, power savings 
achieved by PLB-orig and PLB-ext are much smaller than 
that achieved by DCG. While these programs have high 
utilization of the integer units, they seldom use the FP 
units. These unused FP units can be easily clock-gated 
using DCG, but PLB does not clock-gate the units 
because of PLB’s coarser granularity (i.e., the integer 
units of the corresponding “cluster” are in use, so the FP 
units are not disabled). 

Figure 11 shows the power-delay savings achieved 
for the processor by DCG, PLB-orig and PLB-ext 
methods computed as a percentage of the base case 
processor’s power-delay. Y-axis represents the percentage 
power-delay savings. The corresponding bars follow the 
same trends as the plot in Figure 10 with one key 
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Figure 12. Integer execution unit power savings 
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Figure 13. FP execution unit power savings 
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Figure 14. Pipeline latch power savings 

difference. Because of the impact on performance in PLB, 
power-delay bars for PLB-orig and PLB-ext are shorter 
than the corresponding power bars in Figure 10. Because 
DCG incurs virtually no performance degradation, power-
delay saving for DCG is the same as its power saving. 
PLB-orig suffers 2.9% performance loss for both integer 
and FP programs, delivering 3.5% and 2.0% power-delay 
savings, respectively. PLB-ext, on the other hand, does a 
little better than PLB-orig in terms of power-delay (8.3% 
and 5.9% respectively) since it saves more power by 
gating more components. To summarize, DCG is a more 
effective technique than PLB, considering power and 
delay together.  

In the following sections, we deal with power saving 
in individual components. We show that DCG's savings 
comes from all, not any one, of the components. We also 
show that for each of the components, DCG achieves 
more savings than PLB-ext, indicating that DCG is 
uniformly effective across all the pipeline components 
considered. 

5.2. Execution units 
In this section we discuss power saving in integer and 

FP units with DCG and PLB-ext. 
In initial simulations, we observed that the utilization 

of integer execution units for the integer benchmarks is on 

average 35%, while the FP units have almost no 
utilization for these programs. On the other hand, for the 
FP benchmarks, average utilizations of the FP units is 
about 23% while the integer units are used for about 25% 
of the cycles on average. DCG allows us to clock-gate an 
execution unit for all its idle cycles (section 3.1). Hence, 
we expect to achieve about 65% and 75% power saving in 
the integer units for the integer and FP benchmarks, 
respectively. We also expect to save almost all and 77% 
of the FPUs’ power in FPUs for integer and FP 
benchmarks, respectively. 

PLB-ext clock-gates half of the pipeline resources 
gated when the processor works in 4-wide issue mode. In 
6-wide issue mode, we disable 1 integer ALU, 1 FPU, and 
1 FP multiply/divide unit, which constitute 1/4 of the total 
functional units. Hence, PLB-ext can save 50% and 25% 
of total execution (integer and FP) unit power in 4-wide 
and 6-wide issue modes, respectively.   

Figure 12 shows the power savings in integer 
execution units by using DCG (left bar) and PLB-ext 
(right bar). The Y-axis corresponds to power saving 
obtained as a percentage of total integer units’ power for 
the base case processor. As expected, the total power 
saving for the integer units is about 72.0% on average.  
The smaller power saving in PLB-ext can be attributed to 
PLB’s predictive nature and granularity limitation. On 
average, PLB saves 29.6% of integer execution unit 
power, which is significantly less than DCG’s savings.  

