
Fault Location and Avoidance in Long-Running

MultiThreaded Applications

by

Sriraman Tallam

A Dissertation Submitted to the Faculty of the

Department of Computer Science

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

In the Graduate College

The University of Arizona

2 0 0 7

2

Get the official approval page

from the Graduate College

before your final defense.

3

Statement by Author

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the interests
of scholarship. In all other instances, however, permission must be obtained from the
author.

Signed:

4

This thesis is dedicated to my parents, Shantha Kannan and Kannan Narasimhachari.

5

Acknowledgements

I am deeply indebted to my advisor, Prof. Rajiv Gupta, for the last 5 years of my

academic career. His work ethic and humility make him a role model and I am very

fortunate and proud to have worked with him. He motivated me towards research

and taught me how to do quality research. It was through a lot of his efforts that we

could together publish in reputed conferences and journals. I sincerely thank him for

all he has done to make the years in Arizona the best of my entire student life.

I would then like to thank Dr. Neelam Gupta for her efforts in helping me do good

research. She made me realize the rigor involved in performing empirical research and

did bear with me during my most difficult times. The research I have done with her

has given me a lot of satisfaction.

I also want to thank Dr. Xiangyu Zhang who was my group mate in Arizona and

who is now a faculty member in Purdue. I will always remember him as my other

advisor. He is a great role model for every aspiring graduate student and I was never

short of motivation when he was around. He has helped me a lot throughout my PhD

and has had a great influence on me.

I would like to thank Dr. John Kececioglu with whom I have spent a lot of

time learning algorithms. I will remember his courses as the most challenging and

satisfying ever. I also would like to thank him for serving on my dissertation commitee

and providing useful feed-back. I would also like to thank Dr. Kobus Barnard for his

feed-back as my dissertation committee member.

I would like to thank Chen Tian, also my group mate in Arizona, for working

with me on a few papers and producing great work. I would also like to thank my

other group mates : Arvind Krishnaswamy, Bengu Li, Vijayanand Nagarajan, and

Dennis Jeffrey for their help. I also want to thank my friends Hariharan Lalgudi,

Praveen Rao, Krishna Muralidharan, Ranjini Swaminathan, Eagu Kim, Rui Zhang,

6

Somasundaram Perianayagam, Mohan Rajagopalan, Haifeng He. I had such a good

time with them in Arizona. I want to thank my friends Michael Isaacs and Raji

Baskaran who have helped me a lot right from my student days in India.

I want to thank my parents for so much that they have provided me with and my

brothers for their support.

Last but not the least is thanks to my wife Aarthi. We got married when I was

still a student in Arizona and she made the last year of my PhD so memorable.

7

Table of Contents

List of Figures . 10

List of Tables . 12

Abstract . 13

Chapter 1. Introduction . 15
1.1. Fault Location in Multithreaded Programs 17

1.1.1. Dynamic Slices of Multithreaded Programs 17
1.1.2. Scalability of Dynamic Slicing 19

1.2. Surviving Faults due to the Execution Environment 21
1.3. Organization . 22

Chapter 2. Fault Location using Dynamic Slicing of Multithreaded

Programs . 23
2.1. Dynamic Slicing of Single Threaded Programs 23

2.1.1. Dynamic Slice for Fault Location in mutt 25
2.2. Dynamic Slicing of Multithreaded Programs 27

2.2.1. Dynamic Slice for Fault Location in mysql - I 29
2.2.2. Dynamic Slice for Fault Location in mysql - II 30
2.2.3. The Happens-Before Relationship 32
2.2.4. Capturing Relevant WAW and WAR dependences 33
2.2.5. Converting WAW and WAR into RAW dependences 35

2.3. Traces - Representing Control and Data Dependences in a File 37
2.4. Summary . 37

Chapter 3. Compact Representation of Control and Data De-

pendence Traces . 39
3.1. The Extended Control Flow Trace Representation (eCF) 41

3.1.1. No-Cost Capture . 44
3.1.2. Fixed-Cost Capture . 45
3.1.3. Variable-Cost Capture . 47

3.2. Representation for Multithreaded Programs 50
3.3. Optimizations to the Extended Control Flow Trace 50

3.3.1. Instrumentation Code Size . 51
3.3.2. Trace Length and Compressibility 52
3.3.3. Reducing the Number of Checks 54

3.4. Recovering the dependence information from the traces 55

Table of Contents—Continued

8

3.5. Recovering Dependence Information from eCF 58
3.6. Summary . 64

Chapter 4. Compression of Control and Data Dependence Traces 65
4.1. Overview of Compression Schemes . 65

4.1.1. Overview of VPC . 66
4.1.2. Overview of Sequitur . 66
4.1.3. Enhancement of Sequitur . 67

4.2. Experiments . 70
4.2.1. Trace Sizes . 72
4.2.2. Runtime Overhead in Trace Collection 75
4.2.3. Dependence Edge Recovery 77
4.2.4. Decompressing the Traces . 78

4.3. Summary . 79

Chapter 5. Generating Reduced Traces of Long-Running Multi-

threaded Executions . 81
5.1. Overview . 81
5.2. Motivating Example . 85
5.3. Automated Execution Reduction . 89

5.3.1. Discovering Irrelevant Threads 90
5.3.2. Discovering Dependences Across TEIs 99
5.3.3. Selective Tracing of Reduced Execution 100

5.4. The Execution Reduction System . 100
5.5. Experiments . 103

5.5.1. Space Overhead . 104
5.5.2. Time Overhead . 106

5.6. Summary . 109

Chapter 6. Environmental Fault Avoidance Via Execution Per-

turbation . 110
6.1. Overview . 110
6.2. Motivating Example . 114
6.3. Fault Avoidance and Prevention . 119

6.3.1. Handling Synchronization Faults 119
6.3.2. Handling Heap Buffer Overflow Faults 120
6.3.3. Handling Bad User Request Faults 121

6.4. System Description . 122
6.5. Case Studies . 125

6.5.1. Atomicity Violation Fault in mysql 126

Table of Contents—Continued

9

6.5.2. Heap Buffer Overflow Fault in mutt 128
6.5.3. Heap Overflow in bc . 129
6.5.4. Bad User Request Fault in mysql 130
6.5.5. Bad User Request Fault in pine 131

6.6. Experiments . 132
6.7. Summary . 135

Chapter 7. Related Work . 136
7.1. Fault Location . 136
7.2. Slicing for Multithreaded Programs 137
7.3. Program Tracing . 138
7.4. Checkpointing, Logging, Replay, and Tracing 139
7.5. Fault Avoidance . 141

Chapter 8. Conclusion . 143
8.1. Contributions . 143
8.2. Future Work . 145

References . 148

10

List of Figures

Figure 2.1. An example DDG for a single threaded program showing the CD
and the DD edges. 24

Figure 2.2. A memory error in Mutt-1.4.2.1. 26
Figure 2.3. An example DDG showing dependence edges for a multithreaded

program. 27
Figure 2.4. Data race error in mysql - I . 29
Figure 2.5. Data race error in mysql - II 31
Figure 2.6. Sequencers in two executing threads to illustrate happens-before

relation. 32
Figure 2.7. The relevant WAWs that need to be captured. 34
Figure 2.8. Converting WAW and WAR into RAW dependences. 36

Figure 3.1. Trace generation, storage, and use. 40
Figure 3.2. Dynamic disambiguation. 43
Figure 3.3. Fully free. 44
Figure 3.4. Partially free. 44
Figure 3.5. Fixed cost check. 46
Figure 3.6. Fixed-cost disambiguation. 48
Figure 3.7. Any-instance dependence. 48
Figure 3.8. Variable-cost check. 49
Figure 3.9. Variable-cost disambiguation. 49
Figure 3.10. Optimizing trace length by executing the disambiguation code of

the correct store instruction. 53
Figure 3.11. Optimizing trace compressibility by executing common piece of

code. 53
Figure 3.12. Reducing the number of checks. 54
Figure 3.13. Code for binary search. 54
Figure 3.14. Control flow & dependence trace. 56
Figure 3.15. Annotated trace representation. 57
Figure 3.16. Recovery example. 58
Figure 3.17. Annotating CFG with control flow information. 59
Figure 3.18. Definitions of Before and After functions to traverse the eCF

along control flow edges. 59
Figure 3.19. Recovering the dynamic memory dependence from the extended

trace for use u executed at time t by replaying binary search. 60
Figure 3.20. Recovering a dynamic data dependence chain and obtaining its

frequency. 61
Figure 3.21. Recovering the dynamic memory dependence from the address

trace for use u executed at time t. 62

List of Figures—Continued

11

Figure 4.1. Enhanced Sequitur Algorithm 69

Figure 5.1. Motivation - mysql (Seg. Fault) Memory error, the different
threads (T1, . . . , T4) are marked and the thread execution intervals (1, . . . , 9)
are numbered. The reduced log shows the intervals that are replayed. The
Symbol ’T’ in the reduced log shows the only intervals that are traced. 86

Figure 5.2. Source Code - MySql Memory Error, root cause 87
Figure 5.3. Pseudo-code for detecting shared memory dependences. The

code shows the processing that is done for every memory load and store
instruction. The 3 stages are clearly marked. 95

Figure 5.4. Implementation of the system showing each step of the framework. 100

Figure 6.1. The various phases that an application goes through in the system. 113
Figure 6.2. Motivation - mysql Atomicity Violation Error. The figure shows

the original log corresponding to the error and the modified log where the
error is avoided by switching the thread schedules. The final log where
the faults has been avoided is also shown. The threads (T1,. . .,T4) are
shown and the TEIs(1,. . .,9) are marked. 115

Figure 6.3. Source code of the mysql atomicity violation fault. 116
Figure 6.4. Implementation of the system showing each step of the framework 123
Figure 6.5. mysql 3.23.56-Source code for atomicity violation fault. 127
Figure 6.6. mysql 3.23.56-Event Log for atomicity violation fault. 127
Figure 6.7. mutt 1.4.2.1i-Source code for heap buffer(p) overflow fault. . . . 128
Figure 6.8. bc-1.06 Source code for heap overflow fault. 129
Figure 6.9. mysql 3.23.56-Source code for malformed user request fault. . . 130
Figure 6.10. pine 4.44-Source code for bad user request fault resulting in heap

overflow. 131

12

List of Tables

Table 1.1. Trace sizes of program executions for small runs and their collec-
tion time in seconds. 19

Table 2.1. Capturing Relevant Inter-thread dependences with the happens-
before algorithm (M - Million, B - Billion). 35

Table 3.1. Trace sizes and compressibility. 40

Table 4.1. Compression Ratio, Memory Used and Runtime Overhead : Orig-
inal Sequitur versus Enhanced Sequitur 68

Table 4.2. Register vs. Memory dependences. 71
Table 4.3. Uncompressed trace sizes. 72
Table 4.4. Sequitur compressed trace sizes. 73
Table 4.5. VPC compressed trace sizes. 74
Table 4.6. Reason for reduced eWPP size when compared to Address Trace. 75
Table 4.7. Distribution of memory dependence types. 76
Table 4.8. Address comparisons per dep. edge using linear and binary search. 77
Table 4.9. Running time of instrumented versions in seconds. 78
Table 4.10. Dependence edge recovery time in seconds. 79
Table 4.11. Decompression times in seconds for compressed traces 80

Table 5.1. Benchmarks and the bugs used in the Experiments. 84
Table 5.2. Trace sizes of multithreaded programs for small runs and their

collection time in seconds. 85
Table 5.3. Cost of shared memory dependence tracking for some multithreaded

programs. 98
Table 5.4. Trace sizes (Basic Blocks) produced by the original and shortened

runs (M - million, B - billion). 104
Table 5.5. Trace sizes (Data Dependences) produced by the original and

shortened runs (M - million, B - billion). 105
Table 5.6. Overhead of logging and the running time in seconds of the original

execution and the reduced execution with and without tracing. 107
Table 5.7. Replay Log Sizes of original and shortened runs, (M - million). . 108

Table 6.1. Benchmarks and the bugs used in the Experiments. 132
Table 6.2. Overheads involved in each of the three phases - logging, avoidance

and prevention-logging. 133

13

Abstract

Faults are common-place and inevitable in complex applications. Hence, automated

techniques are necessary to analyze failed executions and debug the application to

locate the fault. For locating faults in programs, dynamic slices have been shown

to be very effective in reducing the effort of debugging. The user needs to inspect

only a small subset of program statements to get to the root cause of the fault. The

dynamic slice connects the various executed instructions through dependences and

the root cause of the fault is found by inspecting the instructions in the dynamic slice

starting from the point where the execution failed. While prior work has primarily

focussed on single-threaded programs, this dissertation shows how dynamic slicing

can be used for fault location in multithreaded programs. This dissertation also

shows that dynamic slices can be used to track down faults due to data races in

multithreaded programs by incorporating additional data dependences that arise in

the presence of many threads. It shows how the dynamic slices of multithreaded

programs are represented and how they are traversed for fault location. Case studies

presented show that, using dynamic slices, less than 5 program statements had to

inspected to discover the root cause of the bug.

In order to construct the dynamic slices, dependence traces (control and data)

are collected and processed. However, program runs generate traces in the order of

Gigabytes in a few seconds. Hence, for multithreaded program runs that are long-

running, the process of collecting and storing these traces poses a significant challenge.

This dissertation proposes two techniques to overcome this challenge. First, a new

trace representation is proposed to store the generated control and data dependence

traces compactly on disk. Second, schemes that can reduce the size of the generated

traces by exploiting certain program characteristics and tracing only the region of

execution that is relevant to the fault is proposed. Experiments indicate that the

14

compact representation for trace compression can help reduce the space required to

store the generated traces by upto an order of magnitude and the execution reduction

technique that traces only the relevant portions of the execution can reduce the size

of the generated traces by 2 to 5 orders of magnitude.

For applications that are critical and for which down time is highly detrimental,

techniques for surviving software failures and letting the execution continue are de-

sired. This dissertation proposes one such technique to recover applications from a

class of faults that are caused by the execution environment. The technique survives a

fault by rolling back the execution to an appropriate program point and re-executing

the code region under a modified environment. The environment modification (patch)

that prevents the fault is noted to be re-applied if necessary to avoid the fault from

recurring again in the future. This technique has been successfully used to avoid

faults in a variety of applications caused due to thread scheduling, heap overflow, and

malformed user requests. Case studies indicate that, for most environment bugs, the

point in the execution where the environment modification is necessary can be clearly

pin-pointed by using the proposed system and the fault can be avoided in the first

attempt. The case studies also show that the patches needed to prevent the different

faults are simple and the overhead induced by the system during the normal run of

the application is less than 10 %, on average.

In a nutshell, this dissertation shows how dynamic slices can be used in fault

location for multithreaded programs and addresses the challenges of scaling it for

large executions. Also, it proposes techniques which let applications survive faults,

caused due to the execution environment.

15

Chapter 1

Introduction

Software controls many systems we come across and use on a daily basis. It is used in

homes, businesses, hospitals, banks, transportation and restaurants to name a few. It

is also central to the success of many space missions where consequences of faults can

be catastrophic. Hence, it is not surprising that software reliability is of paramount

importance. For instance, the Y2K problem or the millennium bug [5] was a big

concern during the turn of the century as it was thought to potentially affect critical

industries like electricity and finance and its fix resulted in a world-wide expenditure

of more than 300 billion dollars. It has been noted in a study by the National Institute

of Standards and Technology (NIST) [18] that software related failures cost the US

economy about 59.5 billion dollars annually. Hence, software reliability has been a

hotbed of research and will be in the years to come given that software is only getting

more complex.

Faults due to software are inevitable as the programmers are prone to mistakes.

Hence, techniques to analyze the fault after it has occurred and correct the software

is very important. Traces of faulty executions are collected and analyzed to isolate

the root cause of the fault. This process of fault location and debugging, if done

correctly, will prevent the fault from occurring in future runs of the software. Though

this approach permanently removes the error from the software, there are instances

when applications must survive software failures and continue execution. Critical

applications cannot survive long down times, when the error is analyzed and fixed, as

it can be detrimental and must continue to execute even after the fault has occurred.

For instance, a software error [83] brought down an emergency management system

(911) in the city of San Francisco. To make the system active the error was patched

16

but not fixed. Hence, in these instances, techniques for fault avoidance or tolerance

are important. They help in surviving the software failure and keeping the application

active until the error is fixed and the software is updated.

This dissertation first shows how dynamic slices can be extended for fault location

in multithreaded programs. Previous work [113] on dynamic slicing has focussed

on single-threaded programs. This dissertation also shows that dynamic slices can

be used to debug errors due to data races by incorporating additional dependences,

resulting from the multiple threads in the program, in the dynamic slice. Constructing

dynamic slices from faulty executions of long-running multithreaded programs can

be challenging because they generate a lot of dynamic information which needs to

be processed to form the slices. This dissertation proposes techniques to address the

problem of scalability arising from these long executions. Finally, for applications that

are critical and for which down-time is highly detrimental, this dissertation proposes

techniques that can survive software failures and let the application continue the

execution. This technique can recover the applications from a class of faults that

are caused by the execution environment. The technique survives a fault by rolling

back the execution to an appropriate program point and re-executing the code region

under a modified environment. The environment modification (patch) that prevents

the fault is noted to be re-applied if necessary to avoid the fault from recurring again

in the future.

The next section is an introduction on fault location via dynamic slicing of mul-

tithreaded programs. It also identifies the challenges involved in constructing slices

for long-running multithreaded program executions and provides an overview of the

techniques developed for addressing the challenge. This is followed by the section

which introduces the techniques developed for surviving software failures caused by

the execution environment. Finally, the organization of the rest of this dissertation

is presented.

17

1.1 Fault Location in Multithreaded Programs

In this section the problem of fault location in multithreaded programs is discussed.

Multithreaded programs suffer from the different kind of faults that can occur in

single-threaded programs. Additionally, in multithreaded programs, faults due to

data races can also occur. These types of faults occur in multithreaded programs

when one thread executes ahead of another thread due to the absence of synchro-

nization and modifies the state of the execution inappropriately. In this section, it

is shown how dynamic slicing can be extended to locate faults in multithreaded pro-

grams, including faults due to data races. There are two key challenges in achieving

this objective. First, dynamic slice for fault location in single-threaded programs [113]

capture data dependences of the type Read-After-Write (RAW) which are the only

form of data dependences that occur in single-threaded programs. However, in mul-

tithreaded programs, additional inter-thread data dependences, Write-After-Write

(WAW) and Write-After-Read (WAR), arise. Hence, these additional data depen-

dences must be incorporated in the dynamic slice for faults due to data races to be

analyzed. Second, In order to construct the dynamic slice of an execution, program

traces have been used. However, the sizes of these traces for typical programs can

easily run into the order of Gigabytes for even a few seconds of execution. Hence,

techniques for scaling dynamic slicing to long-running executions is necessary.

1.1.1 Dynamic Slices of Multithreaded Programs

To ease the process of fault location, dynamic slices have been tried and tested by

prior work [113]. A dynamic slice connects the various instances of executed program

statements through data and control dependences such that traversing the slice from

the point where the fault occurred leads to the root cause of the fault. Further,

prior work has shown that dynamic slices are very effective in fault location as very

few program statements need to be inspected before the root cause is spotted. For

18

memory faults, it has been shown that it is enough to inspect less than 10 static

statements to find the root cause [118].

However, prior work has mainly focussed on single threaded programs. This dis-

sertation shows how dynamic slices can be used in multithreaded programs too. It

first discusses the representation of the slice in the presence of multiple threads,

showing how the various inter and intra-thread dependences (control and data) are

represented. For single threaded programs, the only form of data dependences that

occur are of the type Read-After-Write (RAW). However, for applications that are

multithreaded, additional inter-thread data dependences, Write-After-Write (WAW)

and Write-After-Read (WAR), arise. These additional data dependences must be

incorporated in the dynamic slice for faults due to data races to be analyzed. This

dissertation shows how these dependences are incorporated and presents case studies

that show how the root cause of data race faults can be located using the slice when

these additional dependences are present. Further, in practice, not all WAW and

WAR dependences correspond to data races, and incorporating all of them in the

dynamic slice leads to huge slices. Hence, this dissertation shows how the happens-

before [63] algorithm can be used to restrict the set of WAW and WAR dependences

captured to be only those that are potentially data races. The techniques presented

can reduce the number of WAW and WAR dependences to be captured by upto 4

orders of magnitude.

The dynamic slice of a faulty execution is obtained by collecting and processing

the control and data dependence information that is generated by that execution.

However, for dynamic slicing to be applicable to long executions which generate a

lot of dynamic information, efficient techniques are desired to collect and process this

information. The next subsection discusses some of the techniques proposed in this

dissertation to allow dynamic slicing to scale to long executions.

19

1.1.2 Scalability of Dynamic Slicing

Table 1.1. Trace sizes of program executions for small runs and their collection time
in seconds.

Program Running Control Dependence Tracing
Time(sec) Trace Trace Time(sec)

mysql 13 6 GB 21 GB 2886
evolution 11 87 MB 390 MB 179
balsa 17 92 MB 209 MB 1787
pftp 10 543 MB 482 MB 903
proxyc 10 1360 MB 456 MB 880
axel 8 313 MB 456 MB 184
prozilla 8 2 GB 6 GB 2640

In order to construct the dynamic slice of an execution, program traces have been

used. The control- flow trace, which implicitly captures the control dependences, and

the data dependence trace, are collected and processed to obtain the dynamic slice.

However, the sizes of these traces for typical programs can easily run into the order of

Gigabytes for even a few seconds of execution. Further, the run-time overhead that is

incurred to generate these traces is significant. Table 1.1 shows the sizes of the control

flow and data dependence traces and the run-time overhead for generating them.

While control flow traces can be stored compactly [64], the data dependence traces are

usually very large and techniques for storing them compactly do not exist. Further,

for applications that are long-running like servers, it is impractical to continuously

trace the entire execution. Hence, collecting and storing traces efficiently in order

to perform fault location is a major challenge. This dissertation describes various

techniques to perform tracing and addresses this challenge.

First, this dissertation proposes a compact trace representation called Extended

Whole Program Paths to store on disk the control and data dependence history of a

program’s execution. The proposed compact trace representation is motivated by the

20

observation that a significant fraction of the data dependence history can be recovered

from the control flow trace. To capture the remainder, disambiguation checks are

introduced in the program whose control flow signatures capture the result of the

checks. The resulting extended control flow trace enables the recovery of otherwise

irrecoverable data dependences. Experiments show that this trace can be stored very

compactly in only about a third of the space required to explicitly store control-flow

and data dependence traces. While this technique can be used to store the generated

traces compactly, an orthogonal technique that can be used to reduce the size of the

generated traces is discussed in the following paragraph.

Second, this dissertation proposes a technique to reduce the trace sizes corre-

sponding to faulty executions in programs that are multithreaded and long-running.

Since an execution of these programs can be potentially very long, it is extremely

expensive in time and space to continually trace the execution online, i.e., when the

application is running normally doing useful work. Also, off-line tracing, i.e., gen-

erating the traces by replaying the execution after it fails is also challenging for the

following reasons. First, since such programs are non-deterministic, reproducing the

failed execution off-line is non-trivial. Further, the faulty execution can generate very

huge traces even if the time overhead of generating them is tolerable. The huge traces

correspond to large dynamic slices which makes it very hard to construct the slices

and puts a huge burden on the user who inspects these slices. In order to overcome

these challenges, this dissertation proposes a framework called Execution Reduction

in which a lightweight logging technique is used to record or log the non-deterministic

events during the original execution. When a fault is encountered, the faulty execu-

tion is deterministically replayed offline using the generated event log. The proposed

framework can reduce the generated trace sizes of the replayed faulty execution by

tracing only the portion of the replayed execution that is relevant to the fault. Ex-

periments show that using this framework the trace sizes can be reduced by two to

five orders of magnitude.

21

1.2 Surviving Faults due to the Execution Environment

As mentioned earlier, there are situations in which it is important to have the ap-

plication continue execution even after a fault has been observed. This dissertation

proposes a technique to let applications recover from faults that occur due to the ex-

ecution environment. These faults are caused by software errors that manifest under

certain environmental conditions causing the execution to fail. Also, these faults can

be avoided if the environment is appropriately modified. For instance, avoiding cer-

tain thread schedules in multithreaded programs can prevent certain synchronization

bugs from manifesting into faults. Such faults that averted by modifying the exe-

cution environment are referred to as environment faults. A large number of faults

that occur in today’s software are environment faults. In a study by Chandra and

Chen [30] and mentioned in Qin et al. [89], 56% of faults in the Apache server are de-

pendent on the environment. This dissertation, proposes a framework to capture and

recover from environment faults when they occur and to prevent them from recurring

again. The faulty execution is captured by using a lightweight logging technique that

records the non-deterministic events in order to allow deterministic replay. Upon a

faulty execution, the code region that produced the fault is replayed repeatedly with

modifications to the execution environment (e.g., changing thread schedules to avoid

a synchronization fault) each time until the fault is avoided. The safe execution en-

vironment (patch) that avoided the fault is then recorded. All future executions of

this application refer to the patch when executing the fault-inducing code region to

try to prevent the fault from recurring again. Three different types of environment

faults are considered (atomicity violation, heap buffer overflow, and malformed user

request) and the system has been found to be effective in avoiding them.

22

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses in detail how

dynamic slicing can be used for fault location in multithreaded programs. Chapters

3 and 4 discuss the trace representation that allows compact storage of the generated

traces from a failed execution. Chapter 5 discusses the techniques that are used to

reduce the size of the generated traces for long-running multithreaded programs by

collecting traces for the relevant parts of the execution. Fault Avoidance is handled

in Chapter 6. Related Work is discussed in Chapter 7. Chapter 8 concludes with

a summary of important contributions of this dissertation and directions for future

work.

23

Chapter 2

Fault Location using Dynamic Slicing of

Multithreaded Programs

This chapter discusses how dynamic slices can be used for fault location in multi-

threaded programs. Previous work has shown that dynamic slices are very effective

in isolating the root cause of the fault in program executions in single-threaded pro-

grams. In fact, it has been shown that for memory errors in single-threaded programs,

inspecting less than 10 static statements is enough to find the root cause using dy-

namic slicing [118]. However, in the case of single-threaded programs the only form of

data dependences that are considered is Read-After-Write (RAW). Whereas, in mul-

tithreaded programs additionally Write-After-Read (WAR) and Write-After-Write

(WAW) must be considered if errors due to data races need to be debugged. This

chapter describes the structure of the dynamic slice when these additional depen-

dences are added and shows how to traverse the extended dynamic slice for fault

location in multithreaded programs.

2.1 Dynamic Slicing of Single Threaded Programs

In this section the formal definition of a backward dynamic slice is provided, as defined

in [113], and is shown how it is used in fault location. Let S represent the set of

executed program statements for an execution. Let s〈t〉 denote the unique execution

instance of a statement s (s ∈ S) at timestamp t. A unique timestamp in increasing

order is assigned to each and every statement execution instance in the order in which

it is executed. Also, s〈t〉 is said to be dependent on s′〈t′〉 if there is a control or data

dependence between the execution instance of statement s at timestamp t and the

24

execution instance of statement s′ at timestamp t′. Let CD and DD denote the set

of exercised control and data dependences respectively exercised. Then, a dynamic

dependence graph (DDG) is defined as follows.

d
1
 : X = ... d

2
 : Y = ...p

1
 : if (Q)

u
2
 : … = Yu

1
 : ... = X

DD

{<1,2>,<3,5>}

DD

{<8,9>,<10,11>}

CD

{<4,5>}

CD

{<7,11>}

Figure 2.1. An example DDG for a single threaded program showing the CD and
the DD edges.

Dynamic Dependence Graph. The DDG of a program’s execution is a directed

graph denoted as DDG (N, E) where N is the set of nodes in the graph and E is the

set of edges where,

N = {s|s ∈ S}

E = {(d → u)[〈t1, t2〉] | (d〈t1〉 → u〈t2〉) ∈ {CD ∪ DD} (d ∈ S, u ∈ S)}

That is, every node in the DDG corresponds to a static program statement that

is executed at least once and a directed edge in a DDG is from node d to node u

annotated with the set of timestamp pairs 〈t1, t2〉 such that execution instance of u

at timestamp t1 is dependent on execution instance of d at timestamp t2. Figure 2.1

shows a portion of a DDG for an execution of a sample program with the control and

data dependent edges. For instance, it can be seen that the fifth execution instance of

statement u1 is data dependent on the second execution instance of statement d1 and

the eleventh execution instance of statement u2 is control dependent on the seventh

instance of statement p1.

25

Dynamic Slice. Given the DDG, the backward dynamic slice of this program’s

execution at s〈t〉, denoted as SLICE(s〈t〉) is the subgraph of DDG such that s〈t〉 is

reachable by following the directed dependence edges from the source to the destina-

tion.

