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Abstract

The performance and power optimization of dynamic su-
perscalar microprocessors requires striking a careful bal-
ance between exploiting parallelism and hardware simplifi-
cation. Hardware structures which are needlessly complex
may exacerbate critical timing paths and dissipate extra
power. One such structure requiring careful design is the
issue queue. In a Simultaneous Multi-Threading (SMT) pro-
cessor, it is particularly challenging to achieve issue queue
simplification due to the increased utilization of the queue
afforded by multi-threading.

In this paper, we propose new front-end policies that re-
duce the required integer and floating point issue queue
sizes in SMT processors. We explore both general poli-
cies as well as those directed towards alleviating a partic-
ular cause of issue queue inefficiency. For the same level
of performance, the most effective policies reduce the is-
sue queue occupancy by 33% for an SMT processor with
appropriately-sized issue queue resources.

1 Introduction

The last ten years have witnessed dramatic micropro-
cessor performance gains, in large part due to microarchi-
tectural innovations such as out-of-order superscalar ex-
ecution and speculative execution. Simultaneous Multi-
Threading (SMT) [21] is one such innovation that improves
overall instruction throughput via the simultaneous sharing
of microprocessor resources among multiple threads. Yet,
to maximize performance, one must strike a careful bal-
ance between parallelism and clock frequency in design-
ing such processors. Overly complex structures may ex-
acerbate critical timing paths, thereby degrading clock fre-
quency, which may yield a net decrease in performance.
An additional consideration is power dissipation, which
has emerged as a major microprocessor design constraint
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across-the-board from handheld to server applications. At
the high-end, power-related problems include higher pack-
aging costs, noise issues associated with large cycle-to-
cycle current swings, room cooling expenses, and power
delivery costs. Overly complex hardware structures may
impact one or more of these factors, leading to higher costs
and/or limited performance.

One structure which has been a major focus of both
speed-enhancing and power-saving techniques is the issue
queue, which holds a window of dispatched instructions
until their source operands have been produced and an ap-
propriate functional unit is available. The delay of the is-
sue queue grows quadratically with both the window size
and the issue width [14]. As the issue width is increased,
so must the window size to effectively exploit this added
width. The resulting increase in delay may place the issue
queue on the critical path [14]. As a result, recent research
has focused on reducing the issue queue delay [9, 10].

The issue queue may also be a major source of power
dissipation. For example, in the Alpha 21264 micropro-
cessor, the integer issue queue is the highest power con-
suming functional block on the chip [23]. The issue queue
may also have a high power density [2], which may lead
to hot spot problems. Thus, a number of issue queue
power-saving techniques have been introduced to attempt
to turn off unused or underutilized issue queue entries dur-
ing application execution. Two such approaches are fine
grain clock gating [3] and dynamic adaptation of the issue
queue [4, 6, 7, 15]. These approaches rely on the fact that
because applications differ in their underlying hardware re-
quirements, there may be phases of execution during which
the issue queue may be underutilized. Exploiting such vari-
ability is the focus of many of today’s issue queue power-
saving techniques.

The use of SMT makes achieving the goal of a fast and
power-efficient issue queue more challenging for two rea-
sons. First, the window of an SMT processor must hold in-
structions from several threads in order to achieve its higher
throughput. This necessitates growing the issue queue to
achieve this larger window. Second, in an SMT processor,
the inability of a single thread to utilize the issue queue (for



instance, due to an Icache miss) can be made up by filling
the queue with instructions from other threads. The result is
increased utilization of the issue queue relative to a single-
threaded machine, and less opportunity for power savings
via dynamic issue queue adaptation or fine-grain clock gat-
ing. Indeed, Seng et al. [18] have demonstrated a 22% re-
duction in the energy per instruction in SMT processors
due to this more efficient resource utilization. Thus, new
techniques are needed that reduce issue queue resource re-
quirements in SMT processors, thereby reducing both issue
queue delay and power dissipation, without unduly impact-
ing performance.