Figure 13 shows similar plot for FP execution units. 
Y-axis represents power savings in the FPUs calculated as 
the percentage of total power dissipated in the FPUs. 
DCG (left bar) achieves 77.2% total power saving for FP 
programs on average, and close to 100% power saving for 
most integer benchmarks. Power saving for FPUs with 
PLB-ext (right bar) is much less than the saving achieved 
with DCG. On an average, PLB-ext saves 23.0% of FPUs’ 
power for FP benchmarks while, for some integer 
programs, DCG saves the entire FPU power. PLB, on the 
contrary, only gets less than 25% power saving for some 
integer benchmarks such as eon ad perlbmk. This is 
because the trigger condition for PLB for switching issue 
modes depends on both IIPC and FPIPC. Although these 
benchmarks seldom use FPUs, processor works in 8-wide 
or 6-wide issue mode because of high IIPC. Hence, the 
FPUs cannot be disabled and power saving in FPUs with 
PLB is significantly smaller for integer benchmarks than 
achievable with DCG.  

5.3. Pipeline latches 
In this section, we discuss power saving for clock 

gating pipeline latches with both DCG and PLB methods.  
We have observed that the utilization of pipeline latches is 
about 60% on average. Because DCG allows us to clock 
gate a latch for all its unused cycles (section 3.2), we 
expect to save about 40% of latch power. The extra 
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Figure 15. D-cache power savings 
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Figure 16. Result bus power savings 
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Figure 17. Processor power saving for deeper pipelines 

pipeline latches required for implementing control in 
DCG, are not clock-gated, but account for merely 1% of 
total latch power. Though this overhead is small, we 
consider the overhead in all our experiments. 

PLB-ext clock-gates 1/4 and 1/2 of the pipeline 
latches for each stage, when the issue width reduces from 
8 to 6 and from 8 to 4, respectively. This reduction 
ensures that the pipeline stages have the right number of 
latches to accommodate for the low-power-modes issue 
widths. Hence, PLB-ext can save 17% and 33% of 
pipeline latch power when the processor works in 6-wide 
and 4-wide issue, respectively.  

Figure 14 shows the latch power savings for DCG 
(left bar) and PLB-ext (right bar). The Y-axis corresponds 
to the power savings computed as a percentage of total 
power dissipated in pipeline latches without any clock 
gating. The power saving achieved with DCG includes the 
power overhead due to DCG’s extended latches is 41.6%, 
as expected. PLB-ext achieves 17.6% power saving in 
pipeline latches, which is noticeably smaller than the 
saving obtained using DCG.  

mcf and lucas stand out in terms of DCG’s savings. 
Recall that mcf and lucas stall frequently due to high 
cache miss rates, affording large opportunity for clock-
gating the pipeline latches.  

5.4. D-cache wordline decoder  
In this section, we present power saving results in D-

cache wordline decoder. In DCG, we expect to disable a 
wordline decoder for almost all the cycles for which the 
corresponding cache port is not used. Simulations about 
the utilization of memory ports demonstrate about 40% 
average usage of a memory port for the processor 
configuration considered. Because the wordline decoders 
consume about 40% of total D-cache power, we expect to 
save about 25% of cache power with DCG. 

In PLB-ext, we disable one memory port when the 
processor switches its issue width from 8 to 4, resulting in 
50% of decoder power and 20% of total cache power 
saving. To avoid undue impact on performance, we keep 
both the memory ports enabled when reducing issue width 
from 8 to 6. Hence, the 6-wide issue mode does not 
contribute to power saving in D-cache decoder. 

Figure 15 shows the D-cache power saving results for 
DCG (left bar) and PLB-ext (right bar). The Y-axis 
represents power savings as a percentage of total D-cache 
power for the processor with no clock gating. DCG 
achieves 22.6% power saving on average, which closely 
matches the expected saving. On the other hand, PLB-ext 
achieves merely 8.1% savings.  

5.5. Result bus drivers  
In this section, we compare power saving in the result 

bus drivers for DCG and PLB-ext. We have observed that 
the utilization of result bus is about 40% on average. 
Because we can save power in all the unused cycles, we 

expect to save about 60% of power consumed in the bus 
driver using DCG.  

For PLB-ext, we disable 2 (or 4) of the 8 result buses, 
when the processor changes issue width from 8 to 6 (or 4). 
Because the number of enabled result buses is the same as 
the issue width, PLB-ext does not suffer from any power 
loss in the low power modes.  Hence, we can obtain about 
25% and 50% result bus power saving for the processor 
running with issue width 6 and 4, respectively. 