SLICE(s〈t〉) = {NSLICE(s〈t〉), ESLICE(s〈t〉)}

NSLICE(s〈t〉) = {s ∪
⋃

∀s′→s〈t′,t〉∈E

NSLICE(s′〈t′〉)}

Let Dep.Edge = (s′ → s)(〈t′, t〉)

ESLICE(s〈t〉) = {Dep.Edge ∪ ESLICE(s′〈t′〉) | Dep.Edge ∈ E }

That is, the backward dynamic slice of s〈t〉 contains all statements s′ such that

there exists a dependence path from s′〈t′〉 to s〈t〉. In other words, the backward

dynamic slice of an execution instance of a statement s contains all those statements

upon which the execution instance of s is directly or indirectly dependent upon.

Traditionally, the dynamic slice of s〈t〉 is also defined to be the set of static program

statements that influenced the value at s〈t〉. This is nothing but the set of unique

statements in NSLICE(s〈t〉).

During debugging, the statements and the dependence edges in the dynamic slice

of the statement where the fault is observed is inspected which reveals the manner in

which a bug manifested into a fault. The following subsection shows an example to

illustrate this point.

2.1.1 Dynamic Slice for Fault Location in mutt

The program mutt [10] is a text based mail user agent (MUA) for Unix based Oper-

ating Systems. It has many features including customizability, POP3 and IMAP sup-

port, and ability to handle multiple mailbox formats. According to [9], mutt version

1.4 has a known memory bug which is as follows. The Mutt Mail User Agent (MUA)

has support for accessing remote mailboxes through the IMAP protocol. When mutt

26

File : utf7.c

…

utf8_to_utf7 (… size_t u8len) {

…

152 p=buf=safe_malloc(u8len * 2 + 1);

while(u8len) {

...

if (ch < 0x20 || ch >= 0x7f) {

if(!base64) {

192 *p++ = ‘&’;

...

}

…

199 *p++ = B64Chars[b | ch >> k];

…

for(; k >= 0; k -= 6)

202 *p++ = B64Chars[b | ch >> k];

...

}

Figure 2.2. A memory error in Mutt-1.4.2.1.

has to convert the name of the folder from its internal UTF-8 representation to UTF-7

it calls the function utf8 to utf7 in module imap/utf7.c. When this function does the

conversion, it miscalculates the length of the output string. When a UTF-8 folder

name that contains some special characters is supplied, the heap buffer overflows and

a segmentation fault is flagged at line number 199.

Figure 2.2 shows the subset of static program statements that were executed, some

multiple times, before the execution failed. It also shows some dependence edges

without the timestamp annotations for ease of presentation. It is found that the last

instance of line 199 is data dependent on line 202 and vice-versa through variable ’p’.

The arrows indicate the data dependence. Inspecting the data dependence chain in

the slice, it is also found that the first instance of line 199 which is data dependent

on line 192 and this in turn is data dependent on line 152, which is the root cause of

the failure as there is an error in calculating the buffer length at this point. Just 8

static program statements had to be inspected before getting to the root cause, and

the dependence chain provides a very clear explanation on the cause effect relations.

27

2.2 Dynamic Slicing of Multithreaded Programs

d
1
 : X = ...

d
2
 : X = ...

u
1
 : ... = X

RAW

{<5, T
2
, 8, T

1
>, ...}

T
1

T
2

WAW

{<1, T
1
, 5, T

2
>, ...}

u
2
 : ... = X

WAR

{<6, T
2
, 8, T

1
>, ...}

RAW

{<5, T
2
, 6, T

2
>, ...}

Figure 2.3. An example DDG showing dependence edges for a multithreaded pro-
gram.

In this section, the DDG for a multithreaded program execution is discussed

followed by its dynamic slice. In multithreaded programs, due to the presence of

multiple threads, additional data dependences arise apart from RAW arise between

the threads. They are Write-After-Read (WAR) and Write-After-Write (WAW). A

WAR(WAW) dependence occurs between two threads if one thread reads(writes) a

value written by another thread. Notice that while WAR and WAW can only be

between different threads, RAW dependence can be within the same thread. In order

to use dynamic slices in multithreaded programs for detecting data race errors, these

additional dependences must also be incorporated. This section describes the DDG

and the dynamic slice in the presence of these additional dependences.

Let RACE be the set of dependences due to WAW and WAR in the slice. Note

that CD and DD represent the set of dependences due to control and data respec-

tively. It is assumed that the multithreaded program is running on a uniprocessor

system. This gives a strict time order of the various instructions executed by the

different threads and hence each instruction can be uniquely timestamped. Let N

be the set of static program statements that were executed. Let s〈t, T 〉 denote the

28

execution instance of statement s, s ∈ S at timestamp t by thread T . The DDG can

be now defined as follows. Let (d → u)[〈t1, T1, t2, T2〉] denote that execution instance

of u by thread T2 at timestamp t2 is RAW dependent on execution instance of d by

thread T1 at timestamp t1. Let (d ⇒ u)[〈t1, T1, t2, T2〉] denote that execution instance

of u by thread T2 at timestamp t2 is WAR or WAW dependent on execution instance

of d by thread T1 at timestamp t1. Now, DDG (N, E) is then

N = {s|s ∈ S}

E = EORIG ∪ ERACE

EORIG = {(d → u)[〈t1, T1, t2, T2〉]|

(d〈t1, T1〉 → u〈t2, T2〉) ∈ {CD ∪ DD}}

ERACE = {(d ⇒ u)[〈t1, T1, t2, T2〉] (T1 6= T2) |

(d〈t1, T1〉 ⇒ u〈t2, T2〉) ∈ {RACE}}

Figure 2.3 shows the dependence edges in the case of a multithreaded program.

Notice that each dependence edge now additionally contains the thread ids of the

statements involved in the dependences. Further, notice that while RAW edges can

be inter or intra-thread, RACE edges can only be inter-thread. For instance, from

the figure it can be seen that there is a WAW dependence between the 1st instance

of statement d1 from thread T1 and the 5th instance of statement d2 of thread T2.

The DDG is shown to consist of two types of data dependence edges, original (CD

and DD) edges and the newly added WAW and WAR (RACE) edges. Given the

DDG, the SLICE can be defined as follows.

SLICE(s〈t, T 〉) = {NSLICE(s〈t, T 〉), ESLICE(s〈t, T 〉)}

NSLICE(s〈t, T 〉) =

{s ∪
⋃

∀s′⇒s〈t′,T ′,t,T 〉∈ERACE

s′ ∪
⋃

∀s′′→s〈t′′,T ′′,t,T 〉∈EORIG

NSLICE(s′′〈t′′, T ′′〉)}

Let Dep.EdgeRACE = (s′ ⇒ s)(〈t′, T ′, t, T 〉)

Let Dep.EdgeORIG = (s′′ → s)(〈t′′, T ′′, t, T 〉)

29

ESLICE(s〈t, T 〉) =

{Dep.EdgeORIG ∪ ESLICE(s′′〈t′′, T ′′〉) | Dep.EdgeORIG ∈ EORIG}∪

{Dep.EdgeRACE | Dep.EdgeRACE ∈ ERACE}

Notice that, while computing NSLICE, the closure is taken over all nodes that

had RAW edges but not over nodes that had WAW and WAR edges. This is because

the value at the fault point could have been affected by only statements along RAW

and control dependent chains. WAW and WAR edges point at places where races

could have occurred but the value at the point where the fault is observed could

not have been computed directly or indirectly by statement execution instances along

WAW and WAR chains. The next subsection describes three examples that illustrates

how a data race error is found using multithreaded slicing.

2.2.1 Dynamic Slice for Fault Location in mysql - I

THREAD X

…

MYSQL_Log::new_file () {

…

// close the current binlog

1 log_type = LOG_CLOSED;

2 close();

// Thread Y interrupts here

...

//open a new binlog

3 open();

4 log_type = local_log_type;

...

}

THREAD Y

…

sql_insert () {

…

// Log the insert operation

5 if (log_type != LOG_CLOSED)

//log the insert

...

6 else

7 //cannot log, do nothing

...

}

CONTROL

WAR

RAW

Figure 2.4. Data race error in mysql - I

mysql [17] is a multithreaded application which is one of the world’s most popular

open source databases. It is known for its consistent fast performance, ease of use

and high reliability. It is used in more than 10 million installations and runs on more

than 20 platforms.

30

The program mysql ver. 4.0.12 has an atomicity violation bug [11] which is as

follows. A thread that tries to close and open a new log file atomically in order to

flush the previous log gets interrupted just after closing the old log by another thread

that does an insert operation into a database. The second thread, hence, does not

find any open log files and does not record the insert operation. These logs are used

to restore databases and incorrect logs can result in inconsistency.

Figure 2.4 shows the code executed by the two threads that lead to the fault.

Thread X closes the binlog (log that stores all database operations) at line 2 but

before it can reopen it in lines 3 and 4, Thread Y interrupts and performs an insert

operation. It tries to log the operation and checks for an open log at line 5. But,

since it does not find any open log it executes the else part of the branch and the

insert operation does not get logged. Now, once the dynamic slice is constructed and

traversed from the fault point, which is line 7, the last instance of line 5 is in the slice

due to the control dependence. Then, going further, it is found that the condition at

line 5 obtains its value from line 1 by the RAW dependence. Notice that this value is

wrong as it obtains a value of LOG CLOSED. Further, the WAR dependence between

lines 5 and 4 indicate the possibility of a race. Inspecting shows that this is indeed

the root cause as Thread Y raced past Thread X at this point as the operations in

Thread X were not locked. Less than 5 static program statements had to be inspected

to nail the root cause of the error.

2.2.2 Dynamic Slice for Fault Location in mysql - II

According to the bug report [12], mysql ver. 3.23.56 has an atomicity violation error

which is as follows. For some table ‘t’ in the database, when one thread does a row

delete from it and another thread does an insert into it in quick succession, though the

operations take place in the order they are called, they are logged in the mysql binlog

as done in the reverse order. The mysql binlog does not reflect the true sequence of

31

 THREAD X

File : sql_delete.cc

mysql_delete(THD *thd, ...) {

 ...

152 error=generate_table(thd, ...);

 ...

}

generate_table(THD *thd, ...) {

 ...

81 pthread_mutex_lock(...);

 ...

 // Critical Section

 ...

105 pthread_mutex_unlock(...);

108 ... // Logging not locked.

109 mysql_update_log.write(thd,...);

 ...

}

 THREAD Y

File : sql_insert.cc

mysql_insert(THD *thd, ...) {

 ...

266 mysql_update_log.write(thd,...);

 ...

}

WAW

Figure 2.5. Data race error in mysql - II

operations on the same table and hence it is inconsistent with the state of the table

as shown.

—– Log File —–

SET TIMESTAMP=1151980120;

insert into b values (1);

SET TIMESTAMP=1151980107;

delete from b;

—– End of Log File —–

Notice that although the delete operation is done first it gets logged after the insert

operation. The reason is that line 109 in Figure 2.5 which performs the write to the

binlog is not inside the critical section. So, the thread corresponding to the insert

operation gets scheduled before this point and the write to the binlog happens earlier

at line 266. Now, once the dynamic slice is constructed and inspected from the fault

point at line 109, the WAW dependence immediately reveals the race. Notice that

this WAW dependence is through a shared file and not shared memory. Again, here

32

less than 5 static statements had to be inspected to get to the root cause.

2.2.3 The Happens-Before Relationship

T
2

T
1

S
1

S
2

S
5

S
4

S
3

D
1
 : W 0xAF

WAW

WAW

D
3
 : W 0xAF

D
2
 : W 0xAF

Execution

Figure 2.6. Sequencers in two executing threads to illustrate happens-before rela-
tion.

Potentially, the number of WAW and WAR dependences can be very large in

a multithreaded program. However, not all these dependences correspond to data

races. In order to restrict the dependence set to those that can be potential races, the

happens-before algorithm from [63] is used. Happens-Before relationship is designed

on the assumption that if shared-memory accesses are guarded appropriately using

synchronizations then these cannot lead to data races. The happens-before relation

provides a partial temporal order of the memory accesses dynamically based on thread

synchronizations and order of execution. Now, two memory accesses from different

threads that form a WAW or WAR dependence is considered for capture only if a

temporal ordering, a happens-before relation, cannot be found between them. How-

ever, if there is a temporal ordering based on the happens-before relation then this

dependence is not captured as this dependence is not considered a data race.

The implementation of the happens-before algorithm is done according to the pro-

33

cedure described in the paper by Narayanasamy et al. [79]. A sequencer (Sk), which

is nothing but a global timestamp, is associated at that point of a thread’s execu-

tion where a synchronization operation is executed by the thread. All the different

sequencers have a strict time ordering. Any memory access M of any thread falls

between two sequencers SM and S ′
M . For instance, in Figure 2.6 the write to memory

location 0xAF falls between the interval formed by sequencers S1 and S2. Now two

memory accesses i and j belonging to different threads that resulted in a WAW or a

WAR dependence is not considered a race if their sequencer intervals do not overlap,

i.e., S ′
i < Sj or S ′

j < Si. Otherwise, this dependence is a race and is captured.

Figure 2.6 illustrates this where two threads are shown to be executing with se-

quencers associated at points where the threads executed synchronization operations.

Now, the WAW dependence between D1 and D2 is not captured because D1 strictly

happens-before D2 according to the sequencer intervals encompassing them; this de-

pendence is not considered a race. However, in the case of D2 and D3, where there is a

WAW dependence, this is a race because the sequencer intervals which overlap do not

reveal any happens-before relationship between D3 and D2. Hence, this dependence

is considered a potential race and must be captured.

2.2.4 Capturing Relevant WAW and WAR dependences

The previous section described how to avoid capturing WAW and WAR dependences

that do not result in races using happens-before relationship. In this section, it

is shown how only a subset of WAW and WAR dependences need to be captured

for all possible data races in the execution. Let W1 and W2 be two write accesses

such that W2 is dependent on W1 via a WAW dependence. Now, this dependence is

captured only if W1 and W2 are consecutive accesses, i.e., the W2 is the immediate

next write to that memory location following W1. It is shown that capturing these

types of dependences alone is enough to locate any data race. This is very similar

34

to the transitive optimization [81] proposed by Netzer for replaying shared-memory

programs.

D
1
 : W

D
3
 : W

D
2
 : W

D
4
 : W

D
5
 : W

D
6
 : W

WAW

WAW

WAW

T
2

T
1 T

4
T
3

T
5

WAW

WAW

Figure 2.7. The relevant WAWs that need to be captured.

Figure 2.7 shows this using an example. Here, on the left two threads T1 and

T2 are shown. Now, let there be a WAW dependence between D1 and D3 and also

between D2 and D3. However, only the dependence between D2 and D3 is captured

because only D2 and D3 are consecutive accesses. However, it should be noted that

if the WAW between D1 and D3 was actually incorrect during the execution due

to a race then, obviously, the WAW between D2 and D3 becomes incorrect too. In

Figure 2.7, on the right a similar scenario is shown with 3 threads. Here, only the

WAW dependences between D4 and D5, and D5 and D6 are captured. If the WAW

dependence between D4 and D6 turned out to be a race then at least one of the two

captured dependences is also a race error. The argument for WAR is similar, i.e., if

a write access W1 is WAR dependent on a read access R1 then this dependence is

captured only if the write access is the immediate next write after the read accesses.

W1 is the first write access following the read.

Table 2.1 shows the result of capturing only relevant dependences determined

to be races using the happens-before relationship. The multithreaded programs are

35

Table 2.1. Capturing Relevant Inter-thread dependences with the happens-before
algorithm (M - Million, B - Billion).

Program Instrs. Inter-Thread Dependences Ratio
Total Relevant Happens-Bef. (Total/Final)

(Final)
fmm 92 M 86 M 10290 4217 20394
barnes 4.3 B 81.3 M 91185 84825 958
water-spatial 1.3 B 2 M 356 150 13333
water-nsquared 1.1 B 1.6 M 244 156 10256
radiosity 907 M 2.1 B 167341 153379 13691

Average 1.5 B 454 M 53883 48545 11726

taken from the splash benchmark suite [105]. The number of threads created for each

program was 4. The data shows under coulmn Total the total number of inter-thread

WAW and WAR dependences. The column named Relevant shows the number of

inter-thread WAW and WAR dependences that are relevant for capture as described

in this section. Finally, the column labeled Final shows the number of relevant de-

pendences that are races as determined by the happens-before relationship described

in the previous sub-section. The data shows that the number of dependences to be

captured can be reduced by upto 4 orders of magnitude.

2.2.5 Converting WAW and WAR into RAW dependences

Here, it is shown how a simple instrumentation of the multithreaded program can

convert the capturing of WAW and WAR dependences into equivalent RAW de-

pendences. As shown in Figure 2.8, every static write instruction in the program

is instrumented with a read instruction to the same address immediately before it.

Similarly, every static read instruction in the program is instrumented with a write

to the same address, writing the same value as is read, just after it. Now, this does

not affect the correctness of the program. In Figure 2.8, on the left the write at D2

36

D
1
 : W

I
3
 : R

D
2
 : W

WAW

T
2

T
1

RAW

D
3
 : R

I
5
 : R

D
6
 : W

WAR

T
2

T
1

RAW

I
4
 : W

Figure 2.8. Converting WAW and WAR into RAW dependences.

is preceded by the instrumented read, I3. Now, the WAW dependence between D1

and D2 is inferred by the RAW dependence between I3 and D1. There is a RAW

dependence between I3 and D1 because D1 and D2 have to be consecutive memory

accesses according to the previous section. Hence, the read at I3 will get its value

from D1. On the right, I4 and I5 are the instrumented instructions for the read and

write at D3 and D6 respectively. The WAR dependence between D3 and D6 is in-

ferred by the RAW dependence between I4 and I5. The instrumented instructions

are clearly marked in order to differentiate between the original RAW dependences

and the synthetic RAW dependences. Notice that the ability to do this conversion

is possible because all WAW and WAR dependences that need to be captured are

between two memory accesses that are consecutive. Also, it should be noted that this

instrumentation needs to be done only for those reads and writes that can potentially

access shared memory.

Converting all dependences to be captured into RAWs helps in developing a single

efficient technique rather than having to work with three different techniques for

RAW, WAW and WAR. This observation is used in the rest of the dissertation.

37

2.3 Traces - Representing Control and Data Dependences in
a File

As mentioned earlier, traces of control and data dependences are to be collected and

stored in files and then later processed to build the dynamic slice of an execution. In

this section, we describe how the control and data dependences are stored in a file.

The control dependences of an execution can be obtained by capturing the control-

flow trace of a program’s execution. The control-flow trace is nothing but the sequence

of basic blocks that are executed and are stored in a file as a huge string of basic block

identifiers. The data dependence trace contains the sequence of dependences exer-

cised where each dependence is a 6-tuple of the form :

〈source − stmt., Instance, ThreadId, dest − stmt., Instance, ThreadId〉

This tuple gives the information on the source and destination instruction correspond-

ing to each exercised dependence. Alternatively, if an address trace is collected, the

data dependences can then be obtained by processing the address trace. An address

trace is nothing but the sequence of memory addresses accessed by load and store

instructions in the program and the data dependences can be gathered by processing

the address trace together with the control-flow trace. For multithreaded programs,

additionally, the sequencers are also stored at exact points in the trace which cor-

respond to the execution of synchronization instructions. Later, when the traces

are analyzed, these sequencers are processed as mentioned to find happens-before

relations and prune false races.

2.4 Summary

This chapter shows how dynamic slices can be used for fault location in multithreaded

programs. It has also been shown that errors due to data races can be captured

using the slice if the additional data dependences that arise are incorporated. It also

presents some techniques to capture only the relevant WAW and WAR dependences

38

that are races and these can reduce the number of dependences to be captured by

upto 4 orders of magnitude.

39

Chapter 3

Compact Representation of Control

and Data Dependence Traces

As mentioned before, control and dependence traces are processed to construct dy-

namic slices. However, the trace sizes for even small program runs can run into

Gigabytes. This chapter proposes a representation that can be used to store con-

trol and data dependence traces of an execution compactly on disk. The previous

chapter discussed that control flow traces and data dependence traces (explicit) or

memory address traces (implicit) are collected in order to construct the dynamic

slice. Actually, the traces that are collected can be represented in two possible ways:

those that are more appropriate to use when the traces are stored on disk, such as

the Sequitur [84] compressed control flow trace representation called the whole pro-

gram path [64]; and those that are used when traces are held in memory for analysis

such as the timestamped representations of control flow traces [119] and dependence

traces [116]. This chapter develops a compact representation of the control and data

dependence traces to be stored on disk. This representation is called the Extended

Control Flow Trace (eCF) representation which is a unified representation of control

flow and data dependence traces and leads to very compact trace sizes to be efficiently

stored on disk.

As shown in Figure 3.1, the control and data dependence traces are collected and

stored on disk. The dependence information is then recovered from them and the

dynamic slice is formed by constructing the dynamic dependence graph.

The size of these control flow and dependence traces can be quite large for even

small program runs. Table 3.1 gives an idea of the sizes of the traces for sample

40

co
m

pr
es

si
on

on
lin

e
co

m
pr

es
si

on
on

lin
e

trace

flo
w

 g
ra

ph
A

nn
ot

at
ed

In
st

ru
m

en
te

d
pr

og
ra

m
ex

ec
ut

io
n

st
or

ag
e

D
is

k

R
ec

ov
er

y

Control flow
trace

Address
Dependence /

Figure 3.1. Trace generation, storage, and use.

Table 3.1. Trace sizes and compressibility.

Program Uncomp. (MB) Compression Factor
Sequitur VPC

Cont. Dep. Addr. Cont. Dep. Addr. Cont. Dep. Addr.

256.bzip2 154 540 590 57 1.37 4.2 61 5.3 8.4
186.crafty 184 604 638 77 1.53 37.1 25 5.7 17.2
252.eon 115 612 812 767 1.24 1242.0 610 8.3 153.2
254.gap 72 528 593 362 1.51 2.2 179 7.2 5.93
164.gzip 197 408 564 90 1.18 5.1 116 4.5 7
181.mcf 291 687 756 1265 1.18 17.9 3417 6.2 21.5
197.parser 226 642 680 161 1.49 10.5 221 6.1 19.1
253.perlbmk 185 537 652 1542 1.20 52.4 49 4.8 8.3
300.twolf 177 513 559 59 1.25 21.0 29 4.6 7.3
255.vortex 182 618 884 3033 1.26 46.8 113 6.2 16.8
175.vpr 186 525 599 78 1.20 21.7 38 4.8 7.7

Average 179 565 666 681 1.31 132.6 442 5.8 24.8

41

runs. These runs were generated using the reference inputs of the SPEC CPU 2000

integer benchmarks. The traces were collected for instruction counts of approximately

between 350 and 400 million. The average length of the abridged control flow traces

was around 90 million basic blocks and this corresponds to a little more than 1%

of the trace of the entire run. Table 3.1 gives the sizes of the control flow traces

(Cont.), and the memory dependence traces, both when the dependence is captured

explicitly using dependence traces (Dep.) and implicitly using address traces (Addr.).

Since the above traces were collected for the program binaries, the control flow trace

implicitly captures not only the control dependences but also the register dependences.

The table also shows the factors by which the traces can be compressed. It can be

seen that the length of the memory dependence trace is significantly longer than the

length of the control flow trace. Moreover, as shown, the compressibility of memory

dependence traces, using both Sequitur [84] (grammar based compression algorithm)

and VPC [28, 27] (value predictor based compression algorithm), is quite inferior to

that of control flow traces. The table also clearly shows that capturing address traces

is superior to capturing explicit dependence traces as they are not significantly larger

and can be compressed to a greater degree. Hence, address traces in conjunction

with control flow traces have been used as the baseline when evaluating the efficiency

of extended control flow traces. Even though the address traces of some benchmark

programs have good compressibility, overall, address traces do not get compressed as

much as control flow traces. Thus, even if the address traces are compressed before

being stored on disk, they can be quite long.

3.1 The Extended Control Flow Trace Representation (eCF)

In this section, the trace representation for single thread programs is presented. The

next section deals with how to extend the proposed technique to multithreaded pro-

grams. As the data presented in Table 3.1 shows, control flow traces are shorter

42

in length than dependence and address traces. This is because control flow traces

consist of a sequence of executed basic blocks (or paths) while dependence traces

consist of def-use information, the dynamic memory dependences, and address traces

consist of the memory addresses referenced at run-time. Each execution of a basic

block or path may involve several memory references. Moreover, Sequitur [84] based

compression techniques are very effective for control flow traces [64] but significantly

less so for dependence traces and address traces. While compression based on value

predictors, VPC [28, 27], provides a greater degree of compression than Sequitur for

dependence traces, this benefit comes at a price. Traces compressed using VPC have

to be decompressed before they can be analyzed unlike Sequitur, which produces the

compressed trace in the form of a context-free grammar that can be readily analyzed.

For instance, Larus [64] has shown how to traverse the compressed control flow trace

to find hot-subpaths.

The above observation served as a motivation to search for an alternative to the

dependence/address trace. It should be noted that the dependence/address trace is

needed because when used in conjunction with the control flow trace it enables the re-

covery of all dynamic memory dependences. The focus of this section is on designing

an extended control flow trace representation from which it is possible to extract dy-

namically exercised memory dependences. To enable the recovery of dynamic memory

dependences, the extended trace should include additional information. The following

are the goals in designing the extended trace representation:

1. The additional information contained in the extended trace should be in the

form of control flow so that the existing compression algorithm by Larus [64]

can be used to compress the extended trace.

2. The incremental cost of generating the additional information should be mini-

mized both in terms of the increase in the size of the trace and the increase in

the program execution time due to the generation of the trace.

43

First, the additional information that is needed to recover the memory depen-

dences from the control trace is discussed. Consider a path from def1 to use that

passes through def2 as shown in Figure 3.2. It is assumed that memory dependences

e1(def1, use) and e2(def2, use) are potential memory dependences, due to aliasing, that

may or may not be manifested during a particular execution of the path. While the

control flow trace will capture each execution of the path, additional information on

the addresses referenced by def1, def2, and use is needed to identify the dynamic

memory dependences. Thus, immediately preceding the use, dynamic disambigua-

tion checks are introduced: disamb e1 compares the addresses referenced by def1 and

use while disamb e2 compares the addresses referenced by def2 and use. As will be

seen later, the control flow signature of the disambiguation checks captures the result

of the comparison (true or false). Thus, the extended control flow trace (i.e., the

original control flow trace augmented with the control flow signatures of the disam-

biguation checks) contains all the information needed to identify the dynamic memory

dependences.

2

use

def2 e1

disamb

disamb

e1

e
2

def1def1

def2

use

e

e
2

1

e

Figure 3.2. Dynamic disambiguation.

Given a set of potential memory dependences, to minimize the cost of the disam-

biguation checks, each memory dependence is classified into one of three categories:

no-cost, fixed-cost, and variable-cost dependence. As the names suggest, the three

categories differ in the cost needed for the disambiguation checks. The program

transformations designed to enable this classification and the collection of the mem-

44

ory dependence history are described next.

e
2

e1

 1.3.4(def(X:1),use(X:4))

(def(X:2),use(X:4)) 1.2.4
+

.... = X

X =
2

1
X =

3

4

Figure 3.3. Fully free.

e1

+

(def(X:1),use(X:4)) 1.3.4

e2

.... = X

2

1
X =

3

4

*P =

(def(X:1),use(X:4))
 1.2.4

(def(X:2),use(X:4))
or

Figure 3.4. Partially free.

3.1.1 No-Cost Capture

In general, disambiguation checks need to be introduced to capture dynamic memory

dependences. However, for a subset of dependences, disambiguation checks are not

needed as the outcomes of these checks can be determined directly from the control

flow trace.

Definition 1. (Fully-free dependence) A def-use memory dependence is a fully-

free dependence iff under every execution of the program all occurrences of the

dependence can be recovered from the program’s control flow trace.

Figure 3.3 illustrates this situation. The two definitions and one use in this example

always refer to the same variable, i.e., X. Moreover, for path 1.3.4, it is guaranteed

that dependence edge e1 is exercised and for all other paths that arrive at 4 via 2,

dependence edge e2 is exercised. Thus, the control flow trace is sufficient to identify

these dependences when exercised.

45

Definition 2. (Partially-free dependence) A def-use memory dependence is a

partially-free dependence iff, in general, only some occurrences of the dependence

can be recovered from the program’s control flow trace.

Figure 3.4 illustrates this situation. The definition in node 2 assigns a value through

a pointer. Let us assume that a points-to analysis indicates that the pointer P may

point to variable X. For path 1.3.4, it is guaranteed that dependence edge e1 is

exercised. However, for all other paths that arrive at 4 via 2, the dependence edge

e1 may or may not be exercised. Thus, the control flow trace only captures partial

information for dependence edge e1, i.e., when exercised through 1.3.4.