In this paper, we present new front-end policies that re-
duce the occupancy of the issue queues without compro-
mising performance. Our goals are to increase the number
of instructions issued from nearer the head of the queue and
to fill the queue with instructions that are most likely to be-
come ready for issue in the near future. At the same time,
we desire policies which add minimal complexity compared
to the issue queue complexity reduction achieved. We ex-
periment with a number of such policies and achieve a 33%
reduction in the issue queue occupancy for a given level of
performance compared to a baseline with modestly-sized
queues.

The rest of this paper is organized as follows. In the
next section, we discuss the reasons for inefficient usage of
the issue queue, i.e., issue queue clog. We then describe in
Section 3 the baseline and proposed front-end policies that
we comparatively evaluate. In Section 4, we describe our
evaluation methodology, while our results are presented in
Section 5. We discuss related work in Section 6, and finally,
we conclude and discuss future work in Section 7.

2 Reasons for Issue Queue Clog

Issue queue clog occurs when instructions reside in the
queue for many cycles before they are issued. These in-
structions occupy slots that could be used by instructions
which may become ready for issue earlier. This results in
a larger queue being required for a given level of perfor-
mance as well as instructions being issued from deeper in
the queue.

One source of issue queue clog is long latency instruc-
tions that delay the issue of dependent instructions. In most
implementations of modern instruction set architectures, in-
teger instructions have relatively short latencies as com-
pared to floating point instructions. Floating point multiply
and divide instructions are particularly problematic due to
their much longer latencies than floating point add/subtract
instructions. However, many microprocessors hold load in-
structions in the integer issue queue. Loads that miss in the
L1 data cache are the greatest source of integer issue queue
clog. They also contribute to floating point issue queue clog

due to floating point load dependences.
The second source of issue queue clog is long data de-

pendence chains that delay the issue of instructions from
deep in the chain even if all instructions in the queue have
short latencies. Of course, the length of the data depen-
dence chains in the queue is impacted by the first factor,
the latency of already-issued instructions at the head of the
chain. For instance, a chain of data dependent instructions
sourced by a load that misses in the cache may be longer
than one sourced by a low-latency instruction (such as a
load that hits).

A third source of clog is contention for functional units
(including the data cache), whereby instructions have their
source operands available but cannot issue due to not
enough functional units of a given type to handle all ready
instructions of that type, and/or the units are not pipelined.
This is particularly problematic for workloads primarily
composed of operations of a given type, e.g., all integer ap-
plications. In many implementations, including the one we
model in this paper, the peak issue bandwidth is constrained
only by the number of implemented functional units.

We experiment with two overall strategies for reducing
issue queue clog that work in conjunction with the ICOUNT
fetch scheme of Tullsen [20]. In ICOUNT, priority is as-
signed to a thread according to the number of instructions it
has in the decode, rename, and issue stages (issue queue) of
the pipeline. Both of our approaches fetch gate threads un-
der particular circumstances, thereby removing them from
consideration by the ICOUNT scheme. The first approach
uses an approximation of the number of unready instruc-
tions that lie in the integer and/or floating point issue queues
(without incurring the prohibitive cost of precisely calcu-
lating this value) without regard for the reason for their
existence. The second approach specifically targets load
misses as the primary source of issue queue clog. Our initial
design, called Data Gating, bears similarity to a previous
approach proposed by Tullsen and Brown [22] for perfor-
mance reasons; however, we propose an extension of this
approach called Predictive Data Gating that uses load hit
prediction to greatly increase its effectiveness. In the next
section, we describe various derivatives of these policies, in
addition to the baseline front-end policy, in more detail.

3 SMT Front-End Policies

3.1 Baseline Policy

Tullsen [20] explored a variety of SMT fetch policies
that assign fetch priority to threads according to various
criteria. The best performing policy was determined to be
ICOUNT, in which priority is assigned to a thread according
to the number of instructions it has in the decode, rename,
and issue stages (issue queues) of the pipeline. Threads



with the fewest such instructions are given the highest pri-
ority for fetch, the rationale being that such threads may
be making more forward process than others, to prevent
one thread from clogging the issue queue, and to pro-
vide a mix of threads in the issue queue to increase par-
allelism. Two parameters, numthreads and numinsts

characterize an ICOUNT scheme (with the designation
ICOUNT:numthreads:numinsts). The first parameter
dictates the maximum number of threads to fetch from each
cycle, while the second denotes the maximum number of
instructions per thread to fetch.