Figure 16 shows power savings in result bus for DCG 
(left bar) and PLB-ext (right bar).  The Y-axis represents 
power savings as a percentage of total result bus power 
for the base case processor. DCG achieves 59.6% average 
power savings, which is according to the expected value. 
The average power saving with PLB-ext is about 32.2% 
which is less than DCG’s savings. The difference in 
power saving between the two methods comes from the 
inherent limitations of PLB-ext. 

5.6. DCG for deeper pipelines 
One important trend in high performance processor 

design is to lengthen the processor pipelines to 
accommodate for higher clock rates. In this section, we 
discuss the impact of DCG on a deeper pipeline. Because 
the advance knowledge of resource usage does not change 
with pipeline, DCG should perform as well or better with 
deeper pipelines.  



 All the resources, which we can gate for the baseline 
architecture, can also be gated for longer pipelines, but the 
opportunity to gate the extra latches depends on which 
stages in the basic pipeline are lengthened. In particular if 
a new pipeline stage is introduced for any step except 
fetch, decode or issue, pipeline latches at the end of those 
stages can be gated using DCG, making DCG an equally 
or more effective technique for processors of future 
generations. It is worth noting that PLB method too 
remains valid for deeper pipelines, but DCG is expected 
to provide more savings than PLB. 

Figure 17 shows the DCG power savings for a deeper 
pipeline. The Y-axis corresponds to DCG power savings 
computed as a percentage of the total processor power for 
the base case processor, which does not implement any 
clock gating.  The left and right bars are for an 8- and 20-
stage processor, respectively. On average, the 20-stage 
pipeline achieves 24.5% power savings, which is larger 
than the 8-stage processor’s 19.9% savings. 

6. Related work 
As discussed extensively throughout the paper, 

pipeline balancing is a predictive methodology to clock-
gate unused components whenever the ILP is predicted to 
be low [1]. Brooks et. al. discuss value-based clock gating 
[9] and operation packing in integer ALUs [10]. Clock-
gating has been used in FP functional units in commercial 
processors [3]. Several papers have proposed schemes to 
reduce cache energy and power [11, 12, 13, 14, 15]. 

Circuit-level clock gating focuses on clock-gating 
finite state machines (FSM) [16]. The limitation of gated-
clock FSM is that its power saving heavily depends on the 
FSM characteristics. However, the approach is not 
effective for general-purpose microprocessor pipelines. 

7. Conclusions  
In this paper, we introduced deterministic clock 

gating (DCG) based on the key observation that for many 
of the stages in a modern pipeline, a circuit block’s usage 
in a specific cycle in the near future is deterministically 
known a few cycles ahead of time. Using this advance 
information, DCG clock-gates unused execution units, 
pipeline latches, D-Cache port decoders, and result bus 
drivers.  

Pipeline balancing (PLB), a previous technique, is 
essentially a methodology to clock-gate unused 
components whenever a program’s instruction-level 
parallelism is predicted to be low. Our experiments show 
an average of 19.9% reduction in processor power with 
virtually no performance loss for an 8-wide issue out-of-
order superscalar processor by applying DCG. In contrast, 
PLB achieves 9.9% average power savings and 7.2% 
average power-delay savings, at 2.9% performance loss. 

Because DCG’s clock-gating granularity is finer than 
PLB’ cluster-based granularity, DCG achieves more 
power savings than PLB. DCG’s deterministic nature 

guarantees virtually no performance loss compared to 
PLB’s modest degradation due to its predictive nature. 
Unlike PLB’s heuristics, DCG does not require fine-
tuning of any threshold values, making DCG simpler to 
implement.  

As high-performance microprocessor pipelines get 
deeper and power becomes a more critical factor, DCG’s 
effectiveness and simplicity will continue to be important. 
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