The presence of free dependences can be recognized at compile time as follows.

First, given a def that reaches a use, the def and use must always refer to the same

variable (say X). Next, if every path from the def to the use along which the depen-

dence can be exercised is definition-clear w.r.t X, then the dependence (def, use) is

fully-free. If the preceding condition is only true for a subset of paths from def to use

(i.e., along at least one of the paths, a definition of a may-alias of X is encountered),

then this dependence (def, use) is partially-free.

3.1.2 Fixed-Cost Capture

Free capture is only possible when the def and the use are guaranteed to refer to the

same address. If the def and use may, but not necessarily, refer to the same address,

the disambiguation check must be performed at run-time. If the def always refers to

the same variable (say X), while the use may or may not refer to X, introducing a

fixed cost disambiguation check will enable detection of instances of this dependence.

A fixed cost check means that every execution of the use will require a constant

amount of additional work to perform the disambiguation check for the def and use,

which is a comparison of the address of X with the address read by the use.

46

Definition 3. (Last-instance dependence) A def-use memory dependence is a

last-instance dependence iff every occurrence of this dependence is caused by

the latest execution of the definition statement prior to the execution of the use

statement.

The reason why some dependences can be captured at a fixed cost is because they

are last-instance dependences. If the def always refers to the same variable and if the

def is executed multiple times prior to executing the use, only the last execution of

the def is relevant to the executed use as the def assigns to the memory address every

time and hence is a last-instance dependence.

ec

ec T

T F

e

if addr(def)==addr(use)

disamb e

disamb e

use

def

Figure 3.5. Fixed cost check.

A fixed-cost disambiguation check for dependence edge e, denoted as disamb e,

has the form shown in Figure 3.5. The control flow signature of disamb e is (Ce.C
T
e)

if the check finds an address match; otherwise it is (Ce). The key point to be noted is

that the result of the disambiguation check is captured by its control flow signature

and is incorporated in the extended control flow trace. There is no need to explicitly

save the def information for this use, i.e., the dependence trace need not be collected.

The example in Figure 3.6 illustrates a situation in which fixed-cost checks are

needed to capture the three memory dependences corresponding to the use in node 5.

In this example it is assumed that it is known that pointer P is not assigned in the

code fragment shown. Thus the def in node 1 and the use in node 5 always refer to

the same address. Assuming that P may or may not point to X or Y , disambiguation

checks are needed to compare the addresses of X and Y with ∗P .

47

It should be noted that in the transformed program, each execution path from 1 to

5 uniquely identifies the exercised memory dependence edge. For example, consider

the path 1.2.4.4.6.7.8.5. The disambiguation check signatures (6.7) and (8) indicate

that P points to X not Y . The control flow 1.2 indicates that the def in node 2 is the

latest definition of X before arriving at 5. Thus, it can be concluded that memory

dependence edge e2 is exercised along this path. Similarly, determinations can be

made for all other paths.

3.1.3 Variable-Cost Capture

In the case of free-dependences, both def and use were guaranteed to always refer to

the same address while in the case of fixed-cost dependences, only the def was always

guaranteed to refer to the same address as the addresses referred to by the use could

vary. Now, consider the final case where both the def and use can refer to varying

addresses.

This final situation is illustrated by the example in Figure 3.7. When the execution

proceeds along path 1.2+.4 (2+ refers to one or more occurrences of 2), the value of X

assigned through ∗P in node 2 reaches the use of X in node 4. While the statements

in node 2 may be executed several times, only the first execution of the definition

assigns a value to X via ∗P . Thus, the dependence between the definition of ∗P in

node 2 and the use of X in node 4, denoted as (∗P : 2, X : 4), is not a last-instance

dependence. In fact, by changing the assignment to P = &X in node 1, situations

can arise where the dependence exists between any-instance of ∗P : 2 and X : 4.

Definition 4. (Any-instance dependence) A def-use memory dependence is an

any-instance dependence if an occurrence of a dependence can be caused by any

one of the executions of the definition statement prior to the execution of the

use statement.

48

e2

e3

e1

2

1

3

4

5
.... = *P

*P =

X =

Y =

e1

e2

e3

e2disamb

e2
C

e2
C

T

1
*P =

X =2

disamb e FT

Ce

C
T
e

3

3

3

8

9

4
Y =

5
.... = *P

FT

3

6

7

Figure 3.6. Fixed-cost disambiguation.

e1

e2

.... = X

2

1

3

4

*P =
P++

X =
P=&X

Figure 3.7. Any-instance dependence.

49

ec

ec T

e

save
def

FT

if addr(def)==addr(use)
T

F

disamb e

match=T

while more & no match do

disamb e

use

Figure 3.8. Variable-cost check.

To capture any-instance dependences, two things need to be done. First, all the

addresses assigned to by the multiple executions of the definition must be saved in a

buffer. Second, at the use, a variable-cost check shown in Figure 3.8 must be inserted.

This check compares the use address with the definition addresses saved in the buffer

one at a time starting from the latest address. The checks continue to be performed

until a match is found or no more addresses remain in the buffer. The complete cost

of this check is a variable as it can vary from a minimum of one check to as many

checks as there are addresses in the buffer. The size of the buffer also continues to

grow as the program executes. The example of Figure 3.7 once transformed using the

variable-cost disambiguation results in the code shown in Figure 3.9.

2edisamb

2eC
T

2eC

1e

2e

5

6

7

T F

T

F

1 X =
P=&X

.... = X
4

2 *P =
P++

3

Figure 3.9. Variable-cost disambiguation.

50

3.2 Representation for Multithreaded Programs

Multithreaded executions are handled as follows. The representation described in

the previous sections is used for independently representing the intra-thread control

and data dependences for each thread, i.e., the extended control flow trace of each

thread is stored independently. The disambiguation checks that are described are

performed on each thread independently and hence they capture the intra-thread

RAW dependences. Further, the thread scheduling information is also saved. This

is used to put the extended control flow traces of all threads together. This is based

on the assumption that the program is executing on a single processor and hence

only one thread can be using the processor resources at any point of time. Once

the traces of all threads can be put together, the instances of every instruction are

known. Notice that the thread id of each instruction is known from the trace of the

thread the instruction belongs to. Hence, the instance and the thread id of the source

and the destination statement can be obtained corresponding to each dependence.

Then, what remains is how to disambiguate inter-thread RAW dependences. Recall

that WAW and WAR dependences need not be explicitly captured if the program is

instrumented to convert all dependences to RAWs. This was explained in Chapter 2.

Disambiguation of inter-thread RAW dependences is similar to the variable-cost

capture described in the previous section. It is assumed that the set of all possible

inter-thread reaching definitions for every read statement have been identified using

static analysis. Since, the dependence is inter-thread, the source of the dependence

is treated as a pointer. Hence, the disambiguation is a search for the address in the

buffer of the write instruction.

3.3 Optimizations to the Extended Control Flow Trace

The generation of the extended control flow trace involved inserting a series of dis-

ambiguation checks (instrumentation) at different points in the program. In this

51

section a series of optimizations is presented that are aimed at tuning the insertion

and execution of instrumentation code so that the size of the instrumentation code,

the space and time cost of executing it, and the compressibility of the resulting trace

are improved.

3.3.1 Instrumentation Code Size

Notice that disambiguation checks require computing of potential dependence infor-

mation corresponding to each load. It is assumed that all potential memory depen-

dences are identified, classified, and the program is instrumented according to the

classification. However, in practice, due to the conservative nature of static analy-

sis, too many spurious memory dependence edges may be present causing the cost

of instrumentation to become very high. The unnecessary instrumentation will not

only incur execution time overhead but will also increase the length of the extended

control flow trace and the cost of recovering memory dependences.

To solve the above problem, a two phase profiling scheme is used that consists

of a filtering phase and a collection phase. In the filtering phase, the program is in-

strumented to identify all memory dependence edges that are exercised at least once

during execution. Also, based upon their behavior, the dependences are classified

as no-cost, fixed-cost, or variable-cost. Now that all actually encountered memory

dependences have been identified, the program is instrumented only with the disam-

biguation checks that are needed to capture these dependences. The instrumented

program is then run to collect the extended whole program path. The instrumenta-

tion needed for the filtering phase is similar to the one used by Agrawal and Horgan

[20] for their second approximate slicing algorithm – mapping between an address

and the statement that defined it last is maintained to detect all exercised memory

dependence edges.

This approach is not directly applicable in the presence of non-determinism since

52

the second run on the same input may exercise some dependences that were not

exercised during the first execution. The absence of instrumentation code for such

dependences can cause such dependences to be missed. One solution to this problem

is to conservatively introduce instrumentation code to capture all potential memory

dependences. Another solution is to capture non-deterministic events in the first

run and replay them using the second run so that no new dependences are exercised.

For the multithreaded programs considered, non-determinism exists as the scheduling

decisions need not be similar in each run. Hence, a logging scheme [96] was used to

record the original execution and deterministically replay it the second time.

3.3.2 Trace Length and Compressibility

Each time a load is encountered, the disambiguation codes for all the corresponding

stores (potential sources of the dependence) are executed. Therefore, the correspond-

ing trace produced can be very long. A simple optimization can ensure that only

the disambiguation code for a single store is executed. Track the last store for each

address at runtime and use it to quickly identify the source of the dependence. Then,

implement this by using a hash table that is indexed by the memory address and stores

the identifier of the source statement that last wrote to this address. The instrumen-

tation code for only this source is executed – the purpose of the trace produced is

then to only identify the precise instance of this defining store. This optimization is

shown in Figure 3.10. Note that not only the length of the trace produced is reduced

but also the cost of executing the instrumentation code.

Next, consider another optimization that is aimed at sharing the instrumentation

code across different uses (loads). This optimization not only reduces the overall size

of the instrumentation code that is inserted but also increases the compressibility of

the trace produced by this instrumentation code. A single copy of the instrumentation

code as shown in Figure 3.11 is created For each load, its corresponding stores are

53

disamb 1

disamb 2

disamb n

use

source

disamb 1 disamb 2 disamb n

use

Figure 3.10. Optimizing trace length by executing the disambiguation code of the
correct store instruction.

disamb max(m,n)

disamb n disamb mdisamb 1 disamb 2

src a?

use a

src b?

use b

source

disamb 1 disamb 2

src a? src b?

disamb 1 disamb 2

use

use a use b

Figure 3.11. Optimizing trace compressibility by executing common piece of code.

numbered from 1 to n (≤ maxn). At each load, the source of the dependence is

determined and a call is made to the shared instrumentation providing the source

id (1 ≤ id ≤ n) and a pointer to its corresponding buffer. The instrumentation

code is then executed producing traces such that traces for different loads now look

similar thus enabling a greater degree of compression. The control flow trace produced

still uniquely identifies the dynamic memory dependences. By finding the source of

the call to the instrumentation code from the control flow trace, the load execution

that is being processed is determined. Then, by examining the control flow trace

produced by the instrumentation code itself, the source of the dependence (1 to n)

and the specific execution instance of the source that is involved is known. The

compressibility of the trace improves because each disambiguation involves executing

54

a common piece of code and hence, these basic blocks repeat in the extended control

flow trace. Sequitur or VPC is then able to effectively capture these repetitions and

compress them.

3.3.3 Reducing the Number of Checks

Expanding Buffer

0x123 0x678 0x1230x899address :

timestamp : 12 156 1024 9998

binary search timestamp = 1024

0 1 2 3

Figure 3.12. Reducing the number of checks.

BinarySearch(defTS [], timestamp) {
length = number of entries in defTS;
top = length, bot = 1,mid = (bot + top)/2;
while (defTS [mid] 6= timestamp) do

{
if (defTS [mid] < timestamp)

B0 : top = mid − 1;
else

B1 : bot = mid + 1;
mid = (bot + top)/2;

}
E : end while

}

 while...

 if...

 E

B0 B1

Figure 3.13. Code for binary search.

For the variable-cost transformation, the number of checks could be as high as

the number of addresses stored in the buffer. This cost could significantly increase

the runtime overhead. A great reduction is achieved to this cost by using the fol-

lowing optimization. Instead of using a linear search, the buffer is adapted to allow

55

binary search by saving along with the address, the global timestamp at which the

address was written to by the store instruction. At runtime, the global timestamp of

the last write to each address is tracked. Now, at runtime, when a load is encoun-

tered, a lookup is performed to the timestamp of the latest write to the address being

referenced by the load. The address in the buffer is searched using the last write

timestamp. Since the timestamps in the buffer appear in ascending order, binary

search is used to find the relevant timestamp and hence determine the distance. Re-

placing linear search by binary search greatly reduces the number of checks required.

For instance, if 1 billion instructions are executed, the number of checks for each load

cannot exceed log2(1 billion) = 30. For the benchmark runs that were considered, on

average, only 10 checks were needed for every dynamic dependence exercised.

Figure 3.12 illustrates the above approach. It shows a snapshot of a sample buffer.

Let us say that a load corresponding to address 0x678 is encountered. The last write

information for the address implies that the timestamp at which the last write to this

address was performed is 1024. Now a search is conducted for timestamp 1024 using

binary search as the timestamps appear in ascending order. Once the proper entry

in the buffer is found, the distance can be determined. Figure 3.13 shows the code

and its CFG that does this search. defTS refers to the array of timestamps, which

correspond to the different instances of the definition.

The extended control flow trace will include the control flow signatures from the

binary search routine that is executed to capture every variable cost dependence,

implicitly capturing the definition and its instance responsible for this dependence.

The next section discusses how to recover this information from the trace.

3.4 Recovering the dependence information from the traces

In this section it is described how the traces are processed when they have to be stored

in memory and analyzed for use in various applications. First, how the memory or

56

data dependences are expressed as annotations on the static program representation

(similar to the dynamic dependence graph presented in the previous chapter) is dis-

cussed. Such annotated representations are very useful when these dependences have

to be stored in memory for analysis and have been discussed in [119, 116].

......

......

Read Y

Read X1

2

4 5

6

7

8

9

3

*p =

......

....=X

X=....

....=Y

....=X

....=Y

....=X
X=....

Time Control Flow Dependence
Stamp (ts) Trace (CF) Trace (DD)

1 1 · · ·
2 2 · · ·
3 3 · · ·
4 5 · · ·
5 6 Y(1,1), X(1,1)
6 8 X(6,1)
7 2 · · ·
8 7 Y(1,1), X(6,1)
9 8 X(7,1)
10 2 · · ·
11 3 · · ·
12 4 p = &X
13 6 Y(1,1), X(4,1)
14 8 X(6,2)
15 9 · · ·

Figure 3.14. Control flow & dependence trace.

Consider the execution traces in Figure 3.14 in which the dependences are ex-

plicitly represented. The control flow trace CF gives the sequence of basic block ids

executed. Let us assume that ∗p corresponds to the contents of the address of X in

this run (p = &X). The dependence trace representation in Figure 3.14 is interpreted

as follows. At ts = 14, X(6, 2) means that the use of variable X at this execution

point was data dependent on the second execution instance of basic block 6. That is,

the definition corresponding to the use at ts = 14 comes from the second execution

instance of basic block 6, which is the definition of X at ts = 13. Given a use at

some execution point, its corresponding def, which is the program statement and the

instance, can be directly obtained from the dependence trace as the dependences are

57

......

......

1

2

4 5

6

7

9

3

......

......

....=Y

....=Y

....=X

X=....

X=....

....=X

Read Y

Read X

*P =

8
....=X (9,8)

(5,1)

(6,5)(14,13)

(8,8)

(13,12)

(8,1)

B[2,7,10]

B[1]

B[3,11]

B[12]

B[4]

B[5,13]

B[8]

B[6,9,14]

B[15]

(5,1)(13,1)

Figure 3.15. Annotated trace representation.

explicit. Now let us discuss how the dynamic control flow and dependences can be

annotated on the static program representation. First, executions of basic blocks are

assigned timestamps in the order of their execution. The column ts of Figure 3.14

gives the timestamp values for the sample execution. Using these timestamps, the

control flow trace can be annotated on the static control flow graph representation

by labeling each basic block with the sequence of timestamps at which it was exe-

cuted (see the timestamps prefixed by ’B’ in Figure 3.15). In Figure 3.15, the control

flow edges are represented by dotted lines and the dependence edges are shown in

bold lines. A dynamic dependence (data or control) is annotated by labeling a static

dependence edge with a sequence of timestamp pairs such that the pair of times-

tamps identify the execution instances of the statements that were involved in the

dynamic dependence. Figure 3.15 shows the labels that identify the dynamic memory

dependences next to each dependence edge. Note that the annotated representation

58

explicitly captures the control flow and data dependences exercised in a program run.

The control flow trace and the dependence traces are explicit representations as

they can be used as is. However, the address trace is an implicit representation of

dependence information as it merely stores the different virtual memory addresses

that were accessed during each load and store instruction. To obtain the dependence

information, this address trace needs to be processed off-line. The extended control

flow trace that is proposed in this dissertation is also an implicit representation which

will be described in the following sections. The algorithms for recovery of dependence

information from the address and extended control flow traces are described in the

next subsection.

3.5 Recovering Dependence Information from eCF

e
2

e
1

1

3

5

4

2

variable−cost fixed−cost

def1 2def

use

Control flow and addresses referenced:
1.2(Y).4.1.3(X).4.1.2(X).4.1.2(Z).4.5(Y)

Control flow signature of disambiguation checks before 5:
(Ce1

.B0.E)

Figure 3.16. Recovery example.

Given the extended control flow trace, to recover the definition corresponding to

a given execution of a use, two types of information need to be put together that is

contained in the control flow signatures of the disambiguation checks that immediately

preceded the use. The control flow signatures of disambiguation checks that contain

59

AnnotateControlFlow() {
Let n be a node in the CFG
time = 1;
while not eof(trace) do

n = getnextnode(trace);
TS(n) = TS(n) ∪ {time};
time++;

end while
}

Figure 3.17. Annotating CFG with control flow information.

∀ (t, n) st t ∈ TS(n)

Before(n(t)) =

{

φ if t = 1
n′(t − 1) elseif (n′ ∈ Pred(n)) ∧ (t − 1 ∈ TS(n′))

After(n(t)) =

{

n′(t + 1) if (n′ ∈ Succ(n)) ∧ (t + 1 ∈ TS(n′))
φ otherwise

Figure 3.18. Definitions of Before and After functions to traverse the eCF along
control flow edges.

the definition and the control flow of the binary search routine in Figure 3.13, which

identifies the instance of the definition. Of particular importance is the ordering of

the instances of the basic blocks B0 and B1. By putting these two pieces together,

the definition and its instance that was involved in the dependence with the current

instance of the use can be recovered. The algorithm to do this is discussed next.

Consider the example shown in Figure 3.16. The disambiguation code preceding

the use is not shown. The trace shows that prior to reaching the use in 5, def1 is

executed three times and def2 is executed only once. Let the control flow signature

of the disambiguation checks preceding 5 be Ce1
.B0.E. The control flow signature

contains Ce1
, which is the signature for def1, and hence, def1 is the definition that

produced the value. Also, look at the control flow signature of the binary search

60

RecoverDependence(u(t)) {
Step 1: Search for the definition of the dependence
by looking for the disambiguation check.
Let {d1,d2 . . . dn} be the reaching definitions of u.
n(tn) =Before(u(t));
while n is not of type Ci

n(tn) =Before(n(tn));
end while
/* n is of type Ci ⇒ definition is of type di */
Step 2: Compute the instance of the definition
by looking at the signature of binary search
ArrayA = TS(di);
length =count(A);
if addr(di) =definitely addr(u) then
/* A[length] is the instance, last instance of di */

return (di(A[length]), u(t))
top = length, bot = 1, mid = (top + bot)/2;
n(tn) = After(n(tn));
while n is not E

if n is B0

top = mid − 1;
else

bot = mid + 1;
mid = (top + bot)/2;
n(tn) = After(n(tn));

end while
/* A[mid] is the necessary instance of di */
return (di(A[mid]), u(t));

}

Figure 3.19. Recovering the dynamic memory dependence from the extended trace
for use u executed at time t by replaying binary search.

61

RecoverChain(u0(t0) → (d1, u1) → · · · (dn, un) → dn+1) {
for i = 0 to n do
(d(t), ui(ti)) = RecoverDependence(ui(ti))
if d 6= di+1 then return(nil) endif
ti+1 = t;

end for
return (u0(t0) → (d1, u1)(t1) → · · · (dn, un)(tn) → dn+1(tn+1))

}

ChainFreq(u0(t0) → (d1, u1) → · · · (dn, un) → dn+1) {
for each t ∈ TS(u0) do
if RecoverChain(u0(t) → (d1, u1) → · · · (dn, un) → dn+1) 6= nil
then freq++ end if
end for
return (freq)
}

Figure 3.20. Recovering a dynamic data dependence chain and obtaining its fre-
quency.

routine (Figure 3.13) preceding the use. Now, def1 was executed 3 times in this

example and hence, the length of the timestamp array corresponding to def1 is 3. The

presence of B0 in the disambiguation check indicates that an address match must have

occurred at the first timestamp. Hence, it can be concluded that the first instance

of def1 must have been responsible for the dependence. Notice that, in extended

control flow traces, the dependences are implicit. The dependence information is

actually embedded in the control flow of the disambiguation checks. To recover the

exact dependence, these disambiguation checks have to be interpreted in the exact

reverse of the process that was used to embed them.

Next, the detailed algorithm is presented for recovering a memory dependence as

illustrated by the above example. It should be recalled that the goal is to process

the extended control flow trace and produce the annotations on the static program

62

RecoverDependence(u(t)) {
Step 1: Back track and find the latest definition and its
instance which wrote the same address as the use.
Let the address at u(t) be addr(u)
match = 0;
while match 6= 1

n(tn) = Before(u(t)) ;
if n is a definition

if addr(n) = addr(u)
match = 1;

end while
return (n(tn), u(t));

}

Figure 3.21. Recovering the dynamic memory dependence from the address trace
for use u executed at time t.

representation as shown in Figure 3.15. First it is shown how the control flow trace can

be traversed and annotated on the static representation. As Figure 3.17 shows, each

node n is annotated with a timestamp sequence TS(n). The function getnextnode()

returns the identity of the node that was executed immediately after the current

node. TS(n) is the set of all timestamps at which node n was executed. Before() and

After() in Figure 3.18 show how the static graph can be traversed in the reverse and

forward direction of actual observed control flow using the TS() annotations. Given

an execution point n(t), execution instance of node n at timestamp t, the function

Before(n(t)) returns the identity of the node(n′) that was executed immediately before

n(t), which is n′(t− 1). Analogously, After(n(t)) returns the identity of the node(n′)

that was executed immediately after n(t), which is n′(t + 1).

Now, consider the memory dependence recovery algorithm in Figure 3.19. The first

step in the algorithm examines the control flow signature of the disambiguation checks

before the use to determine the definition that was involved in the dependence. This is

done by traversing backward from the use point, u(t), till a node whose signature is of

63

the form Ci is found. The signature of this node exactly gives the definition, di, of this

use. Once this is obtained, the second step looks at the control flow signature of the

binary search routine to determine the exact instance of the definition that produced

the value referenced by u(t). To use this signature, the array of timestamp values that

was used to embed this signature has to be reconstructed. The array of timestamp

values is already available in TS(di). This array contains the timestamp values of

execution instances of the definition di. Using the control flow signature of the binary

search routine, this array is searched to obtain the right instance. The control flow

signature gives the binary search order that was used on the timestamp array to

embed the dependence and retracing this will give us the exact instance. When the

definition and its instance are found, the memory dependence is recovered. Note that

this process is the exact reverse of the process used to embed the dependence. All

memory dependences can be recovered and annotated on the program representation

in this manner.

While a single call to the RecoverDependence recovers a single dynamic memory de-

pendence, additional functions such as RecoverChain and ChainFreq can be developed

by building upon this that are able to recover a dependence chain and the number of

times a dependence chain is encountered during execution (see Figure 3.20). In Fig-

ure 3.20, d1 is the definition corresponding to the use u0(t0). u1 is a use at statement

d1 and d2 is the definition corresponding to use u1 and so on. The RecoverDependence

routine is used to check if a particular chain has been executed.

The algorithm for recovering a memory dependence using an address trace is shown

in Figure 3.21. At every use point, a backtracking is done to find the latest definition

that wrote to the same address as the use. Figure 3.21 shows a simple backtracking

scheme. However, the backtracking can be implemented more efficiently by using a

hash table as follows. For every definition encountered, the instance and the definition

in the hash table indexed by the address is stored. When a use is encountered, a look

up of the hash table will retrieve the latest definition and instance that wrote to the

64

same address.

3.6 Summary

In this chapter, the extended control flow trace representation which implicitly cap-

tures control and data dependences was presented. After discussing how traces will

be stored in memory for analysis, algorithms for processing the extended control flow

trace to recover the control flow and data dependence information was presented. The

next chapter presents compression schemes used to make the traces more compact

before being stored on disk and a detailed experimental evaluation of the developed

techniques.

65

Chapter 4

Compression of Control and Data

Dependence Traces

In the previous chapter, the design of the extended control flow trace was discussed.

Recall that the extended control flow trace representation is designed for producing

compact dependence (control and data) traces that can be stored on disk efficiently.

This chapter discusses compression of the extended control flow traces (eCF) which

enables these traces to be stored very efficiently. The compressed eCF is referred

to as the Extended Whole Program Path (eWPP) analogous to the Whole Program

Path (WPP) [64] which is the compressed representation of control flow traces. The

compression of these traces is tested independently with two known algorithms; Se-

quitur [84], a context-free grammar based compression algorithm, and VPC [28, 27],

a value predictor based compression algorithm, that are known to compress program

traces well. Also, this chapter presents detailed experimental evaluations confirming

the benefit of using the extended control flow trace representation for storing traces

on disk.

4.1 Overview of Compression Schemes

The compression schemes that have been used to compress the traces is discussed in

this section. Two compression algorithms have been used independently to evaluate

the compressibility of the different traces. VPC [28, 27] is a value predictor based

compression scheme and Sequitur [84] is a context-free grammar based compression

scheme. This section provides a brief overview of both the schemes. Further, an

enhancement to the Sequitur compression algorithm is proposed that improves its

66

compressibility.

4.1.1 Overview of VPC

VPC is a value prediction based compression algorithm that exploits repetitive pat-

terns in the input trace to compress it. It is a one-pass algorithm and runs in time

that is linear in the length of the input trace. The algorithm compresses the trace

in the following manner. At any particular point in the input trace, after having

inspected a certain number of input symbols, the algorithm predicts the next symbol

based on the current history. If the prediction is correct then the symbol is stored us-

ing just one bit, say ’1’. If there is a mis-prediction, a ’0’ bit is stored to indicate that

followed by which the entire input symbol is stored. Hence, the algorithm works well

if the input has repeating patterns that increase the predictability of each symbol.

The predictors themselves are based on Finite Context Method (FCM) prediction.

Decompression of the compressed traces is analogous. If the bit read from the com-

pressed trace is a ’0’ then the input symbol is also read from the compressed trace,

otherwise the predicted value is used.

4.1.2 Overview of Sequitur

Sequitur is a context-free grammar based compression algorithm that exploits repe-

titions in the input string to compress it and runs in time linear in the length of the

input string [84]. As an example, for the input string

abcabcabc

Sequitur produces the following grammar.

S → AAA

A → abc

In this example, Sequitur is effectively able to capture the repetition of the pattern

abc. The Sequitur algorithm manipulates the input symbols so that the following

67

two properties are preserved.

1. Digram Uniqueness. A digram is a pair of symbols that occur together in the

input string. This property states that any digram “xy” can occur at most

once in the entire grammar. If it occurs more than once, Sequitur introduces a

new rule, of the form {R → xy}, that replaces both occurrences of the digram

“xy” with the left hand side of the rule, ‘R’. For example, after abca has been

processed in the example discussed above, the next symbol causes digram ab

to occur twice. So, Sequitur produces a new rule A → ab and transforms the

input into AcA.

2. Rule Plurality. This property states that the left hand side of any rule must

appear more than once in the entire grammar, on the right hand side of the

other grammar rules. If any rule occurs only once then Sequitur deletes this rule

and substitutes the rule occurrence with its right hand side. In the example

above, after abcabc is processed, the resulting grammar rules are S → BB,

B → Ac, and A → ab. Now, rule A occurs only once on the right hand side

of the entire grammar. Hence, to preserve this property, Sequitur expands rule

B → Ac into B → abc and deletes the rule A → ab.