We also examined the IQPOSN scheme from [20] which
attempts to minimize issue queue clog by favoring threads
with instructions distributed more towards the tail of the
queue. However, we found that IQPOSN provided no sig-
nificant advantage in either performance or issue queue oc-
cupancy over ICOUNT to justify the added complexity of
tracking instructions within the issue queue. (ICOUNT, by
contrast, only requires per-thread counters that are incre-
mented on fetch and decremented on issue.) Therefore, we
choose ICOUNT as the baseline policy against which we
benchmark our proposed schemes.

We ran a variety of experiments for different ICOUNT
configurations (varying numthreads and numinsts) and
found ICOUNT2.8 to be the best baseline policy both in
terms of performance and issue queue occupancy for our
simulation parameters (described in Section 4).

3.2 Proposed Fetch Policies

3.2.1 Unready Count Gating

The first two sources of issue queue clog result in Not
Ready instructions (those with one or more source operands
not available) occupying the queue for an excessive number
of cycles. Unready Count Gating (UCG) attempts to limit
the number of Not Ready instructions in the queue for a
given thread. The precise implementation of such a pol-
icy would count the number of Not Ready instructions in
the queue for each thread, but like IQPOSN, this would be
prohibitive in terms of hardware complexity. Our simpli-
fied UCG implementation operates as shown in Figure 1.
A particular thread’s Unready Instruction Counter is incre-
mented for each instruction from that thread dispatched into
either issue queue in a Not Ready condition. This informa-
tion is usually obtained from a lookup table (e.g., the Busy
Bit Tables in the Mips R10000 [24]) at dispatch time. Each
such instruction dispatched is also tagged in the appropri-
ate queue by the setting of the Unready on Dispatch bit,
which remains set throughout the lifetime of the instruction
in the queue. On instruction issue, the Unready Instruction
Counter is decremented for each issued instruction with the
Unready on Dispatch bit set. Any thread whose Unready In-
struction Counter exceeds a particular threshold is blocked

from further fetching.
One potential drawback with our simplified implementa-

tion is that it fails to account for Not Ready instructions that
become Ready in a queue but do not issue right away due to
the aforementioned third source (functional unit contention)
of issue queue clog. In actuality, excessive contention for
functional units eventually causes data dependent consumer
instructions to be dispatched in a Not Ready state. Thus,
UCG addresses all three sources of issue queue clog, albeit
indirectly in order to simplify the implementation.

We also examine a variation called Floating Point Un-
ready Count Gating (FP UCG) in which only those instruc-
tions dispatched into the floating point issue queue incre-
ment the Unready Instruction Counter. The advantage of
FP UCG is that it can be combined with other schemes tar-
geted towards the integer queue, such as those we describe
in the next two subsections.

3.2.2 Data Miss Gating

Data Miss Gating (DG) directly attacks the primary source
of integer issue queue clog: that due to instructions waiting
in the queue for a load miss to be resolved. In this scheme,
shown in Figure 2, no fetching is performed for any thread
that has more than n L1 data cache misses outstanding. A
per-thread counter is incremented on a load data cache miss
and decremented when the load commits. A thread is fetch
gated whenever its count is greater than n.

3.2.3 Predictive Data Miss Gating

One potential issue with the DG policy is that there is a de-
lay between detection of a fetch gating event (data cache
miss) in the Execute stage of the pipeline and the actual
fetch gating of the thread. This delay may result in in-
structions that are dependent on the load being fetched and
placed in the queue before the thread is fetch gated, thereby
clogging the queue. In Predictive Data Miss Gating (PDG),
shown in Figure 3, we attempt to reduce this time dilation
by predicting a data cache miss when a load is fetched. The
same per-thread counter as DG is implemented, but this
is incremented either when a load is predicted to miss, or
when predicted to hit but actually misses. The latter can be
easily determined using the Load Miss Prediction bit (car-
ried through the pipeline with the load) and the hit/miss out-
come. As in DG, the counter decrements when the load
commits. A thread whose count exceeds n is fetch gated.