4.1.3 Enhancement of Sequitur

The motivation to enhance Sequitur occurred by observing the way it compresses

repeating digrams. To illustrate this with an example, consider the input string

wbcwbcxbcxbcybcybczbczbc

Using Sequitur to compress this produces the grammar :

S → AABBCCDD

A → wbc

B → xbc

C → ybc

68

Table 4.1. Compression Ratio, Memory Used and Runtime Overhead : Original
Sequitur versus Enhanced Sequitur

Program Compression Ratio Memory Used Runtime
Original Enhanced Original Enhanced Enh./Orig.

256.bzip2 57 65 48 M 308 M 4.9
186.crafty 77 126 50 M 368 M 4.8
252.eon 767 1323 22 M 230 M 4.9
254.gap 362 1051 23 M 144 M 4.9
164.gzip 90 102 43 M 394 M 4.0
181.mcf 1265 1572 23 M 582 M 3.8
197.parser 161 297 36 M 452 M 4.5
253.perlbmk 1542 2728 22 M 370 M 4.9
300.twolf 59 73 54 M 354 M 4.8
255.vortex 3033 4100 21 M 364 M 3.4
175.vpr 78 93 46 M 372 M 4.8

Average 681 1048 35 M 358 M 4.5

D → zbc

Although Sequitur detected patterns like “wbc”, it missed out the pattern “bc” that

got repeated in each of the rules. A better grammar would have been :

S → AABBCCDD

A → wE

B → xE

C → yE

D → zE

E → bc

Notice that the above grammar contains fewer symbols than the first one. The mag-

nitude of this saving grows with the size of the input string.

The reason why Sequitur failed to detect the pattern “bc” is because it first

detected the digram “wb”, which killed the digram “bc”. Had this string been pro-

cessed offline, instead of an online left to right method that Sequitur uses, and first

69

Enhanced Sequitur(Trace) {
Step 1: Preprocess Trace to find frequency of all digrams

Let T be the set of all ordered pairs (digram,frequency)
sorted in descending order of frequency counts.
Step 2: Compress the Trace

while T is not empty
→ Pick the most frequent digram from T , say “xy”.
→ Create a new rule Ai → xy.
→ Substitute all occurrences of “xy” with Ai.
→ Update the frequency counts of digrams in T. Add new

ordered pairs for the newly created digrams. Delete
ordered pair for digram “xy”.

→ If any rule Ri violates the Sequitur property of rule
plurality, expand the rule.

end while

}

Figure 4.1. Enhanced Sequitur Algorithm

compressed digram “bc”, then the ideal grammar for this string could have been gen-

erated. Based upon this observation is the following proposal for the enhancement

to Sequitur. It is first shown how better grammars can be generated by processing

the string offline. Then, it is easy to see that the offline algorithm could be made

online by buffering the input. Depending on the size of the buffer, a degree of approx-

imation will however be introduced. In the experiments conducted, the compression

results were reported by processing the string offline. Note that offline processing is

equivalent to having a buffer whose size is the same as the size of the uncompressed

trace.

The algorithm is described now. First, the entire string is scanned and find fre-

quency counts of each digram occurring in the string is determined. Then digrams

are compressed in the descending order of their frequency. As and when a digram is

substituted by a rule, the two properties of Sequitur are checked to make sure they are

satisfied. In this process, digrams that are more frequent are substituted first rather

70

than the earliest occurring digrams. This ensures that highly frequent digrams are

not destroyed in the process of compressing infrequent digrams and hence promises

smaller grammars. For instance, in the example above, digram bc is the most fre-

quent. So, compressing it first gives rise to the grammar

S → wExEyEzE

E → bc

and further compression yields the ideal grammar for this string already shown pre-

viously. The original Sequitur algorithm was modified to take into account these

changes. Figure 4.1 shows the pseudocode for the new Sequitur algorithm.

Experimenting with the enhanced Sequitur found that it is very effective on control

flow traces. Table 4.1 compares the compression ratios obtained by both the Sequitur

versions. On average, enhanced Sequitur can compress the traces further by around

33%. Table 4.1 also compares the memory used by both versions of Sequitur and the

runtime overhead of using enhanced Sequitur. The enhanced version uses ten times

more memory and is five times slower, on average.

4.2 Experiments

The various techniques described for the generation and collection of the traces were

developed using the Phoenix Compiler Framework developed by Microsoft. The in-

strumentation code was inserted by using Phoenix to rewrite the binaries of the bench-

mark programs. The intermediate representation which was used was the low-level

x86 instruction set. This allowed to clearly distinguish between register dependences

and memory dependences. Notice that the register dependences can always be de-

tected directly from the control flow trace. Hence, the instrumentation was performed

to capture only data (memory) dependences. This is important for carrying out a

realistic evaluation as for the program runs used in the experiments, on average, 77.5

percent of all dependences were register dependences for program runs that execute in

71

Table 4.2. Register vs. Memory dependences.

Program Instructions Register Memory
(millions) (%) (%)

256.bzip2 402 78.0 % 22.0 %
186.crafty 459 79.7 % 20.3 %
252.eon 378 72.0 % 28.0 %
254.gap 425 82.9 % 17.1 %
164.gzip 423 83.8 % 16.2 %
181.mcf 429 71.0 % 29.0 %
197.parser 415 74.2 % 25.8 %
253.perlbmk 354 72.2 % 27.8 %
300.twolf 405 79.2 % 20.8 %
255.vortex 418 69.4 % 30.6 %
175.vpr 407 77.5 % 22.5 %
Multithreaded Programs
fmm 92 75.5 % 24.5 %
barnes 100 91.5 % 8.5 %

Average 361 77.5 % 22.5 %

the order of hundreds of millions of instructions (see Table 4.2). The SPEC CPU2000

C benchmarks were used to carry out the experiments (176.gcc was excluded be-

cause the version of Phoenix that was used could not handle this benchmark). Two

multithreaded programs, fmm and barnes, were used from the splash-2 [105] bench-

mark suite. Three threads were created during the execution of each multithreaded

program. Since the multithreaded programs could not be handled by Phoenix, the

valgrind dynamic instrumentation [80] tool was used. Two instrumented versions of

each binary were created apart from the original. The first version captured con-

trol flow traces and address traces. The second version captured extended control

flow traces. Being able to produce the instrumented binaries of each of these using

Phoenix made it possible to accurately measure the overheads involved in collecting

these traces. The binaries were executed on a system with a 2 GHz Intel processor,

2 GB of RAM and 100 GB of hard disk space. Based upon this implementation, an

72

Table 4.3. Uncompressed trace sizes.

Program CF+AT eCF eCF/
(MB) (MB) CF+AT

256.bzip2 154 + 590 = 744 380 0.51
186.crafty 184 + 638 = 822 392 0.48
252.eon 115 + 812 = 927 414 0.45
254.gap 72 + 593 = 665 411 0.62
164.gzip 197 + 564 = 761 288 0.38
181.mcf 291 + 756 =1047 735 0.70
197.parser 226 + 680 = 906 609 0.67
253.perlbmk 185 + 652 = 837 466 0.56
300.twolf 177 + 559 = 736 417 0.57
255.vortex 182 + 884 =1066 500 0.47
175.vpr 186 + 599 = 785 318 0.41
Multithreaded Programs
fmm 55 + 226 = 281 166 0.59
barnes 21 + 113 = 134 61 0.46

Average 157 + 590 = 747 397 0.53

experimental evaluation whose results are described next.

4.2.1 Trace Sizes

In this section, the sizes of the uncompressed and compressed traces are compared.

In Table 4.3, the sizes of the uncompressed control flow (CF), address (AT), and

extended control flow (eCF) traces are given. The traces were collected, on average,

for the first 400 million instructions for the SPEC programs and around 100 million

instructions for the two splash-2 programs. The corresponding compressed trace sizes,

i.e., WPP , cDD, and eWPP respectively, are also given in Tables 4.4 and 4.5. It

can be seen that, on average, the eCF is smaller than CF + AT by 47 percent while

eWPP is smaller than WPP + cDD by 76 percent and 70 percent using Sequitur

and VPC, respectively. In other words, in the cases of both uncompressed traces or

73

Table 4.4. Sequitur compressed trace sizes.

Program WPP+cAT eWPP eWPP/
(MB) (MB) WPP+cAT

256.bzip2 2.4 + 142 = 144 46.8 0.32
186.crafty 1.5 + 17.2 = 19 11.6 0.60
252.eon 0.1 + 0.65 = 1 6.0 6.00
254.gap 0.1 + 270 = 270 2.2 0.01
164.gzip 2.0 + 110.5= 113 28.6 0.25
181.mcf 0.1 + 42.2 = 42 16.7 0.40
197.parser 0.8 + 64.8 = 66 21.0 0.32
253.perlbmk 0.1 + 12.4 = 13 1.5 0.12
300.twolf 2.4 + 26.6 = 29 32.0 1.10
255.vortex 0.04 + 18.9 = 19 4.5 0.24
175.vpr 2.0 + 27.6 = 30 17.4 0.60
Multithreaded Programs
fmm 0.1 + 2.5 = 2.6 0.5 0.2
barnes 0.2 + 4.3 = 4.5 2 0.45

Average 0.9 + 62 = 63 15 0.24
(excluding 252.eon)

compressed traces, the extended control flow trace is superior to combined control

flow and address trace. For 252.eon, using Sequitur, the eWPP trace size obtained

is larger, though not significantly. This aberration is due to the fact that the address

trace for this program is highly compressible using Sequitur. The average size of the

eWPP is calculated excluding 252.eon.

From the data in Table 4.4 it can be seen that the reduced size of eWPP is due

to two factors. First, the size of eCF is smaller than the size of CF + AT , as a

result of the novel representation of dependences. Second, Sequitur and VPC are

extremely effective in compressing eCF into eWPP . Now, the contribution of each

of the two factors mentioned in reducing the trace size from CF + AT to eWPP

is discussed. Table 4.6 shows the results of this experiment. It shows that, on

average, for Sequitur compressed traces, 48 % of the reduction in trace size comes

74

Table 4.5. VPC compressed trace sizes.

Program WPP+cAT eWPP eWPP/
(MB) (MB) WPP+cAT

256.bzip2 2.5 + 69.9 = 72 30.3 0.42
186.crafty 7.2 + 37 = 44 18.6 0.43
252.eon 0.19 + 5.3 = 5 2.1 0.42
254.gap 0.4 + 100 = 100 9.3 0.10
164.gzip 1.7 + 80.1 = 82 19.4 0.24
181.mcf 0.09 + 35.2 = 35 7.7 0.22
197.parser 1 + 35.6 = 37 20.9 0.56
253.perlbmk 3.8 + 78.3 = 82 18.4 0.22
300.twolf 6.1 + 76.4 = 83 39.4 0.47
255.vortex 1.6 + 52.7 = 54 12.2 0.23
175.vpr 4.9 + 77.8 = 83 24.8 0.30
Multithreaded Programs
fmm 0.1 + 5.7 = 6 0.6 0.10
barnes 3 + 16 = 19 2.5 0.13

Average 2.5 + 52 = 55 16 0.30

from the first factor (shown under column Smaller eCF), i.e., going from CF + AT

to eCF . The remaining 52 % reduction comes from the compression (shown under

column Compression of eCF), due to going from eCF to eWPP . For VPC too,

the contributions due to both factors were 49 % and 51 % respectively. This shows

that both the factors, representing the trace as eCF and then compressing it, are

important in achieving smaller eWPPs.

Also the distribution of three types of dynamic memory dependences: no-cost,

fixed-cost, and varying-cost was studied. The resulting data is given in Table 4.7.

From this data it can be seen that, on average, 69.9 percent of the dependences are

hard dependences, i.e., varying-cost dependences. However, the number of no-cost

memory dependences is also significant (average of 26.7 percent), which contributes

directly towards reducing the size of eCF .

75

Table 4.6. Reason for reduced eWPP size when compared to Address Trace.

Program Sequitur VPC
Smaller Comp. of Smaller Comp. of

eCF (%) eCF (%) eCF (%) eCF (%)

256.bzip2 52 % 48 % 51 % 49 %
186.crafty 53 % 47 % 54 % 46 %
252.eon 56 % 44 % 55 % 45 %
254.gap 38 % 62 % 39 % 61 %
164.gzip 65 % 35 % 63 % 37 %
181.mcf 30 % 70 % 30 % 70 %
197.parser 34 % 66 % 34 % 66 %
253.perlbmk 44 % 56 % 45 % 55 %
300.twolf 45 % 55 % 46 % 54 %
255.vortex 53 % 47 % 53 % 47 %
175.vpr 61 % 39 % 61 % 39 %
Multithreaded Programs
fmm 41 % 59 % 40 % 60 %
barnes 57 % 43 % 56 % 44 %

Average 48 % 52 % 49 % 51 %

4.2.2 Runtime Overhead in Trace Collection

The execution time cost of the disambiguation checks is mainly due to the address

comparisons performed. In particular, the greater the number of such comparisons,

the greater is the overhead. In Table 4.8, the average number of comparisons per-

formed per dynamic data dependence is shown in the column named binary under

Checks/Dep. These results were obtained by applying the optimizations described

in Section 4. However, the most significant factor in keeping the number of checks

small is using binary search, described in Chapter 2, instead of linear search. If these

optimizations had not been performed then the number of checks needed at run-time

would have gone up by a significant amount, as shown in the column named linear

under Checks/Dep., making collection of these traces impractical.

76

Table 4.7. Distribution of memory dependence types.

Program No-Cost Fixed Varying
(%) (%) (%)

256.bzip2 40.8 % 3.1 % 56.1 %
186.crafty 48.5 % 0.0 % 51.5 %
252.eon 18.8 % 16.7 % 64.5 %
254.gap 3.4 % 0.6 % 96.0 %
164.gzip 72 % 0.1 % 27.9 %
181.mcf 6.9 % 3.5 % 89.6 %
197.parser 9.8 % 5.6 % 84.6 %
253.perlbmk 21.3 % 0.7 % 78.0 %
300.twolf 29.4 % 8.2 % 63.4 %
255.vortex 22.3 % 1.5 % 76.2 %
175.vpr 60.9 % 3.0 % 36.1 %
Multithreaded Programs
fmm 1 % 0.04 % 99 %
barnes 11.3 % 1 % 87.7 %
Average 26.7 % 3.4 % 69.9 %

Table 4.9 shows the run-time overhead needed to collect these traces. The running

time of the 3 versions of each program, that is, the original version, the instrumented

version for collecting control flow and address traces (VAT), and the instrumented

version for collecting extended traces (VE) is shown. For VE , the time spent in the

filtering phase alone is shown as FP . Also, for versions VAT and VE, the time spent on

processing (CPU) and IO are separately shown. The CPU time spent in VE is higher

than VAT , coming from the checks needed per dependence. The numbers also show

the overhead incurred in the filtering phase (FP). On average, there is a 5× increase

in runtime overhead when collecting extended control flow traces when compared to

collecting control flow and address traces.

77

Table 4.8. Address comparisons per dep. edge using linear and binary search.

Program Checks/ Dep. Min Max
Linear Binary

256.bzip2 164814 11 1 24
186.crafty 18004 5 1 21
252.eon 35738 9 1 22
254.gap 661199 12 1 23
164.gzip 80493 8 1 22
181.mcf 194896 4 1 22
197.parser 107898 12 1 22
253.perlbmk 33341 8 1 23
300.twolf 170999 18 1 22
255.vortex 158386 10 1 23
175.vpr 26126 9 1 22
Multithreaded Programs
fmm 754500 8 1 23
barnes 138900 9 1 22

Average 195791 10 1 22

4.2.3 Dependence Edge Recovery

Table 4.10 shows the time needed to recover the dependence information from the

address traces and extended traces. As mentioned before, dependences in the ex-

tended control flow traces and address traces are implicitly represented. To be used

in memory for analysis, they need to be recovered and the numbers show the time

needed to do the same. Notice that it is much harder to recover the dependences

from the address traces. Although address traces are quicker to generate they need,

on average, ten times the time needed to process extended traces for recovering the

dependences.

78

Table 4.9. Running time of instrumented versions in seconds.

Program Original CF + AT (VAT) eCF (VE)
CPU CPU + IO FP + CPU + IO

256.bzip2 5 26 + 22 = 48 118 + 160 + 69 = 347
186.crafty 5 28 + 29 = 57 94 + 96 + 21 = 211
252.eon 3 28 + 40 = 68 105 + 113 + 51 = 269
254.gap 3 19 + 27 = 46 170 + 214 + 55 = 439
164.gzip 5 31 + 15 = 46 65 + 71 + 16 = 152
181.mcf 7 30 + 35 = 65 116 + 135 + 21 = 272
197.parser 7 28 + 32 = 60 90 + 100 + 66 = 256
253.perlbmk 5 28 + 35 = 63 90 + 217 + 55 = 362
300.twolf 6 29 + 29 = 58 77 + 87 + 54 = 218
255.vortex 4 32 + 28 = 60 139 + 143 + 48 = 330
175.vpr 7 27 + 30 = 57 86 + 95 + 51 = 232
Multithreaded Programs
fmm 3 28 + 8 = 36 73 + 130 + 18 = 221
barnes 3 32 + 5 = 37 57 + 118 + 11 = 186

Average 5 28 + 26 = 54 99 + 131 + 41 = 271

4.2.4 Decompressing the Traces

While the traces are compressed to be stored compactly on disk, in order to use the

trace information in analysis, they need to be decompressed. In Table 4.11, the time

taken to decompress compressed extended control flow traces and address traces is

shown. On average, Sequitur compressed traces take longer, more than twice the time,

to decompress than VPC compressed traces. The total time needed to recover the

dependences explicitly from compressed traces is the sum of the decompression time

and the time needed to recover the dependences from the uncompressed traces shown

in Table 4.10. Although there is a 5× increase in runtime overhead in collecting

extended traces over collecting control flow and address traces, the time taken to

collect, decompress and recover the traces is of the same order (271 + 17 + 55 = 343

for extended traces and 54 + 157 + 70 = 281 for control flow and address traces).

79

Table 4.10. Dependence edge recovery time in seconds.

Program CF + AT (RAT) eCF (RE)
CPU + IO CPU + IO

256.bzip2 146 + 5 = 151 18 + 4 = 22
186.crafty 164 + 4 = 168 11 + 5 = 16
252.eon 206 + 5 = 211 16 + 4 = 20
254.gap 212 + 5 = 217 14 + 4 = 18
164.gzip 75 + 4 = 79 15 + 4 = 19
181.mcf 157 + 6 = 163 21 + 4 = 25
197.parser 146 + 4 = 150 16 + 5 = 21
253.perlbmk 241 + 6 = 247 8 + 4 = 12
300.twolf 165 + 5 = 170 9 + 4 = 13
255.vortex 211 + 6 = 217 16 + 4 = 20
175.vpr 141 + 5 = 146 12 + 4 = 16
Multithreaded Programs
fmm 63 + 3 = 138 7 + 3 = 30
barnes 50 + 2 = 144 6 + 3 = 26

Average 152 + 5 = 157 13 + 4 = 17

It should be pointed out that an alternative to decompression also exists for traces

compressed with Sequitur. If the traces are compressed using Sequitur, they could

actually be analysed without decompression. This is possible because of the nature

of the Sequitur compression algorithm, which compresses the trace into a context free

grammar. An algorithm for identifying hot paths of a specific length by analyzing

the compressed control flow trace is given in [64]. A similar technique could also be

developed for eWPP to recover dependences.

4.3 Summary

In this chapter, the compression algorithms used to compress the generated traces

was described along with an enhancement to the Sequitur [84] compression algorithm.

Finally, detailed experimental evaluations were presented to provide evidence for the

80

Table 4.11. Decompression times in seconds for compressed traces

Program Sequitur VPC
WPP + cAT eWPP WPP + cAT eWPP

256.bzip2 183 160 73 59
186.crafty 118 98 53 40
252.eon 201 131 49 69
254.gap 165 159 61 46
164.gzip 103 101 63 32
181.mcf 185 152 71 55
197.parser 257 243 119 79
253.perlbmk 250 193 95 75
300.twolf 242 227 112 82
255.vortex 160 117 83 50
175.vpr 195 168 83 92
Multithreaded Programs
fmm 72 59 33 26
barnes 38 32 17 14

Average 167 142 70 55

effectiveness of extended whole program paths (eWPPs) in producing compact traces

that can be efficiently stored on disk. Data indicates that the compressed eWPP can

be stored in 24 % (30 %) of the space required to store the control flow and address

trace when compressed using Sequitur (VPC).

81

Chapter 5

Generating Reduced Traces of

Long-Running Multithreaded

Executions

The previous two chapters described a representation to compactly store the gener-

ated data and control dependence information of a program execution on disk. This

chapter describes an orthogonal technique which is to reduce the size of the gener-

ated traces. This is important because many multithreaded programs like servers are

long-running and can generate very huge traces. This challenge is addressed through

the Execution Reduction (ER) system proposed in this chapter that realizes a com-

bination of checkpointing/logging and tracing such that traces collected contain only

the execution information from those regions of threads that are relevant to the fault.

Following execution reduction, the replayed execution takes lesser time to run and

it generates a much smaller trace than the original execution. Thus, the cost of

generating the traces and the trace sizes are greatly reduced. Notice that after the

traces are generated, the compact trace representation already proposed can be used

to efficiently store the traces.

5.1 Overview

Generating traces of long-running, multithreaded applications is a challenging task.

Since an execution of these programs can be potentially very long, it is time and

space infeasible to continually trace the execution online, i.e., when the application

is running normally doing useful work. Also, off-line tracing, i.e., generating the

traces by replaying the execution after it fails is also challenging for the following two

82

reasons. First, the programs are generally non-deterministic, that is, for instance,

two executions on the same input could behave differently depending on the order in

which the threads were scheduled. While the bug may manifest itself in one execution,

it need not do so in another execution. Second, it is still expensive to collect and

store dynamic traces which may be needed to locate a bug.

To address the first problem, when designing a debugging framework for multi-

threaded programs, it is important to make use of a checkpointing/logging infras-

tructure that can precisely log the important events so that when a bug manifests

itself, it can be reproduced during the replay of the current execution. Checkpoint-

ing/logging/replaying is an attractive technique, the merit of which is its capability to

replay from the intermediate points of the execution at which checkpoints are created.

It was invented to facilitate debugging parallel and distributed programs [85, 104]. It

quickly gained popularity in general application debugging [92, 93]. A lot of research

has been carried out on how to reduce its cost [99, 82] and improve its usability [96].

An integration of checkpointing/logging and tracing within a single infrastructure

would be very useful. Logging will allow replaying of the fault and then traces can

be collected during replay. Further, checkpoints divide the whole execution into in-

tervals. Tracing can be applied to those intervals that corresponds to the fault. This

chapter proposes a framework which can record the events of the original run and

checkpoints the execution at regular intervals in order to be able to faithfully replay

it from any checkpoint or the start of the program.

Although checkpointing serves to limit tracing to a portion of the execution, corre-

sponding to a checkpoint interval, this still does not entirely solve the problem. This

is because checkpointing is expensive and can be done only once every few minutes.

Hence, trace sizes for a checkpoint interval can be very large. A set of multithreaded

benchmark programs were collected as shown in Table 5.1 and Table 5.2 shows the

sizes of control flow traces and dependence traces for sample runs of these multi-

threaded programs. It is clear from the data that the sizes of the traces produced is

83

large and the runtime overhead of their collection is substantial even for a few sec-

onds of execution. Hence, a technique is needed to address the challenge of efficiently

generating traces for the execution corresponding to the relevant checkpoint intervals.

Solving the second problem by providing a fine-grained tracing mechanism that

is practical for long-running programs is a far more challenging task. Support for

fine-grained tracing is needed so that the fault can be later analyzed by constructing

dynamic slices and the root cause of the bug can be detected. It is very important

that the traces collected are small because long traces create two problems. First

collection and storage of long traces is very expensive in terms of execution time

and space needs. Second, the greater the amount of trace information, the greater

is the effort required on part of the user to analyze the slices and locate the root

cause of the bug. In the remainder of this section these techniques are discussed in

more detail and a framework is proposed that can effectively address the above issues.

This framework is practical due to the novel idea for generating small traces through

execution reduction that reduces the length of the execution for replay and tracing

by exploiting the observation that most threads that get executed are not directly

relevant to the fault and need not be replayed or traced.

Many multithreaded and long-running applications such as server programs are

event driven and, usually, a thread is spawned to service a new request from a client.

Most of the threads execute independently of the other and a fault that occurs in

one thread, which can even lead to a crash, is not influenced by a majority of the

other threads. This observation is exploited during replay by executing only those

threads that cause the fault to occur. The result is that the replayed execution is

exactly what is necessary to reproduce the bug and hence, the trace that it generates

is shorter and also exactly captures the program behavior that led to the fault. To

find the threads that are relevant to the fault, a technique is developed that can detect

the various dependences between the executing threads very efficiently in time and

space. Using the dependence information between threads, the set of those threads

84

Table 5.1. Benchmarks and the bugs used in the Experiments.

Program Description LOC Description
of bugs used

mysqld Database 508 K a) Mem. bug (mysql-1),
(ver. 3.23.56) reported in [3]

b) Atomicity bug (mysql-2),
(ver. 3.23.56) reported in [4]

c) Mem. bug (mysql-3),
(ver. 3.23.48) reported in [2]

prozilla Download 16 K a) Mem. bug (prozilla-1),
Accelerator reported in [7]

b) Mem. bug (prozilla-2),
(ver.1.3.5.1) reported in [6]

proxyc small C proxy 219 a) SIGPIPE bug (proxyc-1),
Found using Change Log

axel Download 3 K a) Mem. bug (axel-1),
Accelerator reported in [8]
(ver. 1.0a)

pftp Port File 8 K NONE
Transfer

balsa Email client 100 K NONE
evolution email, address 438 K NONE

book

that contributed to the fault and those that were irrelevant to the fault is obtained.

Now, tracing is done on the execution by only replaying the threads relevant to the

fault.

The proposed framework essentially consists of three phases: Logging phase; Exe-

cution Reduction Phase; and Replay Phase. Logging Phase corresponds to the original

program run during which the checkpointing and logging infrastructure is turned on.

This phase produces the record of all the events, that is, the event log. In the case a

bug is encountered, during the Replay Phase the event log can be used to replay the

execution from a checkpoint or the start of the program. During the Replay Phase

85

Table 5.2. Trace sizes of multithreaded programs for small runs and their collection
time in seconds.

Program Num of Exec. Time (secs.) Control Dep.
Threads Original Traced Trace Trace

mysql 10 13 2886 6 GB 21 GB
evolution 10 11 179 87 MB 390 MB
balsa 7 17 1787 92 MB 209 MB
pftp 3 10 903 543 MB 482 MB
proxyc 9 10 880 1360 MB 456 MB
axel 3 8 184 313 MB 456 MB
prozilla 5 8 2640 2 GB 6 GB

tracing is turned on to collect control-flow and/or dependence traces that are then

used during debugging for fault location. Since the cost of the Replay Phase can

be very high due to tracing, to reduce the cost of this phase it is preceded by the

Execution Reduction Phase. In this phase first the dynamic dependences between the

various threads are discovered. Then using this information, the subset of threads

and their execution intervals that must be replayed in order to reproduce the fault

are identified. Only the identified execution intervals of the subset of threads are

retained for the Replay Phase and the event log is pruned to enable replay of the

reduced execution. The following sections discuss the technique in greater detail.

5.2 Motivating Example

In this section, the approach is motivated using as example, a memory bug in the

mysql database server. A known error in a mysql version is described and how to

apply the approach of replay to trace on the faulty execution due to this bug is

discussed.

According to [3], mysql version 3.23.56, has a memory error which is as follows.

When a thread tries to load data into a table without explicitly connecting to the

86

Original Log

0: open path = /etc/localtime
... // initialization
507: open-create //open mysql binlog
... // Main Thread executing.
... …

... …
2292: poll fd={[30,1]}
... // Signal Handler Thread
... …

... …
2324: accept //receive 1st user connection.
... …

... …
… //New thread to handle 1st user requests.
2934: poll fd={[31,1]}
... …

... …

2994: accept //receive 2nd user connection.
... …

... …
… //New thread to handle 2nd user requests.
3256: poll fd={[32,1]}
... …

... …
3348: read data = “flush log;”
3406: close // close mysql binlog
... …

... …
3498: read data = “insert into b values (1);”
… // Action not logged, binlog is not open yet.
3450: poll

... …
6921: open-create // open new binlog.
...

0: open path = /etc/localtime
... // initialization
507: open-create //open mysql binlog
... // Main Thread executing.
... …

... …
2292: poll fd={[30,1]}
... // Signal Handler Thread
... …

... …
2324: accept //receive 1st user connection.
... …

... …
… //New thread to handle 1st user requests.
2934: poll fd={[31,1]}
... …

... …

2994: accept //receive 2nd user connection.
... …

... …
… //New thread to handle 2nd user requests.
3256: poll fd={[32,1]}
... …

... …
3348: read data = “flush log;”
3406: close // close mysql binlog
... …

6921: open-create // open new binlog.
…
... …

... …
3498: read data = “insert into b values (1);”
… // Action not logged, binlog is not open yet.
3450: poll

Modified Log

T
h
re
a
d
 E
x
e
c
u
ti
o
n

In
te
rv
a
l
(T
E
I)

C
a
n
n
o
t
R
e
p
la
y

T
1

T
2

T
1

T
3

T
4

T
1

T
3

Swap TEIs

T
4

T
3

1

2

3

4

5

6

7

8

9

Figure 5.1. Motivation - mysql (Seg. Fault) Memory error, the different threads
(T1, . . . , T4) are marked and the thread execution intervals (1, . . . , 9) are numbered.
The reduced log shows the intervals that are replayed. The Symbol ’T’ in the reduced
log shows the only intervals that are traced.

database, the field that stores the database name is accessed without checking for the

NULL value. This causes the server to crash at this point. Consider an execution in

which, after processing a set of queries, the above fault is exercised.

Logging Phase. To begin with, the server is run with light weight logging en-

abled, that is, the events are logged and checkpoints are performed at fixed intervals.

Figure 5.1 shows the events recorded in the event log. T1, T2 T3, and T4 refer to

four unique threads created. The event log also shows the points where a thread is

descheduled and another thread is scheduled. A region in the log corresponding to

the maximal set of consecutive events from the same thread is referred to as a thread

execution interval (TEI). The log in Figure 5.1 shows 9 thread execution intervals.

87

The queries and the activities of the corresponding threads are as follows:

• Thread T1 is the startup thread that handles new connections and creates

threads to service requests.

• Thread T2 is created by T1 to handle signals.

• Thread T3 is created by T1 to handle a user. This user first looks at all the

databases and then crashes the server by issuing the ”load” command.

• Thread T4 is created by T1 to handle another user. This user does a ”select”

operation on table ’b’ in database ’test’.

The server crashes at TEI 9 and the program is taken to the next phase of the

framework. Figure 5.2 shows the root cause for this bug. Notice how the database

field(thd→db) is accessed without checking for an invalid value. The fix is to place a

check before the access and report an error if the value is invalid, instead of crashing.

Thread T
3
 :

MYSQL_Log:: new_file() {

…

// close the current binlog

0xAA : log_type = LOG_CLOSED;

0xBB : close();

Thread T
4
 interrupts Thread T

3
 here.

// open a new binlog

0xCC : open();

0xDD : log_type = local_log_type;

}

Thread T
4
 :

sql_insert() {

// perform insert operation

…

// Now, log the operation

if (log_type !=LOG_CLOSED)

// log it

else

// cannot log, do nothing

}

Figure 5.2. Source Code - MySql Memory Error, root cause

Execution Reduction Phase. Once it is known that a fault has occurred (e.g.,

program crash has occurred), the next step is to replay the fault and collect the trace

during replay to assist the user in debugging. However, first the execution reduction

phase is used to determine the subset of computation that needs to be replayed and

traced.

The first step in this phase is to identify and remove the threads from the event log

that did not contribute to the bug. This reduces the execution time of the program

88

and keeps the resulting traces small. Alternatively, the trace was generated for the

entire execution by replaying it with the tracing turned on, then the resulting trace

sizes are as high as 16 GB for 15 seconds of execution. It is easy to see that if the

programs had run for a long time before the fault occurred then the trace sizes would

become unmanageable.

Consider the different threads in the example shown. Notice that thread T4 is

irrelevant to the fault. Intuitively, it can be seen that the bug would have still

occurred even if the second user did not exist. The queries corresponding to the

execution of thread T4 are completely independent of the queries corresponding to

T3. Hence, all the events from the replay log corresponding to T4 is removed. In

the reduced log in Figure 5.1, notice that the TEIs 5, 6, and 8 do not exist. These

correspond to the creation and execution of thread T4 in the original log.

Now that irrelevant threads have been removed, the next step in this phase is to

identify irrelevant TEIs. All the remaining threads are relevant to the bug but not

all of their TEIs are relevant. In Figure 5.1, TEI 7 corresponding to T3, which is

the execution corresponding to a ”show databases” query from the user, is irrelevant

to the fault. Hence, this is also removed from the replay log. The reduced log now

shows only the relevant TEIs that caused the fault. Replaying the program using the

reduced log generates the fault much faster.

Replay Phase. In this final phase the program is replayed using the reduced log

with the tracing infrastructure turned on. Since the execution contains only the

necessary TEIs, the traces produced are much smaller. The size of the traces are

further reduced in this phase by exploiting the following observation. Even though all

the TEIs in the reduced log have to be replayed to produce the fault, not all of them

have to be traced.

For instance, thread T1 is present only to create the faulty T3, and thread T2 to

handle signals. The code that is executed in T1 and T2 does not contain the root

89

cause. Hence, only thread T3 needs to be traced, that is, TEIs 4 and 9 in the reduced

log. The original trace is reduced in size by 99.99% and this reduced trace captures

the root cause as desired. The user then inspects the generated trace and discovers

the root cause of the bug.

5.3 Automated Execution Reduction

In this section the types of dynamic dependences that must be found to automatically

perform execution reduction is identified. Also, efficient dynamic algorithms used to

identify these dynamic dependences are proposed. Before presenting the above details,

the types of events that are recorded in the replay log are discussed.

When the application is being executed in the real world environment, it is exe-

cuted with a lightweight checkpointing/logging mechanism turned on. Non-deterministic

events are recorded as and when they happen. In addition, the program is check-

pointed at regular intervals. The logging is to ensure that the program can be replayed

to reproduce a fault if one occurs. The following are some of the events that must

be recorded in the log in order to correctly replay the execution of the multithreaded

program. The thread scheduling events of a multithreaded program are the most im-

portant events that need to be captured since they can vary from one execution to

another. The replay log captures all the events where a thread was descheduled and a

different thread was scheduled. It should be noted that the order in which the differ-

ent threads access shared memory, which must be preserved to successfully replay a

multithreaded program, need not be captured explicitly. By recording the scheduling

information, it is ensured that when the program is replayed as per the schedule, the

order of shared memory accesses by the different threads does not change. This holds

only when the user level threads are executing in a uniprocessor environment. Notice

that the order in which a single thread accesses memory is preserved in the control

flow of the execution and hence, need not be explicitly recorded. To summarize, by

90

preserving the thread scheduling of the original execution it can be guaranteed that

the order of memory accesses in the replayed program is exactly the same as the

original program. Some of the other important events that need to be captured are

external events like signals, interrupts, and IO reads and writes. Reads and writes to

files need to be logged along with the file offsets and the size of the read or write in

order to undo these operations and restore the original file contents when commencing

replay.

When a fault is encountered, execution reduction is carried out before tracing the

execution. Execution reduction is critical because even if the program is replayed

from the most recent checkpoint, the trace that is generated can be very long and

its generation can take a long time. Execution reduction is based upon two types of

information: identification of irrelevant threads; and identification of irrelevant thread

execution intervals. The algorithms for identifying irrelevant threads and irrelevant

thread execution intervals are described in the following subsections.

5.3.1 Discovering Irrelevant Threads

Lets consider the problem of identifying threads that are irrelevant to the fault, that

is, the execution of these threads does not influence the execution of the threads that

resulted in the fault. To achieve this goal, the interactions or dependences between

the different threads have to be known. Thread interactions can take place via events,

files, or shared memory. Examples of event interactions are actions such as thread

creation and join involving two or more threads. File interactions occur when threads

communicate by reading and writing from files. The most frequent type of thread

interactions are through the use of shared memory regions.

To detect whether a thread is relevant or irrelevant to the fault, the information

about the three kinds of dependences between the threads needs to be obtained.

To replay a thread Ti, another thread Tj has to be replayed if and only if thread

91

Ti depends on thread Tj. Once the dependence information is obtained, a Thread

Dependence Graph (TDG) can be constructed. Then, the set of relevant threads are

identified, REL(Ti), for any thread Ti by traversing the TDG. To replay the execution

of thread Ti exactly, it is necessary and sufficient to only replay those threads that

are in the set REL(Ti). Given this information, all the threads that are irrelevant to

the faulty thread can be identified and eliminated by pruning the replay log. Then

only those threads that contributed to the fault remain, resulting in reduction in the

execution. The definitions of TDG and Relevant Threads are given below.

Definition 1.(Thread Dependence Graph (TDG)) The Thread Dependence Graph
of a multithreaded program execution, TDG(N, E), consists of a set of nodes
N and a set of directed edges E where each node ni ∈ N corresponds
to a unique thread Ti that was created in the current run and each edge
(mi → nj) ∈ E indicates that there is a dependence path from thread Ti to
thread Tj, that is, Tj is dependent on thread Ti. Also, each edge is annotated
with one or more of the symbols in the set {File, Event, SharedMem} to
indicate the type of dependence(s).

Definition 2.(Relevant Threads) The set of relevant threads corresponding to a
thread Ti, REL(Ti), is defined as REL(Ti) = {Tj|Tj ∈ Γ and ∃ a dependence
path from Tj to Ti} where Γ is the set of all threads in the current run.

Next, each of the three types of interthread dependences are discussed in detail.

In particular, how each of these dependences is identified is explained.

Event Dependences. The replay log contains explicit information on all the thread

events (e.g., thread creation and termination, synchronization events such as join,

etc.) and hence the log can be analyzed to obtain all event dependences between

threads. Hence, by inspecting the log and looking at the records corresponding to

these events, the various event dependences between the different threads can be de-

tected. For example, in the replay log in Figure 5.1, the events in TEI 1 corresponding

to thread T1 indicate that a new thread T2 was created and scheduled to run in TEI

92

2. Hence, it can be inferred that thread T2 is dependent on thread T1 by the parent-

child relationship. Notice that this means T1 has to be replayed in order to replay

T2 whereas the reverse is not true. In summary, the replay log captures all the event

dependences between threads and a simple scan of this log is enough to discover all of

them.

File Dependences. Now, discovering dependences between threads due to file

operations is discussed. A file data dependence exists from thread Ti to thread Tj if

thread Tj reads from an offset in any file F that was written to by thread Ti. This

implies that for successful execution of thread Tj, thread Ti must also be replayed.

Dependences between threads due to files can be directly obtained from the replay

log. The replay log records information on the files that were read or written by

every thread, the offsets from which the reads and writes took place and the size

of the operation. This is done primarily to restore the contents of the files while

commencing replay. Hence, by scanning the replay log all file dependences between

threads can be retrieved.

Shared Memory Dependences. Now, discovering the most common interactions

between threads that result in shared memory dependences are discussed. There exists

a shared memory dependence from thread Ti to thread Tj if Tj reads a value from any

memory address ‘a’ that was written by Ti. Notice that this is a RAW dependence.

Also notice that this is the only dependence that needs to be captured if the program

is instrumented to convert all WAW and WAR into RAW. Thread Tj is dependent on

Ti since Ti either generates the value and has to be replayed for successfully replaying

Tj (traditional RAW) or Tj and Ti have a potential data race in the form of WAW or

WAR.

Shared Memory dependences between threads cannot be simply obtained from the

replay log. Recall that to make the logging scheme lightweight, explicit capturing of

93

information unnecessary for replay must be avoided. By capturing the thread sched-

ule in the log, the need of capturing the shared memory dependences does not arise.

Therefore, to obtain shared memory dependences, the program must be replayed and

track these dependences as they occur using a mechanism for detecting shared mem-

ory dependences. This mechanism must track shared memory dependences between

threads and output thread ordered pairs (Ti, Tj) that are involved in at least one

shared memory dependence. Note that to construct the TDG, every occurrence of a

dependence between a pair of threads need not be output.

It is desirable that the technique that detects shared memory dependences has

low overhead. Even though this phase is carried out in the debugging stage of the

program, unreasonable delays is not desirable to the user who is debugging the code.

One approach that does not involve runtime overhead could be based upon static

analysis [97, 94]. This approach has the disadvantage of producing a conservative

TDG using which fewer threads may be identified as being irrelevant. Another issue

is that dynamic opportunities for eliminating irrelevant threads will be lost. During

a given execution, a potentially shared memory region may however, be accessed by

just one thread. The static approach cannot take advantage of such opportunities.

However, a well designed dynamic approach can take advantage of this information

to identify more irrelevant threads.

Let us first consider a naive dynamic strategy for detecting shared memory de-

pendences. A hash table can be used to maintain, for each address ‘a’, the thread id

of the thread that performed the most recent write to ‘a’. To detect an interthread

dependency, when a load operation is performed on address ‘a’ by thread Tj, the

thread id Ti that wrote to it last is obtained from the hash table and an interthread

dependence is formed if Ti and Tj are different. Although this scheme is straight-

forward, it is inefficient in both space and time. It is space inefficient because the

size of the hash table is as large as the memory footprint of the original program.

For large applications, this could potentially run out of memory. It is time inefficient

94

because every load and store that executes must access the hash table. Every store

must write the thread id to the corresponding hash entry and every load must read it

from the hash table. Next a scheme is presented that greatly improves the efficiency

of the above naive interthread dependence detection scheme. This scheme is efficient

in both space and time. This scheme is based upon two optimizations that achieve

elimination of majority of the expensive hash table lookups.

The first optimization introduces a new look-up table, called RegionMap, such that

accesses to this new table are less expensive than accesses to the hash table. Often

times, the dependence is resolved by accessing the RegionMap and hence the need

for accessing the hash table is eliminated resulting in savings in time. In addition, we

will see that the size of the hash table is greatly reduced.

Let us discuss the RegionMap in greater detail. The 32-bit virtual memory address

is divided into two parts: the higher order 16-bits act as a region specifier; and the

lower order 16-bits are used as the offset address within the region. The region itself

can be either a shared memory region or a non-shared memory region. The RegionMap

is indexed by the 16-bit region specifier and it contains a bit for every region, called

isSharedMem, that indicates if the region has been dynamically observed to behave as

a shared memory region or not. All region bits are initially set to False implying that

all regions are non-shared memory to start with. The region bit for a region is set to

True if more than one thread accesses the region. The region table also contains a

field, called firstThread that stores the identifier of the first thread that wrote to it.

This is initially set to an invalid value and is initialized by the first thread that writes

to it.

Now, it is shown how an access to the hash table may be avoided by first accessing

the RegionMap. For a load operation, a look up is done on the RegionMap first to

see if it is an access to a shared memory region or not. If the region is currently

indicated to be non-shared memory, nothing needs to be done any further as this

load does not involve an interthread dependence. However, if it is a shared memory

95

do for every load and store(ThreadId currThread, Address a){
/* RegionMap, array of 216 entries, each entry has 2 fields

isSharedMem bit, firstThread field - initialized to 0 */
// prevThread,prevRegion,prevSharedMem - prev. load / store
currRegion=a >> 16; // higher order 16 bits
Stage I :

if(prevThread=currThread && prevRegion=currRegion
&& prevSharedMem=False)
return;

prevThread=currThread; prevRegion=currRegion;
Stage II :

entry = RegionMap[currRegion];// Lookup Region table
if(entry→isSharedMem=False)

if(entry→firstThread=0)
prevSharedMem=False;
entry→firstThread=currThread; return;

if(currThread = entry→firstThread)
prevSharedMem=False; return;

else

prevSharedMem=True;
/* stores update shared memory bit
loads check for dependence with first thread */
if(load instruction)

return;
Stage III :

if(store instruction)
write threadid into hash entry(a);

else //load instruction
threadId = read threadid from hash entry(a);
if(threadId is valid)

Track Dependence(currThread, threadId);
else

Track Dependence(currThread, entry→firstThread);
return;

}

Figure 5.3. Pseudo-code for detecting shared memory dependences. The code shows
the processing that is done for every memory load and store instruction. The 3 stages
are clearly marked.

96

region the threadId of the store operation involved in the dependence is obtained by

looking up the hash table and checked to see if it is an interthread dependence. For a

store operation, if the region is shared memory, an update is performed to the hash

entry corresponding to the memory address with threadId. If the region is not shared

memory, a check is done to see if the thread performing this store could potentially

make it a shared memory region, that is, the current thread’s id is compared with

firstThread id to see if they are different. If they are different, a shared memory region

has been detected and the region bit, isSharedMem, for this region is set to True in

the RegionMap. The hash entry for the 32-bit address is also updated. However, if

the region is still not shared then nothing further needs to be done.

From the above operation of the RegionMap, and the hash table, the following

has been achieved. The size of the hash memory now at most equals the combined

sizes of only the shared memory regions and not the total virtual space used. Hence,

this is a huge saving and for the many programs that were looked at, the amount

of shared memory that is used is much less than the actual memory used. Also, for

loads and stores that do not access shared memory regions, the expensive hash table

lookup operation is avoided.

The second optimization is designed to further reduce the runtime overhead by

reducing the RegionMap lookups and replacing them with cheaper operations. In

this sense this optimization is analogous to the first optimization which reduced the

runtime overhead by replacing some of the expensive hash table lookups by cheaper

RegionMap lookups. This second optimization exploits the locality in the regions ac-

cessed by most loads and stores. In particular, locality here refers to the characteristic

that consecutive executions of the same static load (store) often involve the same re-

gion. When this is the case, handling of one region access by a load (store) makes the

handling of the next access to the same region by the same load (store) redundant.

Finally, a three stage algorithm is proposed for handling each load and store such

that first stage is the cheapest and the last stage (hash table lookup) is the most

97

expensive. While in general a load or store may have to go through all three stages,

very often this is not the case and hence the runtime overhead of the three stage

scheme is greatly reduced when compared to the runtime overhead of a single stage

scheme involving hash table lookup. Next all of the ideas are put together into a

three stage algorithm described below (pseudocode is given in Figure 5.3).

Stage I - Check region of previous memory operation. In this stage, for the load or

store that is being processed, if the previous memory operation (load or store) was

from the same thread, it accessed the same region, and was found to be non-shared,

then it can be guaranteed that this region will continue to remain non-shared. (The

variables prevThread, prevRegion and prevSharedMem contain this information about

the most recent load/store operation.) Hence, a RegionMap lookup is not required

and no further processing of this memory operation is required. Due to significant

locality of regions, over half of the loads/stores did not proceed beyond this stage.

Stage II - Check RegionMap table and update isSharedMem bit. In this stage, and

access to the RegionMap is required as the locality check in Stage I failed. The Re-

gionMap tells us if the region accessed is shared memory or not. For a load or store,

if this region is not shared memory then a operation on the hash table is unnecessary.

However, a check needs to be done to see if this thread’s access could potentially

make it shared memory and flip the isSharedMem bit accordingly.

Stage III - Access the hash table. In this stage, it has been determined that the region

is shared memory by looking up the region table and therefore the expensive hash

accesses are performed. For a load operation the hash table is accessed to retrieve the

thread that wrote to this 32-bit address last and check if it is an interthread depen-

dence. The function Track Dependence does this check. However, if this address was

last written to by a thread when this region was not detected to be shared memory,

98

then the contents of the hash memory would be invalid as the thread that wrote to it

last did not create the hash entry. In this case, the firstThread field of this region is

accessed and the dependence is now obtained. For a store operation, the hash entry

corresponding to the 32-bit address is updated.

Table 5.3. Cost of shared memory dependence tracking for some multithreaded
programs.

Program Staged Tracking Time Memory Used
Stage I Stage II Staged/ Naive Staged
%Ld+St %Ld+St Naive

mysql 52 % 10 % 55 % 3.6 MB 0.8 MB
evolution 16 % 10 % 64 % 8.4 MB 5.9 MB
balsa 67 % 15 % 73 % 8.1 MB 1.8 MB
proftp 50 % 0 % 50 % 3.3 MB 3.3 MB
proxyC 72 % 16 % 56 % 6.6 MB 1.3 MB
axel 50 % 18 % 12 % 0.3 MB 0.1 MB
prozilla 56 % 19 % 41 % 1.2 MB 0.3 MB

Average 52 % 13 % 58 % 4.5 MB 1.9 MB

To evaluate the dependence tracking technique, experiments were conducted on

some multithreaded long-running programs and measured the percentage of loads and

stores that terminated at each stage. Table 5.3 shows the data. It also shows the

space overhead of this approach. From this data it can be seen that on average 52%

of all loads and stores terminate at Stage I, that is, they do not require a RegionMap

or a hash table access. Additional 13% terminate in Stage II. Thus, finally, on an

average, only 35% of all loads and stores performed hash accesses as they reached

Stage III. The runtime overhead of the staged approach is 58% of the naive tracking

scheme. Also, on an average, the total memory used by the Staged Tracking approach

is only 42% of the memory used by the naive approach.

Note that the region size, which is 16 bits now, can be varied to be coarser or finer.

99

By making it finer, shared memory space could be determined much more accurately

but the locality optimization would not be as effective. Notice that a region size of

32 bits is basically equivalent to the naive approach. Making the region size coarser

could give more opportunities for locality but more regions would become shared

memory and hence the locality benefits might not be useful. Hence, the region size is

a trade-off between how fine shared memory can be detected and how much locality

can be obtained. A 16 bit sized region was found to work well with the benchmarks.

Eliminating Irrelevant threads. At this point the complete thread dependence

graph is present with all dependences detected and annotated. The set of threads

that are relevant is detected to correctly replay the fault. The rest of the threads

are irrelevant. The replay log is pruned to remove all the records corresponding to

the irrelevant threads. Now, the reduced replay log has only information on relevant

threads and the execution has already been shortened.

5.3.2 Discovering Dependences Across TEIs

Now that the threads that are irrelevant to the fault have been eliminated, the next

step is to eliminate irrelevant thread execution intervals (TEIs) from the relevant

threads. For this step, the interactions between the various TEIs have to be detected.

Notice that the information on the dependences between TEIs that correspond to

different threads is already present. Now, the event, file, and memory dependences

between TEIs belonging to the same thread have to be found. Event and file de-

pendences across TEIs of the same thread are found using the original replay log.

To find memory dependences, the program is replayed again, but using the reduced

replay log, and the naive approach that is described in the last section is used as the

execution has been shortened already.

Now, just as irrelevant threads were detected by using the TDG, analogously, a

dependence graph for TEIs is constructed to remove all irrelevant TEIs. The reduced

100

replay log is further pruned to remove all records corresponding to the irrelevant

TEIs. A highly reduced log that contains only relevant TEIs is now obtained. This

completes the second phase of the framework.

5.3.3 Selective Tracing of Reduced Execution

The reduced replay log contains only those thread execution intervals that need to be

replayed. However, not all TEIs have to be traced. For instance, a thread’s execution

trace, that merely created the faulty thread which has a memory error, is not useful

as the invalid memory access could not have come from this thread. All such TEIs

are identified using the event, file, and shared memory dependence information that

is available between the various threads and TEIs. During replay, tracing is turned

on when a TEI needs to be traced and turned off otherwise. The overhead of toggling

tracing is low as it is done at the granularity of TEIs. At the end of this stage, a

trace of the faulty execution is obtained that is short and contains the root cause of

the bug.

5.4 The Execution Reduction System

LOGGING

INFRASTRUCTURE

(jockey)

Replay Log

checkpoints

events

Reduced Log

threads

remove

remove

TEIs

Final

Reduced Log

Trace of

Faulty Run

DYNAMIC (valgrind)

INSTRUMENTATION

Thread Dependence

Detector

DYNAMIC (valgrind)

INSTRUMENTATION

TEI Dependence

Detector

binary, input

binary, input binary, input

binary, input

DYNAMIC (valgrind)

INSTRUMENTATION

Tracing Infrastructure

Figure 5.4. Implementation of the system showing each step of the framework.

In this section, the implementation of the ER system is described that incorporates

checkpointing/logging, dependency detection, and (selective) tracing. This system

101

was used to analyze several bugs in long-running multithreaded programs.

Figure 5.4 shows the system. The system consists of a logging component whose

main role is to log the events of the original execution and also create checkpoints at

regular intervals. The system’s key component is the dynamic instrumentation en-

gine. It is involved in many steps of the debugging process. It uses the information in

the replay log created by the logging infrastructure to replay the multithreaded pro-

gram exactly. Also, while replaying the program, it can dynamically instrument the

binary to detect dependences and collect traces. The information it generates is used

to shorten the replay logs by pruning irrelevant threads and TEIs. Since the instru-

mentation is dynamic, tracing can be turned on and off at run-time. The following

paragraphs discuss the tools used to perform logging and dynamic instrumentation.

Logging/Checkpointing Infrastructure. The jockey user level library [96] has

been used to perform checkpointing and logging for replay. jockey is a very pow-

erful system that works on most multithreaded programs and is also very easy to

use. During execution, even before the application can execute, jockey takes con-

trol and scans the application binary for system call instructions. It then redirects

these calls to a jockey handler and lets the application execute. During system calls,

jockey logs events, scheduling decisions, creates checkpoints, etc. Scheduling of the

user-level threads can be controlled by jockey because it uses its own thread libraries

and any current thread is descheduled only at a system call boundary. Checkpointing

is achieved by retrieving the layout of the application’s virtual space and dumping

all virtual memory segments that belong to the application. To summarize, jockey

related work is performed only during a system call and otherwise, the application

executes as though it was unaware of jockey. Since jockey works only for uni-processor

systems, it cannot log the execution of multithreaded programs that run on multipro-

cessors. However, the approach described is general and by using a logging mechanism

for multiprocessors [78, 109], the execution reduction techniques can be applied to

102

programs that execute on multiprocessors.

Dynamic Instrumentation Engine. To perform dynamic instrumentation, the

valgrind [80] system has been used which can handle x86 binaries. The binary is

executed with valgrind which calls an instrumentation function just before a basic

block is to be executed for the first time. The instrumentation transforms the basic

block and rewrites the code cache with the instrumented basic block so that future

calls to execute this basic block does not have to go through the instrumentation

process. The code cache of a basic block can be invalidated which will cause the

instrumentation function to be called when this basic block executes again. Here,

the instrumentation could either be modified or turned off . Hence, the instrumented

code can be dynamically manipulated.

The dynamic instrumentation engine forms the core of the framework. Its first

job is to parse the log generated by jockey and replay the program. For multithreaded

programs, the scheduler decisions are the most important events that have to be re-

played. The schedules are replayed as follows. The scheduling decisions in the original

program are made only at system call sites by jockey’s thread library. When logging

the schedule, the system also logs the number of system calls that the thread exe-

cuted since it was scheduled and before it was descheduled. In valgrind, for a thread

that is currently executing, the system uses the number of system calls executed to

decide when to deschedule the thread. Upon reaching that system call (valgrind has

event handlers that are called before and after a system call which is used to count

system calls), the system forces the scheduler to deschedule this thread and switch to

the appropriate thread. Hence, it can be guaranteed that the threads will be sched-

uled according to the replay log. As mentioned before, preserving the schedules will

also guarantee that the shared memory dependences of the original execution will be

preserved. File events can be replayed exactly if the contents of the modified files

are restored. There are some system calls for which jockey saves the contents of the

103

original run. For example, in a server program, if a client makes a connection re-

quest, the contents of the socket-read system call are saved in the jockey log. During

replay, when the system call socket-read is to be executed, jockey will return the saved

contents instead of executing the system call. What is done is exactly the same in

valgrind during replay of the program. When the socket-read system call is reached,

the system does not perform the system call but returns the contents saved in the

jockey log. For the programs considered, the events that were handled were enough

to replay the execution.

Given that the program can be successfully replayed using valgrind, it is now

used to detect shared memory dependences, TEI dependences and, finally, obtain

traces. In the thread execution reduction phase, the system replays the program

and instrument the loads and stores in every basic block according to the algorithm

described in Figure 5.3. Once it has obtained the shared memory dependences, it

can now find the irrelevant threads of this faulty execution. Note that the file and

event dependences are already available in the replay log. The system uses this

information to prune the replay log. Similarly, it finds dependences across TEIs and

further prunes the log. Once the final reduced log is obtained, valgrind is used to

trace the shortened execution and output the trace. Here, since it does not trace all

replayed TEIs, valgrind’s ability is used to selectively switch on or off the tracing for

a particular TEI.

5.5 Experiments

The multithreaded benchmark programs used in the experiments were already de-

scribed in Table 5.1. For all these programs, the trace sizes and the cost of detecting

shared memory dependences have been already shown in Tables 5.2 and 5.3 respec-

tively. Now, for studying the effectiveness of the entire ER system, experiments were

performed with only the buggy versions of these programs.

104

Table 5.4. Trace sizes (Basic Blocks) produced by the original and shortened runs
(M - million, B - billion).