Some recent microprocessors, such as the Alpha
21264 [11], incorporate a load miss predictor to determine
whether to speculatively issue consumers of the load. The
load miss predictor in the 21264 is comprised of a table of
four bit saturating counters whose most significant bit pro-
vides the prediction (miss if the bit is zero). The counters
are incremented by one on a hit and decremented by two
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on a miss. By moving the predictor earlier in the pipeline,
we can achieve both functions by carrying the Load Miss
Prediction bit along with the load as described above.

We explored a variety of predictor options and deter-
mined that a 2K-entry table of two bit saturating counters
(indexed by the PC of the load) which are cleared on a miss
and incremented on a hit, and whose most significant bit
determines the prediction, provides an overall hit/miss pre-
diction accuracy of 95%.

3.2.4 PDG Combined with UCG or FP UCG

Combinations of PDG and UCG or FP UCG can poten-
tially address multiple causes of both integer and floating
point clog. Because PDG is more effective at reducing in-
teger queue clog than UCG, and FP UCG addresses addi-
tional causes of floating point clog over PDG, the combina-
tion of these two policies achieves the best results in terms
of both performance and issue queue occupancy reduction
for a mixed integer and floating point workload of all tech-
niques that we evaluated.

4 Simulation Methodology

We modified the SMT simulator (SMTSIM) developed
by Tullsen [19] to implement the new fetch schemes and
to gather detailed statistics on the issue queues. The major
simulator parameters are given in Table 1. The issue width
is equal to the total number of functional units, and issue
priority is by instruction age, with older instructions hav-
ing priority over newer ones. This is essentially modeled in
SMTSIM as a compacting issue queue with position-based
selection. With fine-grain clock gating applied to such a
design, a reduction in issue queue occupancy roughly trans-
lates into an equivalent reduction in switching power [3].

For our baseline, we were careful to select appropriate
queue sizes so as not to overstate any gains from our tech-
niques. We simulated queue sizes in 8-entry increments us-
ing an all-integer workload (described below) to size the
integer queue (as this workload is the most performance
sensitive in terms of integer queue size) and an all-floating
point workload to size the floating point queue (for similar
reasons). We increased each queue size until less than a 5%
overall performance gain was achieved with an additional
increment. Using this approach, we chose 40-entry integer
and 40-entry floating point queues for the baseline.

Our workload consists of eight programs from the
SPEC2000 integer benchmark suite and eight SPEC2000
floating point programs. We compiled each program with
gcc with the -O4 optimization and ran each with the ref-
erence input set. From these 16 benchmarks, we created
the four, eight-thread workloads shown in Table 2, each of

Parameter Value

Fetch width 16 instructions
Baseline fetch policy ICOUNT.2.8 [20]

Pipeline depth 8 stages
Branch Target Buffer 256 entry, 4-way associative

Branch predictor 2K gshare
Branch mispredict penalty 6 cycles

Reorder Buffer entries/thread 512
Architecture registers/thread 32 Int, 32 FP

Rename registers 200 Int, 200 FP
Baseline issue queue entries 40 entry Int/Ld/St, 40 entry FP

Issue queue selection oldest-first
Issue width 11

Functional units 8 Int (4 handle loads/stores), 3 FP
ICache 64KB, 2-way, 64B line, 8 banks
DCache 64KB, 2-way, 64B line, 8 banks

L2 Cache 512KB, 2-way, 64B line,
8 banks, 10 cycle latency

L3 Cache 4MB, 2-way, 64B line,
20 cycle latency

ITLB size 48 entry
DTLB size 128 entry

Main Memory latency 100 cycles
TLB miss penalty 160 cycles

Table 1. Simulator parameters.