Program Number of Basic Blocks
Orig. R Thread R TEI SR TEI Orig./SR TEI

mysql-1 976 M 19349 16695 1964 490000
mysql-2 733 M 1.1 M 29809 29809 24500
mysql-3 857 M 122 M 24834 9511 90100
prozilla-1 536 M 106749 81179 81179 6600
prozilla-2 764 M 764 M 764 M 1.6 M 478
proxyc-1 200 M 23736 23736 23736 8400
axel-1 55.4 M 7734 7734 1622 34000

For each bug, the following execution scenario was created. The buggy version of

the program was taken and a reasonably long-running execution is created at the end

of which the bug triggers the failure. For example, in mysql, a number of clients were

invoked which were made to issue queries to the different databases created. Some

of the query operations used were among the common ones like select, join, insert,

delete, orderby, etc. At the end a client was made to perform the query operations

that causes the bug to occur. The length of the execution has been limited to be

around 10 seconds for mysql and proxyc. For prozilla, the length of the execution is

around 5 to 7 seconds. For axel, the bug that was considered happens during the

initialization phase. Hence, this program could not be made to run as long as other

programs. Note that even though checkpointing is supported in the system, given

the lengths of executions, checkpoints were not created. The following subsections

discuss the different experiments that have been conducted.

5.5.1 Space Overhead

Tables 5.4 and 5.5 shows the size of the basic block (control flow) and dependence

traces in terms of the number of basic blocks and dependences for the various execu-

105

Table 5.5. Trace sizes (Data Dependences) produced by the original and shortened
runs (M - million, B - billion).

Program Number of Data Dependences
Orig. R Thread R TEI SR TEI Orig./SR TEI

mysql-1 1.5 B 30375 25391 3175 470000
mysql-2 1.1 B 1.27 M 49263 49263 22000
mysql-3 1.3 B 188 M 40869 17929 73000
prozilla-1 720 M 135466 123918 123918 5800
prozilla-2 1 B 1 B 1 B 2.6 M 380
proxyc-1 56 M 6513 6513 6513 8600
axel-1 53.9 M 5119 5119 1156 46600

tions considered. What was measured was the basic block and dependence trace sizes

for four different executions of the same program. The WAW and WAR dependences

for these programs were a very small percentage (< 0.01%) of the total number of

dependences. First, the trace sizes of the original run was measured shown under

the heading Orig in Tables 5.4 and 5.5. Then, the trace sizes of the programs by

replaying only the relevant threads was measured which is shown under the heading

R Thread. The data under the heading R TEI corresponds to the trace sizes by

replaying only the relevant thread execution intervals in the program. For R Thread

(R TEI), the basic block traces are smaller than the original by factors ranging from

1 (1) to 50442 (58460) and the dependence traces are smaller by factors ranging from

1 (1) to 49300 (59000).

An additional experiment was also performed which was measuring the trace sizes

by using selective tracing (SR TEI), that is, all the relevant TEIs were replayed but

do not necessarily trace all of them. Selective tracing of TEIs is performed as fol-

lows. For programs with a memory bug, that causes a Segmentation Fault, the bug

manifests itself from the root cause to the crash point through a series of memory

dependences in the program. Hence, if the faulty interval TEIi is not memory depen-

dent on another interval TEIj, then the trace of TEIj does not contain any useful

106

information about the crash. However, TEIj may still have to be replayed since TEIi

may be dependent on it due to event dependences. Since there is already information

on all the dependences between the various TEIs, this is used to decide which TEIs to

trace. Then, the dynamic tracing infrastructure is used to selectively turn on tracing

for the appropriate TEIs. With selective tracing, the reduced basic block traces are

smaller than the original by a factor of 478 to 490000. The corresponding reduction

factors for dependence traces range from 380 to 470000. Note that this huge reduc-

tion in trace sizes comes from both execution reduction and selective tracing. For

prozilla-2, selective tracing is the only single contributing factor.

5.5.2 Time Overhead

Table 5.6 gives the data on the runtime performance for the various executions consid-

ered. First, the logging overhead on the original execution was measured. Table 5.6,

under the heading of Logging Overhead, gives the execution times of the program run

without logging (Orig-1) and with logging (Logged). The ratio of the two in column

Logged/Orig-1 shows that the program execution slows down by a factor ranging

from 1.1 to 2.8. The logging overhead is small for mysql and axel and slightly higher

for prozilla, proxyc, and proftp. The reason for the slightly increased overhead for

some programs is because their long-running execution involves downloading large

files from a website. Jockey makes a separate copy of the contents of the downloaded

file and this increases the overhead. However, the overhead is still reasonable and is

acceptable to have logging turned on during normal execution.

Then,the execution times of the programs during replay from corresponding logs

both without and with tracing was measured. In each of these two cases three mea-

surements were made: the execution time to replay the entire execution (Orig-2/3);

the execution time to replay the execution of only the relevant threads (R Thread-

2/3); and the execution time to replay the execution of only the relevant thread

107

Table 5.6. Overhead of logging and the running time in seconds of the original
execution and the reduced execution with and without tracing.

Logging Overhead Replay without Tracing
Program Orig-1 Logged Logged/ Orig-2 R Thread-2 R TEI-2

Orig-1

mysql-1 14.8 16.8 1.1 16.4 0.1 0.08
mysql-2 12.3 14.0 1.1 12.6 1.1 0.1
mysql-3 13.9 15.8 1.1 15.4 2.3 0.09
prozilla-1 4.8 13.4 2.8 12.4 0.08 0.05
prozilla-2 7.2 18.7 2.6 16.5 16.5 16.5
proxyc-1 11.0 19.8 1.8 16.6 0.07 0.07
axel-1 0.15 0.16 1.1 0.14 0.02 0.02

Replay with Tracing
Program Orig-3 Orig-3/ R Thread-3 R TEI-3 SR TEI-3

Orig-2

mysql-1 3736 227.8 0.8 0.7 0.67
mysql-2 2806 222.6 4.0 0.9 0.9
mysql-3 3270 212.3 468 0.9 0.9
prozilla-1 2664 214.8 0.6 0.5 0.5
prozilla-2 2364 143.3 2364 2364 560
proxyc-1 960 57.8 0.3 0.3 0.3
axel-1 3.2 22.8 0.3 0.3 0.26

execution intervals (R TEI-2/3). In case of replay with tracing, an additional mea-

surement was made that takes advantage of selective tracing (SR TEI-3).

Consider the performance of replaying the original and reduced executions without

tracing turned on. Excluding prozilla-2, while the original execution time Orig-2 that

includes all threads ranges from 0.14 to 16.6 seconds, the execution time R Thread-

2 which excludes irrelevant threads ranges from 0.02 to only 2.3 seconds. Then, if

irrelevant TEIs are removed, the execution time is further reduced to R TEI-2 which

ranges from 0.02 to only 0.1 seconds. With the exception of prozilla-2, all the buggy

programs have a significant reduction in their execution times.

108

Table 5.7. Replay Log Sizes of original and shortened runs, (M - million).

Program Number of events in replay log
Orig. R Thread R TEI Orig./

R TEI

mysql-1 4801 281 236 20.3
mysql-2 3749 489 365 10.3
mysql-3 5453 902 332 16.4
prozilla-1 7.2 M 621 73 98000
prozilla-2 10.8 M 10.8 M 10.8 M 1
proxyc-1 32.8 M 798 798 41000
axel-1 1695 954 954 1.8

Next consider the performance of the various executions with tracing turned on.

The overhead of tracing given by column Orig-3/Orig-2 is as high as 228 which

is the factor by which the execution slows down. For mysql the data shows that

tracing can cause a significant slowdown in performance which cannot be tolerated

even during debugging. However, after execution reduction this overhead is greatly

reduced. Excluding prozilla-2, while the original execution time Orig-3 that includes

all threads ranges from 3.2 to 3736 seconds, the execution time R Thread-3 which

excludes irrelevant threads ranges from 0.3 to 468 seconds. Then, if irrelevant TEIs

are removed, the execution time R TEI-3 is further reduced and it ranges from

0.3 to only 0.9 seconds (excluding prozilla-2). With selective tracing the execution

time SR TEI-3 for prozilla-2 is greatly reduced, that is, from 2364 to 560 seconds.

Thus, the combination of removing irrelevant threads, removing irrelevant TEIs, and

performing selective tracing proves effective for all programs.

Table 5.7 gives the number of events in the original and reduced replay logs for the

original and shortened executions. The final reduced log is smaller than the original

by factors ranging from 1 to 41000 which translates into smaller execution times as

already observed and hence smaller trace sizes.

109

5.6 Summary

In this chapter, the execution reduction system was described that can effectively

combine checkpointing and tracing in order to debug long-running multithreaded pro-

grams. The proposed system uses dynamic techniques for eliminating the execution

of irrelevant threads and irrelevant thread execution intervals from the final replay

phase that collects traces. Further, it also eliminates unnecessary tracing during the

replaying of relevant threads and thread execution intervals. The combined effect of

the above approach is that the tracing overhead and the amount of trace data col-

lected is greatly reduced. Most importantly, to make the above scheme work, a three

stage scheme was developed for identifying dynamic shared memory dependences be-

tween executing threads that is both space and time efficient. Detailed experiments

demonstrate the effectiveness of the proposed techniques and the data shows that the

sizes of the generated traces can be reduced by two to five orders of magnitude and

the tracing time by two orders of magnitude.

110

Chapter 6

Environmental Fault Avoidance Via

Execution Perturbation

As mentioned earlier, for critical applications, bringing down the application and

waiting till the fault is fixed might not be acceptable in some situations. Hence, in

such cases techniques for fault avoidance is attractive which let the application con-

tinue execution inspite of the fault. This chapter discusses a technique to avoid a

class of faults in programs. There are certain errors in a program that manifest as

a fault only under certain environment conditions. For instance, a bug in a thread

synchronization part of a multithreaded program may be exposed only under certain

thread scheduling events. Such class of faults are referred to as environment faults as

they occur only when certain conditions prevail in an execution environment and can

be avoided by appropriately modifying the environmental conditions. This chapter

proposes a framework to capture and recover from environment faults when they oc-

cur and to prevent them from occurring again. Three different types of environment

faults have been investigated that can be avoided by altering the execution environ-

ment (atomicity violation, heap buffer overflow, and malformed user request) and the

framework has been found to be effective in avoiding them.

6.1 Overview

A large number of faults that occur in today’s software are due to the execution

environment. In a study by Chandra and Chen [30] and mentioned in Qin et al. [89],

56% of faults in the Apache server are dependent on the environment. The faults that

can be averted by modifying the execution environment is referred to as environment

111

faults. These faults can be non-deterministic. For instance, synchronization faults in

multithreaded programs are non-deterministic as they may not occur for some thread

schedules and can be averted by avoiding the thread schedules (the environment)

that expose the fault. They could also be deterministic as in the case of some heap

buffer overflow faults which can be avoided if the memory allocator (the environment)

sufficiently pads the allocated heap memory.

This chapter presents an online framework to capture and recover from environ-

ment faults once they occur and prevent them from occurring again. As these faults

could be non-deterministic, it uses a checkpointing/logging mechanism to capture

the execution in an event log, if the execution results in a fault. The framework then

applies appropriate environment modifications by altering the event log and replays

the execution using the altered log to try and avoid the fault. An environmental

change that successfully avoids the fault is recorded, which is then referred to and

applied by all future executions of this application to prevent the fault from occurring

again. In general, modifications to the environment do not affect the correctness of

the application and make the application available immediately instead of having to

wait until the actual bug in the program can be fixed. In the remainder of this section

these techniques and the framework are discussed in more detail.

Checkpointing/Logging/Replay was already discussed in the previous chapter

where it was used for deterministic replay and execution reduction. Previous tech-

niques have used checkpointing/logging to deterministically replay [41, 95] shared

memory programs and also in recovery [55] of programs from faults. However, the

proposed techniques rollback to a previous checkpoint and replay again without mod-

ifying the environment. This process of rollback and replay could avoid some non-

deterministic bugs but cannot recover from deterministic ones. Also, these schemes

cannot avoid the fault from happening in the future. The framework uses a check-

pointing/logging scheme for two reasons. First, it is used to capture the faulty ex-

ecution to allow deterministic replay, even in the case of non-deterministic faults.

112

Second, it is used to try to avoid the fault by applying environment changes to the

faulty region via modifying the event log. This allows replay of the previous exe-

cution such that the faulty region now runs under a different environment that can

potentially avoid the fault.

Previous work in this area that is the closest and that has inspired this work is

the Rx [89] system which was designed to help applications recover from faults due to

the environment, by removing the “allergen” that caused the bug to manifest. When

a fault occurs, the Rx system rolls back the application to a recent checkpoint and

executes it under a modified environment. Repeated environment modifications and

re-executions are done until the fault is avoided or a time threshold is passed. If the

fault is avoided, the execution is resumed. However, Rx suffers from some drawbacks

that motivated the work in this chapter. First, for faults whose symptoms are not

immediately apparent, such as a wrong output in a file, the execution could have

proceeded beyond many checkpoints before it is detected. Rx will then rollback to

a checkpoint which could be very far from the fault. Next the application is reexe-

cuted, not replayed, with environment changes that could even affect the previously

successful regions of execution. Since the proposed framework supports logging, it

replays the execution to figure out the exact point at which the fault occurred. This

enables focussing on the region of execution where the environment changes must

be applied and also not affect the parts of execution that did not contribute to the

fault. Second, Rx cannot prevent the fault in future executions whereas the proposed

framework can record the environment change that avoided the fault and apply the

same change in all future executions to prevent the fault from occurring again.

In the proposed system framework, each application that runs goes through three

main phases: Logging Phase; Fault Avoidance Phase; and Prevention-Logging Phase.

Figure 6.1 shows the various phases that an application has to go through in the

system. The Logging Phase corresponds to the original program run during which

the checkpointing and logging infrastructure is turned on. This phase produces the

113

Logging Phase
Fault Avoidance

Phase
(Environment Changes)

Prevention-Logging

Phase

Event Log

Fault Avoided

Environment

Patch

New Fault

Fault

Figure 6.1. The various phases that an application goes through in the system.

record of all the events, i.e., the event log. The set of logged events can be used to

exactly replay the execution when necessary, like when a faulty execution is encoun-

tered. Once a fault is detected at any point during the execution or at the end, the

application is taken to the Fault Avoidance Phase. In this phase, the application is

analyzed to correct the fault. If the application was a long-running program like a

server, then the clients experience non-availability of the application until the fault is

corrected and the application is moved out of this phase. In this phase, the event log

of the faulty execution is inspected to detect the nature of the environment bug that

manifested in the fault. The system then makes appropriate changes to the event log,

which results in altering the environment of the original execution. For example, to

avoid atomicity violation errors, a change is made in the order in which threads should

be scheduled in the new execution by shuffling the threads in the event log. Now, the

program is replayed with the modified event log. This procedure is repeated a few

times with different changes each time until the fault disappears. If the fault does

disappear, a recording is done of the environment change that avoided the fault and

also the region of the application code where the fault occurred in a special log which

is called the Environment Patch. In the cases where the fault does not disappear, this

system cannot be used to prevent them and other techniques for avoiding this fault

have to be used. This completes this phase and now the application moves to the

Prevention-Logging Phase. All future runs of this application are in this phase. In

114

this phase, the patch is referred to when the fault-inducing region is being executed

and the appropriate environment settings that will prevent the fault is applied. This

ensures that the fault is prevented. Logging is enabled in this phase to capture other

faults. The environment patch file is referred to only when an event is logged in this

phase. Hence, this merges the overhead of preventing the fault with that of logging

the execution. When a new fault occurs, the application moves between the fault

avoidance phase and the prevention-logging phase.

Three different types of bugs that can induce environment faults have been looked

at. They are atomicity violation bugs which are avoided by changing the scheduling

decisions, heap buffer overflow bugs which are avoided by padding memory requests,

and malformed user request bugs which are avoided by dropping the request. These

bugs were chosen as these could be handled by the Rx system [89] and hence were

good candidates for environment bugs. The proposed system has been used on a

number of bugs that belong to one of the three types and it has been found that the

system can avoid the faults in all the cases.

6.2 Motivating Example

In this section, the approach is motivated using as example, an atomicity violation

bug in the mysql database server.The remainder of this section describe a known

error in a mysql version and shows how to apply the proposed approach to the fault.

mysql ver. 4.0.12 has an atomicity violation bug [11] which is as follows. This

bug has been described in Chapter 2 but is repeated here for convenience. A thread

that tries to close and open a new log file atomically in order to flush the previous log

gets interrupted just after closing the old log by another thread that does an insert

operation into a database. The second thread, hence, does not find any open log files

and does not record the insert operation. These logs are used to restore databases and

incorrect logs can result in inconsistency. Let us now describe an execution instance

115

Original Log

0: open path = /etc/localtime
... // initialization
507: open-create //open mysql binlog
... // Main Thread executing.
... …

... …
2292: poll fd={[30,1]}
... // Signal Handler Thread
... …

... …
2324: accept //receive 1st user connection.
... …

... …
… //New thread to handle 1st user requests.
2934: poll fd={[31,1]}
... …

... …

2994: accept //receive 2nd user connection.
... …

... …
… //New thread to handle 2nd user requests.
3256: poll fd={[32,1]}
... …

... …
3348: read data = “flush log;”
3406: close // close mysql binlog
... …

... …
3498: read data = “insert into b values (1);”
… // Action not logged, binlog is not open yet.
3450: poll

... …
6921: open-create // open new binlog.
...

0: open path = /etc/localtime
... // initialization
507: open-create //open mysql binlog
... // Main Thread executing.
... …

... …
2292: poll fd={[30,1]}
... // Signal Handler Thread
... …

... …
2324: accept //receive 1st user connection.
... …

... …
… //New thread to handle 1st user requests.
2934: poll fd={[31,1]}
... …

... …

2994: accept //receive 2nd user connection.
... …

... …
… //New thread to handle 2nd user requests.
3256: poll fd={[32,1]}
... …

... …
3348: read data = “flush log;”
3406: close // close mysql binlog
... …

6921: open-create // open new binlog.
…
... …

... …
3498: read data = “insert into b values (1);”
… // Action not logged, binlog is not open yet.
3450: poll

Modified Log
T
h
re
a
d
 E
x
e
c
u
ti
o
n

In
te
rv
a
l
(T
E
I)

C
a
n
n
o
t
R
e
p
la
y

T
1

T
2

T
1

T
3

T
4

T
1

T
3

Swap TEIs

T
4

T
3

1

2

3

4

5

6

7

8

9

0: open path = /etc/localtime
... // initialization
507: open-create //open mysql binlog
... // Main Thread executing.
... …

... …
2292: poll
... // Signal Handler Thread
... …

... …
2324: accept //receive 1st user connection.
... …

... …
… //New thread to handle 1st user requests.
2934: poll
... …

... …

2994: accept //receive 2nd user connection.
... …

... …
… //New thread to handle 2nd user requests.
3256: poll
... …

... …
3348: read data = “flush log;”
3406: close // close mysql binlog
... …

6921: open-create // open new binlog.
…
... …

... …
3498: read data = “insert into b values (1);”
…
NEW: write-socket // write to new binlog.
NEW: poll

Final Log

Replay

Mode

Record

Mode

Figure 6.2. Motivation - mysql Atomicity Violation Error. The figure shows
the original log corresponding to the error and the modified log where the error is
avoided by switching the thread schedules. The final log where the faults has been
avoided is also shown. The threads (T1,. . .,T4) are shown and the TEIs(1,. . .,9) are
marked.

where this fault is exercised and how the system avoids the fault.

Logging Phase. To begin with, the server is run with light weight logging enabled,

that is, the events are logged and checkpoints are performed at fixed intervals. Fig-

ure 6.2 shows the events recorded in the original event log. T1, T2 T3, and T4 refer

to four unique threads that are created during the execution. The event log also

shows the points where a thread is descheduled and another thread is scheduled. A

region in the log corresponding to the maximal set of consecutive events from the

same thread is referred to as a thread execution interval (TEI). The log in Figure 6.2

shows 9 thread execution intervals.

The queries and the activities of the corresponding threads are as follows:

116

Thread T
3
 :

MYSQL_Log:: new_file() {

…

// close the current binlog

0xAA : log_type = LOG_CLOSED;

0xBB : close();

Thread T
4
 interrupts Thread T

3
 here.

// open a new binlog

0xCC : open();

0xDD : log_type = local_log_type;

}

Thread T
4
 :

sql_insert() {

// perform insert operation

…

// Now, log the operation

if (log_type !=LOG_CLOSED)

// log it

else

// cannot log, do nothing

}

Figure 6.3. Source code of the mysql atomicity violation fault.

• Thread T1 is the startup thread that handles new connections and creates

threads to service requests.

• Thread T2 is created by T1 to handle signals.

• Thread T3 is created by T1 to handle a user. This user issues a “flush log”

command that closes the old mysql log and opens a new mysql log file

• Thread T4 is created by T1 to handle another user. This user does an insertion

operation into table ‘b’.

Figure 6.3 shows the code that is executed by Threads T3 and T4. T3 is interrupted

at the point just after it closes the binlog, corresponding to TEI 7 in the event log.

At TEI 8, thread T4 performs the insert operation but does not find any log open and

hence does not record it. At TEI 9, a new bin log is opened but the insert operation

is not found to be recorded in any of the logs. Hence, a fault is discovered and the

program is taken to the next phase of the framework. The execution could have pro-

ceeded much further before this fault is actually detected, like when an administrator

runs sanity checks. However, since the event log is present, the execution can be

reproduced and the exact point at which the fault occurred could be tracked. Notice

that this bug is non-deterministic as the scheduling decisions could be different in

another execution instance. Also notice that the log captures the fault successfully.

117

Fault Avoidance Phase. In this phase, the fault is avoided by applying environ-

ment changes to the captured faulty execution. The faulty execution is first replayed,

with checks inserted at the start of each TEI, to figure out exactly where the fault

occurred. Doing this tells that TEI 8 was faulty as the insert operation is done at this

point but is not recorded in the old log. Since the fault is a missing output and the

program is multithreaded, it indicates a possible synchronization bug. The system

looks for a possible interruption of a running thread at this point. Note that TEI 8

corresponding to thread T4 interrupted the execution of thread T3. Swapping TEIs

8 and 9 in the event log makes the interruption go away. The modified event log is

shown in Figure 6.2. Now, the execution is replayed with the modified log and as

expected, the insert operation is logged in the newly created bin log and the fault is

absent.

While replaying from the event log, executing the “insert operation” corresponding

to TEI 9 in the original log causes the execution path to change. This is clear from

Figure 6.3, where, originally, the condition in the if statement evaluated to false,

it now evaluates to true. Hence, the events necessary to replay this is not present

in the modified log. So, when this happens, the execution mode is switched from

replay to normal execution (record). The final log shows the set of captured events

for the correct execution. Notice that there is an entry now in the final event log

corresponding to logging the insert operation.

Now that the fault has been avoided, it is now shown how this fault is prevented

from happening permanently in the future. Notice that thread T3 was interrupted by

T4 just when it was performing the close() event of the old bin log, whose PC value

is 0xBB as shown in Figure 6.3. It is deduced that this must have happened because

this region of code, though intended to be atomic, must have been left unprotected.

Hence, an entry is added of the form “< 0xBB > : Don’t Schedule out” in the

Environment Patch. It will be shown how this helps in avoiding the fault in the

Prevention phase. Now, the server is ready to move to the next phase and start

118

servicing requests normally as the fault has been avoided.

Note that by using the event log, it can be exactly pointed out as to the region

of execution where the fault occurs and focus the environment changes. In the Rx

system [89], logging is absent and checkpointing alone is done. So, upon such a fault,

the system rolls back to a previous checkpoint which could be far away from the

faulty region. Now, environment changes are applied starting from the checkpoint

and the code is reexecuted, not replayed. This can become ad-hoc as it affects the

part of execution that was also successful previously. In the proposed system, since

the execution is replayed, the changes do not affect the part that was successful.

Prevention-Logging Phase. In this phase, the application runs normally with

logging turned on just like in the logging phase. When each event is being logged,

control is transferred from the application to the logging system. At this point,

the environment patch is checked to see if the PC of the currently executing event

corresponds to a faulty region. For instance, if some thread Ti is executing the piece

of code corresponding to PC 0xBB, the logging system detects that it is a potentially

faulty region by looking up the environment patch and also sees that no scheduling

must happen at this point. Hence, the priority of the executing thread is raised before

the application gains further control. Now, this thread continues executing past this

event without being scheduled out and the fault is prevented from happening. The

priority of the thread is reset after a predetermined number of events are executed.

Since the logging infrastructure is active, any new faults can still be captured in the

log. When a new fault occurs, the application moves back to the fault avoidance

phase.

119

6.3 Fault Avoidance and Prevention

In this section some of the details involved in avoiding the three types of environment

faults are given. A discussion is presented on how the system discovers the point at

which the environment changes must be made to avoid the fault. It is also shown

how the system uses the information gathered in avoiding the fault to prevent future

occurrences of the fault in each case.

6.3.1 Handling Synchronization Faults

To avoid faults due to synchronization errors among threads, like the example in

Figure 6.2, the system first tries to detect the two threads that are involved in the

fault. A synchronization error occurs because the execution of a thread, which is called

interuptee, is interrupted (around an intended atomic region that was not locked) by

another thread, which is called interrupter. Once the system finds the TEIs of these

two threads, the scheduling is modified so that the synchronization error goes away.

For instance, in Figure 6.2, thread T3 is the interuptee and T4 the interrupter. After

the interuptee thread is descheduled, the first thread that executed is the interrupter.

The following is a discussion of the conditions which must be satisfied for a thread

to be considered interrupted. Event boundaries at which thread scheduling decisions

take place could be synchronous or asynchronous. A thread is interrupted if and only

if it is scheduled out after it executed a synchronous event. For example, if a thread

after performing a file read event (synchronous) is scheduled out, it is considered

interrupted, whereas, a thread which was scheduled out when executing a polling

event (asynchronous) is not considered interrupted. The latter case is because the

asynchronous event can block the thread for an arbitrarily long interval of time,

depending on when the polling is successful, and hence a different thread must be

scheduled if execution of the application must proceed. Note that all interruptions

do not lead to synchronization errors but this is used as the basis to decide if a

120

synchronization error could have taken place. In Figure 6.2, thread T4 did interrupt

thread T3 at TEI 8 as the event at which T3 was scheduled out corresponded to closing

a file, which is synchronous. Also at TEI 5 in Figure 6.2, thread T1 did not interrupt

T3 as polling is an asynchronous event.

In the fault avoidance phase, once the system discovers one of the TEIs where

the fault occurred, it uses the analysis presented above to find potential TEIs that

could have been interrupted. It then tries to avoid the interruption by letting the

interuptee execute further and see if the synchronization error is removed. Again, in

the example in Figure 6.2, it is known the fault occured in TEI 8 corresponding to

thread T4. Looking at the log, it is found that an interruption could have happened

only in TEIs 7 and 8. Modifying the log at this region avoids the error. Also, note

that if the scheduler is changed in the fault avoidance phase, such that all threads

execute without interruptions until blocked by an asynchronous event, the error would

go away. However, this is not desirable as this would not reveal the exact point at

which scheduling was harmful and hence, a patch cannot be obtained to avoid the

bug permanently in the future.

6.3.2 Handling Heap Buffer Overflow Faults

When a potential heap buffer overflow fault occurs in a program causing it to crash,

the system moves the program to the fault avoidance phase and first detects the heap

buffer that had overflowed. This is done as follows. It uses a hash table to maintain

for each virtual memory address, the EIP of the instruction that performed a memory

allocation. It instruments the program at each heap memory allocation instruction

that allocates a range of addresses to update the corresponding entries in the hash

table with its EIP. It then replays the program from the event log. During execution,

for every load and store to a heap address, it checks if the accessed address has a

corresponding hash table entry. If an entry is not present, an unallocated address is

121

touched. Now, it looks at neighbouring addresses to see if they have an entry in the

hash. If so, the address found, very likely, corresponds to the EIP of the instruction

that allocated the heap buffer which overflowed.

Once it has obtained the EIP of the instruction, EIPmem, that allocated the heap

buffer, it tries to avoid the fault as follows. It replays the program a second time

but pads the memory returned to this heap buffer, by doubling it. If the fault is

avoided, it now adds an entry to the environment patch of the form : “< EIPmem >

: Double Memory”. Now, the application is moved to the final phase and all future

executions avoid the fault permanently as follows. During a memory allocation call,

the EIP of the instruction is checked to see if it matches an entry in the environment

patch. If so, the memory to be allocated is padded by doubling it. Notice that only

the heap buffer that overflowed previously is padded and this is possible because of

the ability to replay the program. The decision to double the memory to be padded

is a heuristic based on the faults looked at. For the heap overflow bugs considered,

there was an error in calculating the buffer length for some special cases of an input

string that overflows the buffer by a small amount and doubling the heap memory

was more than sufficient to avoid these faults.