Workload Benchmarks

all-integer bzip2, gcc, vpr, gzip,
parser, mcf, perlbmk, twolf

all-floating point applu, lucas, mgrid, art,
swim, equake, mesa, galgel

mix 1 applu, lucas, mgrid, art,
parser, mcf, perlbmk, twolf

mix 2 bzip2, gcc, vpr, gzip,
swim, equake, mesa, galgel

Table 2. Workload mixes.

which consists of 100 million instructions from each bench-
mark. We fast-forwarded each benchmark according to the
guidelines in [17]. As with sizing the baseline issue queue,
we used the all-integer workload in analyzing techniques
for improving integer issue queue efficiency. Similarly, the
all-floating point workload was used in floating point issue
queue experiments. In our summary results, we averaged
the results of all four workload mixes (3.2 billion instruc-
tions in all) in order to simulate the variety of workload
mixes encountered in a multi-threaded machine.

As a performance metric, we chose the harmonic mean
of the relative instructions per cycle (IPC) ratings of the n
threads, calculated as follows:

n
P

n

IPCold

IPCnew

:

This metric penalizes schemes that improve overall per-
formance at the expense of degrading the performance of
particular threads, thereby balancing throughput and fair-
ness considerations [12].

For the DG and PDG policies, we fetch gated a thread
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Figure 4. Integer issue queue occupancy and issue
distribution for single-threaded, baseline multi-
threaded, and proposed policies.

whenever it had an actual or predicted data cache miss,
i.e., n = 0. For the UCG and FP UCG schemes, a thread
was fetch gated when its Unready Instruction Counter ex-
ceeded three and two, respectively. For PDG coupled with
FP UCG, a threshold of three for the Unready Instruction
Counter performed best, while for PDG coupled with UCG,
a threshold of five was used. A higher threshold is needed
in this case to prevent over-gating with the two policies op-
erating simultaneously. We chose these thresholds based on
those that performed best for the combination of all four
workload mixes. These choices of thresholds are in some
cases sub-optimal for the all-integer or all-floating point
workloads. This highlights the need to adapt the thresh-
olds dynamically at runtime to fit the workload, which is an
area for future work.

5 Results

We first present individual results for the integer and
floating point issue queues. In Section 5.3, we present com-
posite results for both queues.

5.1 Integer Issue Queue

Figure 4(a) shows the percentage of cycles that a partic-
ular range of issue queue entries were valid, while the (b)
part of this figure shows in what range of the issue queue
instructions were issued from. AvgST is the average single-
threaded result, i.e., averaged over individual runs of each
of the eight integer benchmarks. In comparing the single-
threaded results with the baseline SMT ICOUNT scheme,
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Figure 5. Statistics for single-threaded and multi-
threaded policies for the integer issue queue.

we find both a higher overall issue occupancy and a greater
number of instructions issued from deeper in the queue with
multi-threading. In fact, with ICOUNT, about 75% of the
time the queue is nearly fully occupied (33-40 valid entries),
while this is the case for only 50% of the time in single-
threaded mode. This reflects the greater usage of queue re-
sources in SMT and the ability to find more instructions
to issue on average each cycle to achieve greater IPC. The
downside, however, is a significant increase in queue occu-
pancy to achieve this higher level of performance.

The distributions for the PDG and PDG+UCG policies
closely mirror those of single-threaded mode. This is pri-
marily because these policies prevent the queue from get-
ting clogged with instructions which are unlikely to issue
in the near future. For instance, with PDG, over 75% of
the instructions are issued from the lower 16 queue entries
(exceeding even that of single-threaded mode), whereas
roughly 40% of the instructions are issued from these po-
sitions with the baseline ICOUNT policy.

Figure 5 provides a variety of statistics for the different
policies as applied to the integer issue queue. As shown
in Figure 5(a), the enhanced policies, particularly PDG and
PDG+UCG, utilize much less of the 40-entry integer issue
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Figure 6. Performance improvement and reduc-
tion in integer queue occupancy for multi-threaded
policies with varying integer issue queue size.

queue than the baseline ICOUNT policy. As shown in the
(b) and (c) parts of this figure, while the average and start is-
sue positions increase dramatically for ICOUNT compared
to single-threaded mode, these two enhanced policies re-
duce these back closer to single-threaded mode levels.