6.3.3 Handling Bad User Request Faults

Faults belonging to this category could be malicious user requests that are intended

to expose a bug in the server and not do anything useful otherwise. It could also be

a set of user requests that are malformed. These faults usually end up crashing the

server by overflowing a stack buffer or even a heap buffer. The strategy, environment

modification, to avoid these faults is to ignore such requests. However, this is done

as the last resort as dropping requests that are not malicious is a form of denial of

request. However, this is still better than starving all the users by bringing down

the server. Before dropping the request, a check is made to see if these faults can

122

be avoided by padding any overflown heap buffers and modifying thread schedules at

regions where there could have been a synchronization error. If all fails, the system

drops this request and sees if this will avoid the bug. If so, it saves the EIP of the

instruction where this request was accepted, EIPread, along with the user request,

req, in the environment patch file as : “< EIPread, req > : Drop Request”. In the

prevention-logging phase, when such a request turns up at this EIP, it is not serviced

and the fault is averted. However, a particular request can be fault inducing or not

depending on the previous requests. For instance, if request Ri should always be

made after request Rj which could crash the server otherwise, then it is not correct

to drop Ri every time, that is, in the cases where it was preceded by Rj . Hence, this

is taken into account while preventing the request on a per-application basis. This

requires manual intervention and the administrator maintaining the patch can look

at the request to make an appropriate decision. If it is a “suspicious looking” request,

it can be dropped always. If it is a legal request but failed, it could be because it

was not preceded with other requests. In this case, the administrator could save the

prior window of requests that were made by the user and use this as the pattern

to detect before dropping a request. Case studies presented in Section 5.4 and 5.5

further illustrates how this has been implemented.

6.4 System Description

In this section, the implementation of the system is described that incorporates check-

pointing/logging and a dynamic instrumentation capability. This system has been

used to avoid repeated occurrences of environmental faults in different applications.

Logging and Checkpointing Infrastructure. The jockey user level library [96]

has been used to perform checkpointing and logging for replay. jockey is a very

powerful system that works on single and multiple threaded programs and is also

123

LOGGING PHASE

(jockey)

Event_1

Event_2

...

Replay Log

checkpoints

events Entry_1

Entry_2

...

Environment

Patch
DYNAMIC (valgrind)

INSTRUMENTATION

Fault Avoidance

Phase

binary, input binary, input

PREVENTION -

LOGGING PHASE

(jockey)

fault

avoided

faults

prevent

Figure 6.4. Implementation of the system showing each step of the framework

very easy to use. During execution, even before the application can run, jockey takes

control and scans the application binary for system call instructions. It then redirects

these calls to a jockey handler and lets the application execute. Also, jockey provides

wrappers for malloc calls made by programs. That is, all malloc calls in the application

are trapped by jockey and then redirected to a jockey handler. In the handler function,

the original malloc is called again. During system calls, jockey logs events, makes

scheduling decisions, creates checkpoints, etc. Scheduling of the user-level threads

can be controlled by jockey because it uses its own thread libraries and any current

thread is descheduled only at a system call boundary. Currently, the jockey thread

library makes scheduling decisions only while executing one of a small set of system

calls. jockey has been modified to potentially allow scheduling during any system call

and also allow changing the priority of threads. The former is done to increase the

number of possible thread schedules in a multithreaded program and expose some of

the synchronization bugs in the programs used while the latter is necessary to prevent

descheduling of an executing thread at a particular point. Checkpointing is achieved

by retrieving the layout of the application’s virtual space and dumping all virtual

memory segments that belong to the application. To summarize, jockey related work

is performed only during a system call and otherwise, the application executes as

though it was unaware of jockey.

The jockey system has two modes, recording and replay. In the logging and

124

prevention-logging phases, jockey is used in the record mode where it does the work

of logging the execution. In the fault-avoidance phase, after the environment change

is decided, jockey is run in the replay mode to detect if the fault has disappeared.

Also, jockey has been modified to be able to switch dynamically from the record

to the replay mode. This is necessary because the replayed execution might take a

different path at the point where the bug happened previously. At this point, the

event log is not valid as it no longer contains any information on the new events that

are encountered by the application.

jockey has been modified to allow the passing of the EIP of each system call

and malloc instruction in the application as an argument to the jockey system call

and malloc handler, respectively. This information will be used by jockey in the

prevention-logging phase to determine if an environment change needs to be applied

for an event. At system call handlers, the environment patch is consulted to check if

scheduling decisions can be made or if a user request needs to be dropped. At malloc

handlers, the patch is checked to see if the memory needs to be padded.

Dynamic Instrumentation Engine. The dynamic instrumentation tool is used

in the fault avoidance phase. It is used to instrument the application and control its

execution during the fault avoidance. For example, it is used to insert code in the

application so that during the execution it can check if any interesting events have

taken place, like, the occurrence of the fault. In the motivating example shown in

Figure 6.2, the execution is paused at the end of each TEI to check if the fault has

occurred during replay. It is also used in the context of heap overflow bugs to help

detect the instruction that allocated the heap buffer which eventually overflowed,

according to the procedure discussed in Section 3.2.

To perform dynamic instrumentation, the valgrind [80] system has been used which

can handle x86 binaries. Its first job is to be able to replay the program according

to the log generated by jockey. For multithreaded programs, the scheduler decisions

125

are the most important events that have to be replayed. The schedules are replayed

as follows. It is known that scheduling decisions in the original program are made

only at system call sites by jockey’s thread library. When logging the schedule, the

system also logs the number of system calls that the thread executed since it was

scheduled and before it was descheduled. In valgrind, for a thread that is currently

executing, the number of system calls executed is used to decide when to deschedule

the thread. When that system call is reached (valgrind has event handlers that are

called before and after a system call and this is used to count system calls), the

scheduler is forced to deschedule this thread and switch to the appropriate thread.

Hence, it can be guaranteed that the threads will be scheduled according to the event

log. File contents are restored so that system calls performing opening and closing of

files can be replayed exactly. There are some system calls for which jockey saves the

contents of the original run. For example, in a server program, if a client makes a

connection request, the contents of the socket-read system call are saved in the jockey

log. During replay, when the system call socket-read is to be executed, jockey will

return the saved contents instead of executing the system call. Something similar

is done in valgrind when replaying the program. When the socket-read system call

is reached, the system call is not performed instead contents are returned which are

saved in the jockey log.

Given a logging infrastructure to be used in all the phases and an instrumentation

mechanism that is used in the fault avoidance phase, it is possible to successfully

capture, avoid and prevent environment faults. The next section contains case studies

of faults from each type and it is shown how each of them was avoided.

6.5 Case Studies

In this section five case studies of environment bugs from real world programs are

described. The nature of the fault that occurs due to the bug and discuss how the

126

system successfully averts it is explained. The bug is first described that causes the

fault to occur and then shown how the environment change can avoid it. Also the

patch used to prevent this fault from happening in the future is shown.

6.5.1 Atomicity Violation Fault in mysql

According to the bug report [12], mysql ver. 3.23.56 has an atomicity violation error

which is as follows. This bug has been described in section 2.2.2 in Chapter 2 and is

described again here for convenience. For some table ‘t’ in the database, when one

thread does a row delete from it and another thread does an insert into it in quick

succession, though the operations take place in the order they are called, they are

logged in the mysql binlog as done in the reverse order. The mysql binlog does not

reflect the true sequence of operations on the same table and hence it is inconsistent

with the state of the table as shown below.

—– Log File —–

SET TIMESTAMP=1151980120;

insert into b values (1);

SET TIMESTAMP=1151980107;

delete from b;

—– End of Log File —–

Notice that although the delete operation is done first it gets logged after the insert

operation. The reason is that line 109 in Figure 6.5 which performs the write to

the binlog is not inside the critical section. So, the thread corresponding to the

insert operation gets scheduled before this point and hence, this inconsistency occurs.

Figure 6.6 shows the event log corresponding to the faulty execution. When the

system replays the program using the log, it detects that TEIs 1 and 2 are directly

involved in the fault as the delete and insert operations take place during these points.

It also detects that TEI 2 interfered with the execution of thread T1. The execution

127

File : mysql_delete.cc

mysql_delete(THD *thd, ...) {

 ...

152 error=generate_table(thd, ...);

 ...

}

generate_table(THD *thd, ...) {

 ...

81 pthread_mutex_lock(...);

 ... // Critical Section

105 pthread_mutex_unlock(...);

108 ... // Logging not locked.

109 mysql_update_log.write(thd,...);

 ...

}

Figure 6.5. mysql 3.23.56-Source code for atomicity violation fault.

of thread T1 is hence extended by swapping TEIs 2 and 3 and the fault is avoided. It

also notes the PC at line 108, which is 0x81023AC, in the environment patch with the

command not to schedule at this point. The patch is hence “< 0x81023AC : Don’t

schedule>”. In the prevention-logging phase, when the execution reaches this point,

the thread’s priority is raised so that it does not get descheduled. After applying

the patch, as a sanity check, the server was continued to execute again and the same

sequence of operations was performed to ensure that the fault was indeed prevented.

... …
17236: read data = “delete from b;”
17332: open-unlink path=./test/b.MYD
... …

... …
17433: read data = “insert into b values (1);”
...
17702: socket-write data = … Logging insert
... …

... …
17818: socket-write data = … Logging delete
...

T
1

T
1

T
2

1

2

3

Swap TEIs

Figure 6.6. mysql 3.23.56-Event Log for atomicity violation fault.

128

6.5.2 Heap Buffer Overflow Fault in mutt

According to the bug report[9], mutt version 1.4 has a known memory bug which is

as follows. This bug has been described in section 2.1.1 in Chapter 2 and is described

again here for convenience. The Mutt Mail User Agent (MUA) has support for

accessing remote mailboxes through the IMAP protocol. When mutt has to convert

the name of the folder from its internal UTF-8 representation to UTF-7 it calls the

function utf8 to utf7 in module imap/utf7.c. When this function does the conversion,

it miscalculates the length of the output string, line number 152 in Figure 6.7. To

form a faulty execution, mutt is executed for some time and then supplied a UTF-8

folder name that contains some special characters. The heap buffer is overflowed and

a segmentation fault is flagged. The jockey event log captures all the events necessary

to replay the fault. The application is then taken to the fault avoidance phase.

File : utf7.c

…

utf8_to_utf7 (… size_t u8len) {

…

152 p=buf=safe_malloc(u8len * 2 + 1);

while(u8len) {

...

if (ch < 0x20 || ch >= 0x7f) {

if(!base64) {

192 *p++ = ‘&’;

...

}

…

199 *p++ = B64Chars[b | ch >> k];

…

}

Figure 6.7. mutt 1.4.2.1i-Source code for heap buffer(p) overflow fault.

The heap buffer overflow is detected at line number 199 in Figure 6.7 using val-

grind. The allocation point for this heap buffer is also detected at line number

152. The system then captures the PC of the malloc call at this point which is

0x80A9FBA. The program is replayed doubling the memory allocated at this point

and the fault goes away. This is recorded in the environment patch with the entry

129

: “< 0x80A9FBA : Pad Allocation>” and then the program execution continues

with the fault avoided. The application is the run for some time and again the fault-

inducing request is presented. The jockey’s malloc wrapper successfully makes the

environment change and prevents the fault from happening again.

6.5.3 Heap Overflow in bc

bc [1] is a numeric processing language that supports arbitrary precision numbers.

It is generally distributed along with the Linux operating system and is a part of

the GNU project. bc-1.06 was used for the case study. This version has a known

heap overflow error. In [67] the bug that is triggered in bc is described. The code

corresponding to the error is shown in Figure 6.8. The heap array arrays, declared

at line number 167, overflows at line 177. Upon capturing the faulty execution, the

File : storage.c

void

more_arrays() {

…

167 arrays=(bc_var_array **) bc_malloc(

a_count * sizeof(bc_var_array *);

 …

176 for(; indx < v_count; indx++)

177 arrays[indx] = NULL;

...

}

Figure 6.8. bc-1.06 Source code for heap overflow fault.

system detects the allocation point and doubles the memory. The fault disappears.

As before, it obtains the PC value and records it in the environment patch with the

entry : “< 0x804CDA3 : Pad Allocation>”. For the same input, this fault will not

reappear. However, the patch is really temporary as the root cause of the bug is that

the variable a count is used to declare the array but the variable v count is used to

initialize it. Doubling the memory worked for the input presented because v count

was not much larger than a count but this is not always the case. It is likely that the

130

program will crash at this point again on other inputs, in which case, the memory to

be padded must be increased to a large value.

6.5.4 Bad User Request Fault in mysql

According to [14], mysql version 3.23.56, has a memory error which is as follows.

When a thread tries to load data into a table using the “load” command, without

explicitly connecting to the database, the field that stores the database name is

accessed without checking for the NULL value (line 151 in Figure 6.9). This causes

the server to crash at this point. After capturing the log corresponding to this fault

sql/mysql_load.cc:

int mysql_load (THD *thd,...)

{

 …

150 if(…

151 … +strlen(thd->db) + 3 <

152 FN_REFLEN)

 ...

}

Figure 6.9. mysql 3.23.56-Source code for malformed user request fault.

it is detected that there is an illegal memory access. A possible heap overflow fault

is searched for and the system is not successful as it cannot find any heap buffer that

overflowed. This is because the field containing the database was not allocated and

contained a NULL value. The system does not detect any interfering threads either

around this point. So, it traces trace back to the most recent read system call looking

for a request. It finds the “load” command, which when dropped, clearly avoids

the fault. However, the command is a legitimate mysql command with no special

characters. Hence, always dropping this request is a bad idea. The only pattern

noticed is that this is the first command from this user. Hence, it forms a pattern

where it drops this request if it is the first request after the connection. Now, in the

prevention-logging phase it saves all the requests corresponding to each user and if

this pattern is detected, drops it. The entry used to achieve this is : “< 0x80CCAFD,

131

pattern-string : Drop>”, where the pattern string is a connection request followed by

this “load” command. Now, when this command is presented as the first request, it

will not be serviced and hence will not bring down the server. If more faults occurs

at the same point due to other malformed requests, many patterns will exist. In this

case, a match must be done with all patterns and a request that matches any one of

the patterns must be dropped.

6.5.5 Bad User Request Fault in pine

According to [15], pine ver.4.44 has a bug that when triggered can overflow a heap

buffer causing a crash. This can occur when pine processes the “From” field of email

headers. Certain special characters in the header can cause the bug. Figure 6.10 shows

the source code where the bug is present. The heap buffer dest overflows in line 260

in function rfc822 cat() as the amount of memory allocated to it is miscalculated in

line 7269 in function est size(). After capturing the event log corresponding to this

File : bldaddr.c

int est_size(a) {

…

7269 cnt += …

…

return(max(cnt,50));

}

File : rfc822.c

void rfc822_cat (char *dest, …) {

...

dest += strlen(dest);

*dest++ = ‘”’;

…

for(;s = strpbrk (src,”\\\”); …) {

strncpy (dest, …);

dest += i;

260 *dest++ = ‘\\’;

*dest++ = *s;

}

}

Figure 6.10. pine 4.44-Source code for bad user request fault resulting in heap
overflow.

132

fault, the system first tries to avoid the fault by padding memory. It tracks the heap

buffer that was overflown and double the memory at this point but the bug does not

disappear. Hence, it detects the request that caused the bug to occur and observes

that the request is unusual as it is full of special characters in it. Hence, it decides

to drop such requests and adds an entry to the environment patch with the contents,

“<0x3A976422, pattern-string : Drop>”, where the pattern string is the string of

special characters that caused the fault.

6.6 Experiments

Table 6.1. Benchmarks and the bugs used in the Experiments.

Program Description LOC Description
of bugs used

mysql Database 508 K a) Atomicity bug[11]
(ver. 4.0.12) mysql-1
(ver. 3.23.56) b) Atomicity bug[12]

mysql-2
(ver. 4.00) c) Atomicity bug [13]

mysql-3
(ver. 4.00) d) Bad Req. bug [14]

mysql-4
pine Mail client 212 K a) Bad Req. bug [15]

(ver. 4.44) pine-1
(ver. 4.44) b) Bad Req. bug [16]

pine-2
mutt Mail client 454 K a) Heap Overflow [9]

(ver. 4.44) mutt-1
bc Interactive 14 K a) Heap Overflow [67]

Calculator bc-1
(ver. 1.06) b) Heap Overflow [67]

bc-2

Table 6.1 shows the list of buggy versions of programs that have been used to

evaluate the system. Each of the bugs belongs to one of the three possible types of

133

Bug Logging Phase Prevention-Logging Phase
Orig. Logged Logged / Logged Prevention Prev. /

(secs.) (secs.) Orig. (secs.) (secs.) Logged
mysql-1 15.5 15.9 1.03 16.0 16.1 1.01
mysql-2 7.8 8.0 1.03 8.0 8.5 1.06
mysql-3 7.2 7.4 1.04 8.7 8.9 1.02
mysql-4 7.9 8.1 1.02 8.7 9.0 1.03
pine-1 6.1 6.8 1.11 8.1 8.4 1.04
pine-2 4.3 4.9 1.14 6.1 6.2 1.02
mutt 6.7 7.9 1.18 9.0 9.2 1.02
bc-1 6.5 7.4 1.14 10.1 10.1 1.0
bc-2 4.3 4.5 1.05 6.2 6.3 1.02

Bug Fault Avoidance Phase
Trials valgrind jockey Environment

(secs.) (secs.) Change
mysql-1 1 116 15.8 Scheduler
mysql-2 1 58 8.0 Scheduler
mysql-3 1 59 7.3 Scheduler
mysql-4 3 682 22.8 Ignore Req.
pine-1 2 314 13.2 Ignore Req.
pine-2 2 262 9.0 Ignore Req.
mutt 1 197 7.7 Pad Mem.
bc-1 1 285 7.4 Pad Mem.
bc-2 1 190 6.2 Pad Mem.

Table 6.2. Overheads involved in each of the three phases - logging, avoidance and
prevention-logging.

environment faults that are looked at. The buggy version of each program was taken

and an execution was formed that runs for some time, between 4 and 15 seconds,

and then the fault was introduced. For example, in mmysql, a few clients were

created that processed a set of standard requests from each client and then the fault

was triggered by issuing the fault inducing request. Since the executions were not

too long, checkpointing was not triggered. After patching the fault by applying the

appropriate environment change, the application was run again for some time and

the fault was introduced as before. It was ensured that the fault is indeed avoided by

134

continuing execution beyond the point for a couple of seconds before terminating it.

The various experiments conducted are described.

Logging Phase. The overheads involved in logging the execution was measured

during this phase. In Table 6.2, under Logging Phase, the running time of the appli-

cation without logging (Original) and with logging (Logged) is shown. The overhead

of logging, shown under Logged/Orig., is between 2% and 18% and this shows that

the logging mechanism is lightweight enough to be run along with the application at

all times.

Fault Avoidance Phase. The costs incurred in the fault avoidance phase where

environmental changes are applied to avoid the bug is shown. The data for this is

shown under Fault Avoidance Phase in Table 6.2. The number of tries to avoid each

bug, under the column Trials, is also shown where each try corresponds to a different

environmental change. All faults that were triggered by malformed requests needed

more than one trial as the system first checked if it could fix the fault by padding

memory or changing thread schedules. All failed, and hence dropped the request.

The column jockey shows the total time spent to replay the program using jockey,

with the environment changed, to detect if the fault was avoided. The data shows

that the jockey time for one trial is almost equal to the original time. The column

valgrind shows the time taken to replay the program in valgrind to detect the regions

corresponding to the fault and the time taken to perform analysis, like detecting the

allocation point given a heap overflow. This incurs a slowdown of 7x-44x per trial.

Note that this cost is incurred only in this phase due to the expensive analysis that is

performed using valgrind. This overhead will not be present in the prevention-logging

phase when the application is running normally. The column Environment Change

shows the patch that avoided the bug and used to prevent it from occurring again.

135

Prevention-Logging Phase. Finally, the overheads of performing logging and pre-

venting faults are shown, that are incurred in this phase. Table 6.2 shows these costs

under Prevention phase. The column Logged shows the overhead of logging the execu-

tion in this phase with the bug fixed in the source code and the prevention mechanism

turned off. The column Prevention shows the time taken to perform logging and pre-

vention on the application with the bug present. The additional overhead of prevent-

ing the fault beyond the logging overhead is shown under the column Prev./Logged.

The overhead, which ranges from 0% to 6%, is low and is due to the fact that the sys-

tem could successfully merge the operation of checking the environment patch with

the logging. The combined overhead of the logging with prevention mechanism is

between 2% and 19% and is low enough that it can be run alongside the application

always.

6.7 Summary

This chapter presented a scheme that uses logging and environment patching to cap-

ture and avoid environment faults as and when they occur and prevent them from

occurring again. Case studies are presented to show that the scheme can be successful

against three types of environment faults and this has been verified on nine known

bugs in real-world applications. Experimental data shows that the overhead of the

logging and prevention mechanism is low enough, 2% to 19%, to justify it being run

alongside the application at all times.

136

Chapter 7

Related Work

7.1 Fault Location

The dissertation of Zhang [113] “Fault Location Via Precise Dynamic Slicing” focuses

on techniques for fault location using dynamic slicing for single-threaded programs.

It identifies novel slicing criteria which are used to generate dynamic slices that are

highly effective in capturing the faulty code. According to [113], the work on fault

location can be divided into four categories, which is briefly discussed here.

First, for approaches based on dynamic slices for fault location, the work by Korel

and Laski [59] introduced dynamic slicing as an effective aid to debugging programs.

Agrawal et al. [21] proposed a technique for fault localization by subtracting a single

correct execution trace of a program from a single failed execution trace. Other

works [19, 57, 60, 86, 102] have also looked at slicing approaches for fault location. An

approach that combines dynamic slicing with dynamic path conditions in dependence

graphs [47] has been proposed that can not only reveal if a dependence has been

exercised but also why which is used to capture the erroneous statement and fix the

fault. Chen and Cheung [31] propose a technique to reduce the number of statements

in a backward slice of an erroneous output by computing differences between the

backward slices of correct and faulty statements. Second, there is also a large amount

of work [40, 48, 56, 67, 70, 90, 107] that has looked at statistical approaches for fault

location whose goal is to obtain the likelihood of a statement being faulty based on

numerous runs and then rank the statements accordingly. Third, there has also been

work [34, 50, 52, 112] on fault localization by identifying the program state that was

critical to the failure by using a successful and failed run. Finally, there has been

work [22, 29, 38, 39, 42, 43, 51, 53, 65, 71, 74, 87, 106] on using static analysis for

137

fault location where first a correct program model is constructed according to the

specifications and static analysis is used to verify conformance of the program with

the given model. Recently, a scheme [75] to systematically explore multithreaded

program executions using model checking has been proposed which can reduce the

search overhead by prioritizing executions of a multithreaded program based on the

number of context switched.

7.2 Slicing for Multithreaded Programs

The paper by Xu et al. [108] gives a brief survey of program slicing that also includes

the works for multithreaded programs. Some of the relevant approaches are discussed

here.

For multithreaded programs, there have been approaches to compute both the

static and the dynamic slices. One of the early works [33] extend the notion of slic-

ing for concurrent programs. It presents a graph based approach to computing the

slice. Three new forms of dependences are defined and used : selection, synchroniza-

tion and communication dependences that can occur in distributed programs. These

dependences are nothing but inter and intra-process control and data dependences.

This method computes inaccurate slices. The work by Krinke et al. [62] defines a

static slice for a multithreaded program. Apart from the traditional data and control

dependences, interference dependences are considered which occur between two differ-

ent threads and could manifest as RAW, WAR or WAW at run-time. This algorithm

does not consider synchronization and hence is not general. Since the schemes are

static, conservative effects could lead to potentially large slices.

Duesterwald et al. [37] propose a parallel algorithm to compute dynamic slices of

parallel programs. Since the algorithm is developed for distributed programs, com-

munication dependences are added at run-time to capture the interactions between

the distributed processes. The dynamic slicing scheme is targeted towards producing

138

an executable slice of the statement that produced the faulty result. The slices are

computed based on the dynamic dependence graph (DDG) representation, though the

control dependences are determined statically. Also, other works [61, 58] have been

proposed to compute dynamic slices of distributed programs that show how to do

interprocedural dynamic slicing and perform forward computation of dynamic slices.

The work proposed in this dissertation however is how to inspect the dynamic slice of

the faulty execution in order to determine the root cause of the error. The proposed

technique is more general and applies to shared memory concurrent programs.

7.3 Program Tracing

A control flow trace captures the complete path followed by a program during an

execution. It is represented as a sequence of basic block ids (or Ball-Larus path

ids [24]) visited during the program execution. These traces have been analyzed to

determine execution frequencies of shorter program paths [64]. Thus, hot paths in the

program can be identified and this knowledge has been used to perform path sensitive

instruction scheduling and optimization by compiler researchers [23, 26, 45, 111] and

path prediction and instruction fetching by architecture researchers [54]. Larus has

demonstrated that complete control flow traces of reasonably long program executions

can be collected and stored by developing the compressed representation called the

whole program path (WPP) [64].

Dependence (data and control) traces have also been used in a variety of applica-

tions. Compiler researchers have used these profiles for performing data speculative

optimizations for Itanium [68, 69], speculative optimizations [32] and computation of

dynamic slices [103, 20, 59, 116]. The latter have been used for software debugging

[19, 60, 117, 114], testing [57] and providing security. Architecture researchers have

used slicing to study the characteristics of performance degrading load instructions

[121], thread creation using slicing [66], and studying instruction isomorphism [98].

139

Efficient representations have been proposed when traces are held in memory for

analysis such as t he timestamped representations of control flow traces [119] and

dependence traces [116]. Also, the whole execution trace [115] has been proposed

which can capture the control-flow, data dependence, value and address profile of a

program’s execution. An instruction level tracing framework is proposed by Bhansali

et al. [25]. These state-of-the-art techniques [115, 25] can generate traces to achieve

a space efficiency of 0.1-4 bits per instruction. Recent work [120] has shown how

to capture a complete profile of a program’s control flow, memory reference, and

dependence information by exploiting the fact that most of the information can be

retrieved by recording the register value changes and using this in conjunction with

the control flow trace. Also, recently the ONTRAC [76] system is proposed which

computes the dynamic depdendences online without generating a trace. Since the

trace generated is stored in a buffer in memory it limits the length of the execution

that can be traced.

7.4 Checkpointing, Logging, Replay, and Tracing

Checkpointing/logging/replaying was invented to facilitate debugging parallel and dis-

tributed programs [85, 104]. It quickly gained popularity in general application debug-

ging [92, 93]. A lot of research has been carried out on how to reduce its cost [99, 82]

and improve its usability [96]. It has been used in the deterministic replay [41, 95]

of shared memory programs and also in recovery [55]. However, most of the exist-

ing checkpointing techniques focus on how to faithfully replay an execution. They

do not discuss what to do with the replayed execution and simply suggest that the

replayed execution can be debugged with general debuggers such as gdb. However,

these debuggers are usually less powerful than tracing based tools. This dissertation

uses checkpointing/logging schemes for two different purposes. It is used to replay

the program with a reduced log to generate smaller traces in the execution reduction

140

system. It is also used to perturb the program execution for fault avoidance.

The prior work, Execution Fast Forwarding (EFF) [118] system, also performs a

form of Execution Reduction by integrating checkpointing with fine-grained tracing.

It is based on the idea that often a fault is triggered by a certain input. By filtering

the inputs to find the fault triggering input, the fault can be reproduced. Tracing can

then be applied to the smaller program run corresponding to the triggering input.

However, the Execution Reduction (ER) system proposed in this dissertation is much

more general than the EFF system. In particular, the advantages of ER over EFF

include the following:

• The ER system is designed to handle multithreaded applications while the EFF

system was designed for single threaded applications. One of the key contribu-

tions of the ER system is the dynamic algorithm that is proposed for efficiently

identifying the interthread dependences. The EFF system does not address this

issue as it does not consider multithreaded applications.

• In the EFF system, the execution reduction is achieved by exploiting informa-

tion collected using static analysis. The disadvantage of using static analysis

is that it is conservative and hence dynamic opportunities for achieving execu-

tion reduction cannot be exploited. In particular, if static dependences do not

manifest themselves at runtime, this information can be exploited for execution

reduction in the ER system but not in the EFF system.

• The ER system does not necessarily trace the entire execution that is replayed.

In contrast, the EFF system traces the entire execution that is replayed. There-

fore, in the ER system, the reduction in tracing is not limited by the amount

of execution reduction achieved.