Figure 5(d) shows that the range of issue, defined as the
number of entries between the first and last instruction in
an issue group, remains fairly constant across the multi-
threaded schemes. In others words, the number of neighbor-
ing instructions needed to be inspected on a cycle to cycle
basis is relatively invarient. However, the position of these
instructions in the queue varies significantly by policy. On
average, the issue queue with PDG behaves comparably to
that for a single-threaded workload, yet performance more
than doubles.

A salient feature of these enhanced policies is a reduc-
tion of the average number of in-flight instructions due to
instructions spending less time waiting in the issue queue.
This results in a 25-40% reduction in the number of rename
registers used as compared to ICOUNT.

Figure 6 plots the overall performance improvement ob-
tained relative to ICOUNT with a 16 entry issue queue for
different fetch policies and integer issue queue sizes. The
lower part of this figure gives the reduction in the average
occupancy of the integer issue queue relative to the baseline
with the same number of queue entries.

By all measures (including those in Figures 4 and 5),
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Figure 7. Floating point issue queue occupancy
and issue distribution for single-threaded, base-
line multi-threaded, and proposed policies.

PDG and PDG+UCG are superior to both UCG and DG.
The use of load miss prediction in PDG prevents the queue
from being filled with unready instructions as in DG. This
dramatically reduces the average start issue position and
the average issue position compared to DG, resulting in
a significantly greater reduction in occupancy. As men-
tioned previously, the thresholds in PDG+UCG are tuned to
the larger combined workload; for the all-integer workload
used for Figure 6, these values yield higher issue queue oc-
cupancy savings but worse performance than PDG. In com-
parison to the baseline, PDG achieves better overall per-
formance with a 24-entry queue than the baseline with a
40-entry queue. This represents a 40% reduction in the re-
quired integer issue queue resources to achieve the same
level of performance.

5.2 Floating Point Issue Queue

Figures 7, 8, and 9 give similar statistics for the float-
ing point issue queue using the all-floating point work-
load. With the enhanced fetch policies, floating point is-
sue efficiency improves comparably to that of integer issue.
The PDG and combined policies dramatically increase the
percentage of time eight or fewer instructions occupy the
queue, and the fraction of instructions issued from these po-
sitions, even outperforming single-threaded mode on these
metrics. With a 40 entry issue queue, PDG achieves a 2-
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Figure 8. Statistics for single-threaded and multi-
threaded policies for the floating point queue.

3X reduction in both the average and start issue positions
(Figures 8(b) and (c)), and over a 30% reduction in the oc-
cupancy of both queues (Figure 9(b) and (c)) compared to
the baseline ICOUNT policy in addition to a performance
improvement (Figure 9(a)). The combined policies achieve
greater reductions in queue occupancy than PDG alone but
with a non-trivial performance degradation, again, due to
thresholds that are sub-optimal for this workload.

5.3 Combined Results

Results averaged across all workload mixes in Table 2
are shown in Figure 10 for the three policies that perform
best under this workload as well as for DG. Once again,
we observe how PDG significantly outperforms DG in all
respects due to its ability to perform early and accurate
prediction of load misses. On average, PDG+FP UCG
achieves a cumulative 33% reduction in issue queue occu-
pancy while slightly increasing performance. PDG achieves
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Figure 9. Overall performance, weighted speedup,
and floating point issue queue occupancy for dif-
ferent multi-threaded policies with varying floating
point issue queue size.

greater performance improvement but at the cost of higher
occupancy. In general, the PDG+FP UCG is more robust
than PDG over a range of workloads due to its ability to ad-
dress other sources of issue queue clog in addition to loads.