• Finally, input filtering that is used as the basis of execution reduction in EFF

is the special case of execution reduction achieved by the ER system. ER

141

system can handle a variety of situations, including those where input filtering

is applicable.

In summary, the attractive features of the ER system are that it is more general and

more effective than the EFF system.

There has been some recent work that propose designs of specialized hardware to

limit the overhead of checkpointing/logging [109, 78] and efficiently recording con-

current shared memory dependences when running on a multiprocessor [110, 77].

These systems aim to minimize the overhead incurred while logging an execution for

replay. This work is orthogonal to the proposed work in this dissertation as these

systems could be used to improve the performance logging the execution to replay

deterministically.

7.5 Fault Avoidance

Previous work in this area that is the closest to and that has inspired the fault avoid-

ance work proposed in this dissertation is the Rx [89] system which was designed to

help applications recover from faults due to the environment, by removing the “al-

lergen” that caused the bug to manifest. When a fault occurs, the Rx system rolls

back the application to a recent checkpoint and executes it under a modified envi-

ronment. Repeated environment modifications and re-executions are done until the

fault is avoided or a time threshold is passed. If the fault is avoided, the execution

is resumed. However, Rx suffers from some drawbacks. First, for faults whose symp-

toms are not immediately apparent, such as a wrong output in a file, the execution

could have proceeded beyond many checkpoints before it is detected. Rx will then

rollback to a checkpoint which could be very far from the fault. Now, the application

will be reexecuted, not replayed, with environment changes that could even affect the

previously successful regions of execution.

142

Avio [73] is a technique to detect atomicity violation bugs in programs. The main

idea of the technique is to use a number of correct runs, with different interleavings

in each run, of the application on the same input and discover atomic regions of the

program. Once the proposed fault avoidance system in this dissertation has detected

the point at which atomicity is possibly violated, it can pass this information to the

avio system that can use it to detect if an invariant exists.

Failure-Oblivious computing [91] is a technique that bypasses faults in applications

by altering the behaviour of the application when it detects accesses to unallocated

memory. It manufactures values for incorrect reads and ignores illegal writes to let

the application continue further execution without crashing. This approach needs

modifications to the application and the correctness of the application cannot be

guaranteed.

A number of dynamic fault detection techniques [35, 36, 49, 88] exist that instru-

ment the program to check for illegal memory accesses, deadlocks and data races

at run-time and also have reasonable overhead. Such techniques can be used in the

proposed system to flag a fault when it occurs.

143

Chapter 8

Conclusion

8.1 Contributions

This dissertation makes contributions in the area of fault location and avoidance for

multithreaded programs. It shows how dynamic slices can be used for fault location

in multithreaded programs. Additionally, it is shown how dynamic slices can be used

to track down faults due to data races in multithreaded programs. To allow dynamic

slicing to scale for large executions, this dissertation shows that the generated control

flow and data dependence traces from a faulty execution can be stored very com-

pactly on disk; these traces are used to construct the dynamic slices. It also presents

techniques to reduce the sizes of the generated traces in long-running multithreaded

programs. Finally, this dissertation presents a technique for fault avoidance in pro-

grams due to a certain class of faults referred to as environment faults. Specifically,

the dissertation answers the following questions.

Q1 : Can dynamic slices be used for locating faults including data races

in multithreaded programs ? This dissertation shows that dynamic slicing can

indeed be used for fault location in multithreaded programs. It shows how the slices

are represented and presents case studies to show how they are inspected to locate the

root cause of the fault. This dissertation also shows that if additional dependences

in the form of WAR and WAW are considered then dynamic slices can also be used

to analyze data races. It is also presents optimizations that can be used to effectively

capture only that set of WAW and WAR dependences that can lead to a data race.

These optimizations can reduce the number of WAW and WAR dependences to be

captured by upto 4 orders of magnitude.

144

Q2 : Can the generated traces be stored on disk efficiently ? The Extended

Control Flow Trace (eCF) representation is described in this dissertation which is a

unified representation of control flow and data dependence traces and leads to very

compact trace sizes to be efficiently stored on disk. The eCF representation captures

both the control flow and the data dependence history of a program’s execution. In

this representation, the data dependences are not captured by an explicit represen-

tation. Instead, data dependences are embedded implicitly in the control flow trace.

This representation of dynamic data dependences is motivated by the observation

that all dynamic register dependences can be recovered from the control flow trace.

To capture the remainder of the dynamic data dependences, i.e., memory depen-

dences, program transformations are presented that introduce disambiguation checks

and whose control flow signatures capture the results of these checks. The resulting

extended control flow trace produced enables the recovery of otherwise irrecoverable

memory dependences. Thus, this approach replaces the combination of a control flow

trace and data dependence trace with a single extended control flow trace, which can

be compressed well to produce the extended whole program path (eWPP) represen-

tation. Experimental evidence which shows that the representation produces traces

that can be stored in 24 % (30 %) of the space required to store the control flow and

address trace when compressed using Sequitur (VPC).

Q3 : Can the generated traces of long-running multithreaded program

executions be shortened ? This dissertation describes the execution reduction

system that can effectively combine checkpointing and tracing in order to generate

traces for long-running multithreaded programs. The system uses dynamic techniques

for eliminating the execution of irrelevant threads and irrelevant thread execution

intervals from the final replay phase that collects traces. Further, it also eliminates

unnecessary tracing during the replaying of relevant threads and thread execution

intervals. The combined effect of the above approach is that the tracing overhead and

145

the amount of trace data collected is greatly reduced. Most importantly, to make the

above scheme work, a three stage scheme is proposed for identifying dynamic shared

memory dependences between executing threads that is both space and time efficient.

Detailed experiments demonstrate the effectiveness of the proposed techniques in

reducing the trace sizes by 2 to 5 orders of magnitude.

Q4 : Can faults be avoided when execution must continue ? This disser-

tation finally presents a scheme that can capture and avoid environment bugs by

using a checkpointing/logging system. The presence of logging enables focussing the

environment changes on the faulty region. The scheme can also prevent the captured

environment bugs from occurring again by modifying the execution environment with-

out having to debug the program. The proposed system can handle three different

types of bugs, namely, atomicity violation, heap buffer overflow, and malformed user

request. The scheme has been tested on many bugs from real-world programs, which

have shown it to be effective.

8.2 Future Work

Locating Faults due to atomicity violation errors. Atomicity violation faults

happen in multithreaded programs when a set of operations intended to be atomic

are not guarded by a single lock. The fault happens when another executing thread

interleaves the set of operations. Atomicity violation errors can still happen in pro-

grams that are free of data races. For instance two operations intended to be atomic

could be in different critical sections of the program. Hence, although races are absent

in the presence of locks the atomicity is still not preserved as the operations have to

be in the same critical section to be considered atomic. Hence, work in this direction

to locate atomicity violation faults using dynamic slicing in the absence of data races

is promising. The AVIO technique [73] for detecting atomicity violations discusses

146

these kind of faults in greater detail.

Hardware support for tracing. Processors with many cores are becoming in-

creasingly available. Hence, it is very promising to investigate techniques using sup-

port from additional cores to simultaneously perform tracing while the program is

running on a dedicated core. This can tremendously boost the performance of trac-

ing and can make it possible to trace on-line. The tracing can be done as follows.

A secondary core can be used to perform tracing while the main core is executing

the program. The secondary core also runs the program but additionally performs

tracing while the primary core is executing the program. However, the challenges in-

volved in such a scheme are that non-deterministic events have to be communicated

in some manner from the primary core to the secondary core like thread scheduling

events, outcome of system calls, etc. Further, if the program’s threads are executing

concurrently, the synchronizations have also got to be communicated.

Programs executing on multi-cores. The system developed in this dissertation

for tracing and fault avoidance assume that the programs are executing on a single

processor system. However, with multicores becoming popular, multiple program

threads can concurrently execute on these cores. This requires the schemes for track-

ing dependences between threads and instructions to be modified. This is because

when the multithreaded program is executing on a single processor it is enough to

remember the scheduling decisions in order to replay the threads deterministically in

the same order. However, when the threads are executing concurrently on multiple

processor cores, additional information is required for deterministic replay. For in-

stance, the inter-thread shared memory dependences of the concurrently executing

threads must be logged. While the proposed techniques in this paper are not re-

stricted in any manner because of this new scenario, they have to be adapted to be

able to work in this setting. This is definitely potential for a lot of future work and

147

is also very promising.

Identifying and avoiding other environment faults. The system developed

in this dissertation for fault avoidance handled three types of environment faults.

However, there are many other types of environment faults that occur and it would

be interesting to study how they can be avoided and patched. One such type of fault

not handled by the proposed system is due to freeing of memory in C programs using

the free() command. When the same piece of memory if freed more than once the

application can crash. This is an environment fault because the memory handler

can be made to ignore duplicate free operations thereby preventing the crash. In

this manner, if more environment faults are identified and the suitable patch to try

and prevent them from happening again is developed, the system can be extended to

handle a large number of fault types thereby making it more robust.

148

References

[1] Gnu bc url : http://www.gnu.org/software/bc.

[2] http://bugs.mysql.com – change log.

[3] http://bugs.mysql.com/bug.php?id=110.

[4] http://bugs.mysql.com/bug.php?id=169.

[5] http://en.wikipedia.org/wiki/y2k.

[6] http://prozilla.genesys.ro/?p=news.

[7] http://www.securityfocus.com/bid/12635.

[8] http://www.securityfocus.com/bid/13059.

[9] Mutt buffer overflow. http://www.securiteam.com/unixfocus/5fp0t0u9fu.html.

[10] Mutt url : www.mutt.org.

[11] Mysql atomicity violation-1 : http://bugs.mysql.com/bug.php?id=791.

[12] Mysql atomicity violation-2 : http://bugs.mysql.com/bug.php?id=169.

[13] Mysql atomicity violation-3 : http://bugs.mysql.com/bug.php?id=6678.

[14] Mysql load database fault : http://bugs.mysql.com/bug.php?id=110.

[15] Pine heap buffer overflow : http://www.securityfocus.com/bid/6120.

[16] Pine stack overflow : http://www.xatrix.org/advisory.php?s=7408.

[17] www.mysql.org.

[18] http://www.nist.gov/public affairs/releases/n01-10.html. 2002.

[19] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford. Debugging with
dynamic slicing and backtracking. Software Practice and Experience, 23(6):589–
616, 1993.

[20] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In PLDI ’90:
Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, pages 246–256, White Plains, New York, United
States, 1990.

149

[21] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. Fault
localization using execution slices and dataflow tests. In ISSRE’95: Proceedings
of the Sixth IEEE International Symposium on Software Reliability Engineering,
pages 143–151, Toulouse, France, 1995.

[22] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications.
In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 4–16, Portland, Oregon, 2002.

[23] Glenn Ammons and James R. Larus. Improving data-flow analysis with path
profiles. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, pages 72–84, New York,
NY, USA, 1998. ACM Press.

[24] Thomas Ball and James R. Larus. Efficient path profiling. In MICRO 29:
Proceedings of the 29th annual ACM/IEEE International Symposium on Mi-
croarchitecture, pages 46–57, Paris, France, 1996.

[25] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray,
Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for instruction-
level tracing and analysis of program executions. In VEE ’06: Proceedings
of the 2nd international conference on Virtual execution environments, pages
154–163, New York, NY, USA, 2006. ACM Press.

[26] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete removal of re-
dundant expressions. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, pages 1–14,
Montreal, Quebec, Canada, 1998.

[27] Martin Burtscher. Vpc3: a fast and effective trace-compression algorithm. In
SIGMETRICS : International Conference on Measurement and Modeling of
Computer Systems, pages 167–176, 2004.

[28] Martin Burtscher and Metha Jeeradit. Compressing extended program traces
using value predictors. In IEEE PACT : International Conference on Parallel
Architectures and Compilation Techniques, pages 159–168, 2003.

[29] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Software Practice and Experience,
30(7):775–802, 2000.

[30] Subhachandra Chandra and Peter M. Chen. Whither generic recovery from
application faults? a fault study using open-source software. In DSN ’00:
Proceedings of the 2000 International Conference on Dependable Systems and

150

Networks (formerly FTCS-30 and DCCA-8), pages 97–106, Washington, DC,
USA, 2000. IEEE Computer Society.

[31] T. Y. Chen and Y. Y Cheung. Dynamic program dicing. In ICSM ’93: Pro-
ceedings of the IEEE International Conference on Software Maintenance, pages
378–385, Montreal, Quebec, Canada, 1993.

[32] Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung Yew. Data
dependence profiling for speculative optimizations. In CC : International Con-
ference on Compiler Construction, pages 57–72, 2004.

[33] Jingde Cheng. Slicing concurrent programs - a graph-theoretical approach. In
AADEBUG ’93: Proceedings of the First International Workshop on Automated
and Algorithmic Debugging, pages 223–240, London, UK, 1993. Springer-Verlag.

[34] Holger Cleve and Andreas Zeller. Locating causes of program failures. In ICSE
’05: Proceedings of the International Conference on Software Engineering, pages
342–351, St. Louis, MO, USA, 2005.

[35] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and West-
ley Weimer. Ccured in the real world. In PLDI ’03 : Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, pages 232–244, 2003.

[36] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In Proc. 7th USENIX Security Conference, pages 63–78, San Antonio, Texas,
January 1998.

[37] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Distributed slicing
and partial re-execution for distributed programs. In LCPC : The International
Workshop on Languages and Compilers for Parallel Computing, pages 497–511,
1992.

[38] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in systems code. In SOSP’01:
Proceedings of the Sixteenth Symposium on Operating Systems Principles, pages
57–72, Chateau Lake Louise, Banff, Canada, 2001.

[39] David Evans. Static detection of dynamic memory errors. In PLDI ’96: Pro-
ceedings of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation, pages 44–53, Philadelphia, Pennsylvania, United
States, 1996.

151

[40] Long Fei and Samuel P. Midkiff. Artemis: practical runtime monitoring of
applications for execution anomalies. In PLDI ’06: Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and Implemen-
tation, pages 84–95, Ottawa, Canada, 2006.

[41] Yishai A. Feldman and Haim Schneider. Simulating reactive systems by deduc-
tion. ACM Trans. Softw. Eng. Methodol., 2(2):128–175, 1993.

[42] Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia.
Modular verification of multithreaded programs. Theor. Comput. Sci., 338(1-
3):153–183, 2005.

[43] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qual-
ifiers. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages 1–12, Berlin, Ger-
many, 2002.

[44] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty
code using failure-inducing chops. In ASE : International Conference on Auto-
mated Software Engineering, pages 263–272, 2005.

[45] Rajiv Gupta, David A. Berson, and Jesse Zhixi Fang. Path profile guided partial
redundancy elimination using speculation. In ICCL : International Conference
on Computer Languages, pages 230–239, 1998.

[46] Tibor Gyimothy, Arpad Beszedes, and Istan Forgacs. An efficient relevant slic-
ing method for debugging. In ESEC/FSE-7: Proceedings of the 7th European
Software Engineering Conference held jointly with the 7th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, pages 303–321,
Toulouse, France, 1999.

[47] Christian Hammer, Martin Grimme, and Jens Krinke. Dynamic path conditions
in dependence graphs. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN
Symposium on Partial evaluation and Semantics-based Program Manipulation,
pages 58–67, Charleston, South Carolina, 2006.

[48] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. An
empirical investigation of the relationship between spectra differences and re-
gression faults. Software Testing, Verification and Reliability, 10(3):171–194,
2000.

[49] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and
access errors. In Proc. of the Winter 1992 USENIX Conference, pages 125–138,
San Francisco, California, 1991.

152

[50] Haifeng He and Neelam Gupta. Automated debugging using path-based weakest
preconditions. In FASE’04: Proceedings of Fundamental Approaches to Software
Engineering, pages 267–280, Barcelona, Spain, 2004.

[51] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Software verification with blast. In SPIN’03:Proceedings of the 10th Interna-
tional Workshop on Model Checking of Software (SPIN), pages 235–239, Port-
land, Oregon, 2003.

[52] Ralf Hildebrandt and Andreas Zeller. Simplifying failure-inducing input. In
ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 135–145, Portland, Oregon, United
States, 2000.

[53] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver.
In ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 14–25, Portland, Oregon, United
States, 2000.

[54] Quinn Jacobson, Eric Rotenberg, and James E. Smith. Path-based next trace
prediction. In MICRO 30: Proceedings of the 30th annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, pages 14–23, Research Triangle Park,
North Carolina, United States, 1997.

[55] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. In Proc. 7th Annual ACM Symp.
on Principles of Distributed Computing, pages 171–181, 1988.

[56] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test
information to assist fault localization. In ICSE ’02: Proceedings of the Inter-
national Conference on Software Engineering, pages 467–477, Orlando, Florida,
2002.

[57] Mariam Kamkar. Interprocedural Dynamic Slicing with Applications to Debug-
ging and Testing. PhD thesis, Linkoping University, 1993.

[58] Mariam Kamkar and Patrik Krajina. Dynamic slicing of distributed programs.
In ICSM ’95: Proceedings of the International Conference on Software Mainte-
nance, page 222, Washington, DC, USA, 1995. IEEE Computer Society.

[59] Bogdan Korel and J. Laski. Dynamic program slicing. Information Processing
Letters, 29(3):155–163, 1988.

153

[60] Bogdan Korel and Juergen Rilling. Application of dynamic slicing in program
debugging. In AADEBUG’97: Proceedings of the International Symposium on
Automated Analysis-driven Debugging, pages 43–58, Linkping, Sweden, 1997.

[61] Bogdan Korel and Satish Yalamanchili. Forward computation of dynamic pro-
gram slices. In ISSTA : Proceedings of the 1994 International Symposium on
Software Testing and Analysis, pages 66–79, 1994.

[62] Jens Krinke. Static slicing of threaded programs. In PASTE ’98: Proceedings of
the 1998 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 35–42, New York, NY, USA, 1998. ACM Press.

[63] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[64] James R. Larus. Whole program paths. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 Conference on Programming language Design and Implemen-
tation, pages 259–269, Atlanta, Georgia, United States, 1999.

[65] Zhenmin Li and Yuanyuan Zhou. Pr-miner: automatically extracting im-
plicit programming rules and detecting violations in large software code. In
ESEC/FSE-13: Proceedings of the 10th European software engineering confer-
ence held jointly with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 306–315, Lisbon, Portugal, 2005.

[66] Steve S.W. Liao, Perry H. Wang, Hong Wang, Gerolf Hoflehner, Daniel Lavery,
and John P. Shen. Post-pass binary adaptation for software-based speculative
precomputation. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming language design and implementation, pages 117–128,
New York, NY, USA, 2002. ACM Press.

[67] Ben Liblit, Alexander Aiken, Alice X. Zheng, and Michael I. Jordan. Bug iso-
lation via remote program sampling. In PLDI ’03 : Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, pages 141–154, 2003.

[68] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Tin-
Fook Ngai, and Sun Chan. A compiler framework for speculative analysis and
optimizations. In PLDI ’03 : Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation, pages 289–299,
2003.

154

[69] Jin Lin, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, and Tin-Fook
Ngai. A compiler framework for recovery code generation in general specu-
lative optimizations. In IEEE PACT : International Conference on Parallel
Architectures and Compilation Techniques, pages 17–28, 2004.

[70] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. Sober:
statistical model-based bug localization. In ESEC/FSE-13: Proceedings of the
10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
pages 286–295, Lisbon, Portugal, 2005.

[71] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error
patterns by mining software revision histories. In ESEC/FSE-13: Proceedings of
the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 296–305, Lisbon, Portugal, 2005.

[72] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and YuanYuan Zhou.
Bugbench : a benchmark for evaluating bug detection tools. In Workshop on
the Evaluation of Software Defect Detection Tools, 2005.

[73] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: detecting atom-
icity violations via access interleaving invariants. In ASPLOS-XII: Proceedings
of the 12th international conference on Architectural support for programming
languages and operating systems, pages 37–48, New York, NY, USA, 2006. ACM
Press.

[74] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and Zhe
Yang. Pse: explaining program failures via postmortem static analysis. In
FSE-12: Proceedings of the Twelfth ACM SIGSOFT twelfth international sym-
posium on Foundations of software engineering, pages 63–72, Newport Beach,
CA, USA, 2004.

[75] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for sys-
tematic testing of multithreaded programs. In PLDI: Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implemen-
tation, pages 446–455, 2007.

[76] Vijayanand Nagarajan, Dennis Jeffrey, Rajiv Gupta, and Neelam Gupta. On-
trac : A system for efficient online tracing for debugging. In ICSM: International
Conference on Software Maintenance, 2007.

[77] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared
memory dependencies using strata. In ASPLOS-XII : Proceedings of the 12th

155

international conference on Architectural support for programming languages
and operating systems, pages 229–240, 2006.

[78] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Recording
application-level execution for deterministic replay debugging. IEEE Micro,
26(1):100–109, 2006.

[79] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and
Brad Calder. Automatically classifying benign and harmful data races using
replay analysis. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN confer-
ence on Programming language design and implementation, pages 22–31, New
York, NY, USA, 2007. ACM Press.

[80] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI ’07 : Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Implementation,
pages 89–100, 2007.

[81] Robert H. B. Netzer. Optimal tracing and replay for debugging shared-memory
parallel programs. In Workshop on Parallel and Distributed Debugging, pages
1–11, 1993.

[82] Robert H. B. Netzer and Mark H. Weaver. Optimal tracing and incremental
reexecution for debugging long-running programs. In PLDI ’94 : Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation, pages 313–325, 1994.

[83] Peter G. Neumann. Risks to the public in computers and related systems.
SIGSOFT Softw. Eng. Notes, 26(1):14–38, 2001.

[84] Craig G. Nevill-Manning and Ian H. Witten. Linear-time, incremental hierar-
chy inference for compression. In DCC ’97: Proceedings of the Conference on
Data Compression, pages 3–11, Washington, DC, USA, 1997. IEEE Computer
Society.

[85] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution of parallel
programs. In Workshop on Parallel and Distributed Debugging, pages 124–129,
1988.

[86] Hsin Pan and Eugene H. Spafford. Heuristics for automatic localization of
software faults, 1992. Technical Report SERC-TR-116-P, Purdue University.

[87] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In TACAS: Tools and Algorithms for the Construction and Analysis
of Systems, pages 93–107, 2005.

156

[88] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Exploiting ecc-memory
for detecting memory leaks and memory corruption during production runs. In
HPCA, pages 291–302, 2005.

[89] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx:
treating bugs as allergies - a safe method to survive software failures. In SOSP:
ACM Symposium on Operating System Principles, pages 235–248, 2005.

[90] Manos Renieris and Steven Reiss. Fault localization with nearest neighbor
queries. In ASE ’03: Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, pages 30–39, Montreal, Canada, 2003.

[91] Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee. Enhancing server availability and security through
failure-oblivious computing. In OSDI : USENIX Symposium on Operating Sys-
tem Design and Implementation, pages 303–316, 2004.

[92] Michiel Ronsse, Koenraad De Bosschere, Mark Christiaens, Jacques Chassin
de Kergommeaux, and Dieter Kranzlmüller. Record/replay for nondeterministic
program executions. Commun. ACM, 46(9):62–67, 2003.

[93] Michiel Ronsse, Koenraad De Bosschere, and Jacques Chassin de Kergom-
meaux. Execution replay and debugging. In AADEBUG : Proceedings of the
First International Workshop on Automated and Algorithmic Debugging, 2000.

[94] Radu Rugina and Martin C. Rinard. Pointer analysis for multithreaded pro-
grams. In PLDI ’99 : Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation, pages 77–90, 1999.

[95] Mark Russinovich and Bryce Cogswell. Replay for concurrent non-deterministic
shared memory applications. In PLDI ’96 : Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation, pages
258–266, 1996.

[96] Yasushi Saito. Jockey: a user-space library for record-replay debugging. In
AADEBUG : Proceedings of the First International Workshop on Automated
and Algorithmic Debugging, pages 69–76, 2005.

[97] Alexandru Salcianu and Martin C. Rinard. Pointer and escape analysis for
multithreaded programs. In PPOPP : ACM Symposium on Principles and
Practice of Parallel Programming, pages 12–23, 2001.

[98] Yiannakis Sazeides. Instruction-isomorphism in program execution. In Proceed-
ings of the 1st Annual Value Prediction Workshop, San Diego, CA, 2003.

157

[99] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. Flashback: A lightweight extension for rollback and determin-
istic replay for software debugging. In USENIX Annual Technical Conference,
General Track, pages 29–44, 2004.

[100] Sriraman Tallam, Rajiv Gupta, and Xiangyu Zhang. Extended whole program
paths. In IEEE PACT : International Conference on Parallel Architectures and
Compilation Techniques, pages 17–26, 2005.

[101] Sriraman Tallam, Chen Tian, Rajiv Gupta, and Xiangyu Zhang. Enabling trac-
ing of long-running multithreaded programs via dynamic execution reduction.
In ISSTA ’07: Proceedings of the 2007 International Symposium on Software
Testing and Analysis, pages 207–218, New York, NY, USA, 2007. ACM Press.

[102] Tao Wang and Abhik Roychoudhury. Using compressed bytecode traces for
slicing java programs. In ICSE’04:Proceedings of the International Conference
on Software Engineering, pages 512–521, Edinburgh, United Kingdom, 2004.

[103] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the International
Conference on Software Engineering, pages 439–449, San Diego, California,
United States, 1981.

[104] Larry D. Wittie. Debugging distributed c programs by real time replay. In
Workshop on Parallel and Distributed Debugging, pages 57–67, 1988.

[105] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: characterization and methodological
considerations. In ISCA ’95: Proceedings of the 22nd annual international
symposium on Computer architecture, pages 24–36, New York, NY, USA, 1995.
ACM Press.

[106] Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfiability.
In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 351–363, Long Beach, California,
USA, 2005.

[107] Yichen Xie and Dawson Engler. Using redundancies to find errors. In FSE-10:
Proceedings of the 10th ACM SIGSOFT symposium on Foundations of software
engineering, pages 51–60, Charleston, South Carolina, USA, 2002.

[108] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

158

[109] Min Xu, Rastislav Bod́ık, and Mark D. Hill. A ”flight data recorder” for en-
abling full-system multiprocessor deterministic replay. In ISCA : Proceedings of
the annual international symposium on Computer architecture, pages 122–133,
2003.

[110] Min Xu, Mark D. Hill, and Rastislav Bod́ık. A regulated transitive reduction
(rtr) for longer memory race recording. In ASPLOS-XII : Proceedings of the 12th
international conference on Architectural support for programming languages
and operating systems, pages 49–60, 2006.

[111] Cliff Young and Michael D. Smith. Better global scheduling using path pro-
files. In MICRO 31: Proceedings of the 31st annual ACM/IEEE International
Symposium on Microarchitecture, pages 115–123, Dallas, Texas, United States,
1998.

[112] Andreas Zeller. Isolating cause-effect chains from computer programs. In SIG-
SOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 1–10, Charleston, South Carolina,
USA, 2002.

[113] Xiangyu Zhang. Fault Location via Precise Dynamic Slicing. PhD thesis, Uni-
versity of Arizona, 2006.

[114] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic slices with
confidence. In PLDI ’06 : Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, pages 169–180, 2006.

[115] Xiangyu Zhang and Rajiv Gupta. Whole execution traces. In MICRO : Proceed-
ings of the ACM/IEEE International Symposium on Microarchitecture, pages
105–116, 2004.

[116] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Cost and precision trade-
offs of dynamic data slicing algorithms. ACM Transactions on Programming
Languages and Systems, 27(4):631–661, 2005.

[117] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Rajiv Gupta. Experimental
evaluation of using dynamic slices for fault location. In AADEBUG’05: Proceed-
ings of the International Symposium on Automated Analysis-driven Debugging,
pages 33–42, Monterey, California, USA, 2005.

[118] Xiangyu Zhang, Sriraman Tallam, and Rajiv Gupta. Dynamic slicing long run-
ning programs through execution fast forwarding. In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 81–91, New York, NY, USA, 2006. ACM
Press.

159

[119] Youtao Zhang and Rajiv Gupta. Timestamped whole program path represen-
tation and its applications. In PLDI ’01: Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation, pages
180–190, Snowbird, Utah, United States, 2001.

[120] Qin Zhao, Joon Edward Sim, Weng-Fai Wong, and Larry Rudolph. Dep: de-
tailed execution profile. In PACT ’06: Proceedings of the 15th international
conference on Parallel architectures and compilation techniques, pages 154–163,
New York, NY, USA, 2006. ACM Press.

[121] Craig B. Zilles and Gurindar S. Sohi. Understanding the backward slices of
performance degrading instructions. In ISCA ’00: Proceedings of the Interna-
tional Symposium on Computer Architecture, pages 172–181, Vancouver, British
Columbia, Canada, 2000.