6 Related Work

Several techniques for simplifying the issue queue
in single-threaded processors have been proposed.
Palacharla [13] proposes a dependence-based microar-
chitecture using multiple smaller queues and grouping
dependent instructions in the same queue. Canal [5] devel-
ops two schemes for simplifying the queue logic. The first
is based on keeping track of the instruction that is the first
use of each produced register value. After being decoded,
each instruction is dispatched in a different way depending
on the availability of its source operands. The second is
based on the fact that the latency of most instructions is
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Figure 10. Overall performance improvement, and
reduction in integer and floating point issue queue
occupancies for different multi-threaded policies
using the average of all four workload mixes.

known when they are decoded. These schemes remove the
associative look-up and could achieve a shorter cycle time.
In [7, 8], Folegnani proposes techniques to dynamically
resize the issue queue based on the parallelism in different
periods of execution. A 15% reduction in the total power of
the processor is achieved with the simplified issue queue.
Power reduction of the issue queue via dynamic adaptation
is also addressed by Buyuktosunoglu [3, 4] in which a 70%
reduction in issue queue power dissipation is achieved with
a 3% average performance degradation. Ponomarev [15]
and Dropsho [6] expand on this work by resizing multiple
structures including the issue queues.

Perhaps the closest work to ours is that by Tullsen and
Brown [22] in which fetching is blocked from threads with
an outstanding long latency load and instructions from that
thread are flushed from the issue queue. Two mechanisms
are used to identify long latency loads: an L2 cache miss
and a load residing in the load queue beyond a particular
number of cycles. With our Data Miss Gating fetch policy,
we gate fetching simply based on L1 data cache misses,
and we do not add the complexity of flushing instructions.
The differences between the approaches are due to the per-
formance focus of [22] and the simplification of the issue
queue as the central tenet of our work. In addition, we in-
troduce the Predictive Data Gating and combined PDG and
FP UCG policies that achieve a significant reduction in is-

sue queue utilization over Data Gating as well as higher
performance.

Front-end throttling is proposed in [1] as a power re-
duction technique for single-threaded processors. Three
fetch/decode throttling techniques are proposed: De-
code/Commit Rate, Dependence-based, and Adaptive. The
Decode/Commit policy compares the number of instruc-
tions decoded and committed during each cycle to make
a throttling decision. The Dependence-based approach
counts the dependences among the decoded instructions,
while the Adaptive policy combines both methods.

Fetch policies with two priority levels have been inves-
tigated in [12, 16]. In [16], the first level priority decision
distinguishes between the foreground and the background
threads, with ICOUNT and Round Robin schemes prioritiz-
ing the threads in each category. However, overall perfor-
mance degrades using this policy. In contrast, [12] demon-
strates combined policies that create a balance between fair-
ness and throughput.

SMT power optimizations have been examined in [18].
The authors demonstrate that an SMT processor with a
smaller execution bandwidth can achieve comparable per-
formance to a more aggressive single-threaded processor
while consuming less power. They also propose mecha-
nisms to reduce peak power dissipation while still maxi-
mizing performance using feedback regarding power dissi-
pation in order to limit processor activity. They also exam-
ine the effect of the thread selection algorithm on power and
performance and propose favoring less speculative threads
over more speculative threads.

In contrast to this previous work, ours is the first to our
knowledge that addresses reduction of issue queue com-
plexity in SMT processors via enhanced, yet low complex-
ity, front-end policies.

7 Conclusions and Future Work

The design of aggressive out-of-order superscalar pro-
cessors requires striking a careful balance between exploit-
ing parallelism and enabling high frequencies. Overly com-
plex hardware threatens to decrease frequency, increase la-
tency, and/or increase power dissipation. The issue queue
is one such critical structure where this balance must be
achieved to optimize performance and power efficiency.
Unfortunately, SMT processors put pressure on increasing
the window size in order to hold instructions from multiple
threads and to make better use of that window, rendering
fine-grain clock gating and adaptive techniques less effec-
tive than in single-threaded designs.

We present an approach for reducing the occupancy of
both the integer and floating point issue queues without un-
duly impacting performance. The enhanced front-end poli-
cies that we propose both increase the number of instruc-



tions issued from near the head of the queue, and prevent
the fetching of instructions which are not likely to issue in
the near future. The result is a 33% reduction in the occu-
pancy of the issue queues for the same level of performance.

In the future, we plan to evaluate adapting the thresholds
dynamically to fit the workload, and to explore the inter-
action between fetch, dispatch, and scheduling policies on
complexity reduction in other areas of SMT processors.
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