
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Pre- and Post-Deployment Dynamic Bug Detection Techniques for MPI Programs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Hongbo Li

September 2018

Dissertation Committee:

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zizhong Chen, Co-Chairperson
Dr. Philip Brisk
Dr. Zhijia Zhao

Copyright by
Hongbo Li

2018

The Dissertation of Hongbo Li is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

This dissertation would not have been possible without the generous help of various

kinds I received from my advisors, professors, lab-mates and friends, and my family.

I would like to express my sincere gratitude to Prof. Rajiv Gupta for leading

me to this milestone. His critical suggestions bettered my research work. His tireless

revising of my papers improved more than my writing and presentation skills. His extensive

knowledge ensured this dissertation stay on the right track. His insightful vision helped me

find simplicity out of clutter. His perpetual enthusiasm in research and hard-working spirit

kept me motivated. Most importantly, his great understanding, patience, and tolerance

helped me survive my lowest point. Thank you, Prof. Gupta!

I would like to express my sincere gratitude to Prof. Zizhong Chen for the generous

support of the last five years. It is conference attending opportunities he gave that broad-

ened my horizon. It is the freedom he provided that allowed me to find the most exciting

project that transfers Software Engineering knowledge to High Performance Computing. It

is his encouragement, perseverance, and valuable suggestions that turned naive ideas into

decent research with years of honing. Also I appreciate his great understanding, patience,

and tolerance for all these years. Thank you, Prof. Chen!

I would like to thank my committee members Prof. Philip Brisk and Prof. Zhijia

Zhao for their valuable feedback and support. I would like to thank Ms. Kelly Downey for

having me work as her teaching assistant for one full year.

I would like to like to acknowledge the support of National Science Foundations

via grants CCF-1318103, CCF-1513201, CCF-1524852, CNS-1617424, and OAC-1305624. I

iv

also would like to acknowledge the support of the MOST key project 2017YFB0202100 and

the SZSTI basic research program JCYJ20150630114942313.

I would like to thank my lab-mates and friends for helping me in various ways:

Zachary Benavides, Jieyang Chen, Longxiang Chen, Sihuan Li, Yuanlai Liu, Xin Liang,

Kaiming Ouyang, Li Tan, Dingwen Tao, Keval Vora, Panruo Wu, Chengshuo Xu, and Keli

Zhang. I am grateful for the joyful chats we had, encouraging words you gave, the basketball

games we played, the delicious food we had, and the time we fought hard together as a team

for paper submissions.

Words cannot express my gratitude to my parents and my sister. Without their

unconditional love and unflagging support, I could not have gone this far. I am also indebted

and grateful to my parent-in-laws for treating me like their own son. Last but not least, I

would like to thank my better half, Shangjie, for her encouragement, for her understanding,

for her great temper, for her standing by me all the time, and for her making me realize the

most precious thing in life. It is your company and endless love that make all this happen.

v

To my wife and parents.

vi

ABSTRACT OF THE DISSERTATION

Pre- and Post-Deployment Dynamic Bug Detection Techniques for MPI Programs

by

Hongbo Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zizhong Chen, Co-Chairperson

MPI is the de-facto standard message-passing based parallel programming model.

However, the bug detection support for MPI applications is lacking. This thesis seeks to

address the challenges of bug detection techniques for MPI applications. Specifically, it

tackles two kinds of bugs: (1) general software bugs (e.g., segmentation faults, assertion

violations, and infinite loops) that lead to abnormal execution termination or program

hangs at small scale, i.e., when a program is executed with only a few processes and a small

problem; and (2) scaling problems that manifest only at large scale, i.e., when a program

is executed with a large number of processes or a large-sized problem.

To aid in the detection of general bugs, we developed COMPI as an automated

bug detection tool. COMPI tackles two major challenges. First, it provides an automated

testing framework for MPI programs — it performs concolic execution on a single process

and records branch coverage across all. Second, COMPI effectively controls the cost of

testing as too high a cost may prevent its adoption or even make the testing infeasible.

Furthermore, we enhanced the usability of COMPI via addressing two issues: input

vii

values generated by COMPI do not deliver cost-effective testing, and COMPI does not

support floating-point arithmetic and thus much code cannot be explored. We address the

first issue via proposing a novel input tuning technique without requiring the intervention

of users. We enable handling of floating point data types and operations and demonstrate

that the efficiency of constraint solving can be improved if we rely on the use of reals instead

of floating point values.

To tackle scaling problems, we provided a testing suite and designed an avoidance

framework for scaling problems associated with the use of MPI collectives. To improve

users’ productivity, we establish the necessity of user side testing and provide a protection

layer to avoid scaling problems non-intrusively, i.e., without requiring any changes to the

MPI library or user programs. This provides an immediate remedy when an official fix is

not readily available.

Finally, we built a hang detection tool that saves computing resources in the

presence of program hangs at large scale. ParaStack is an extremely lightweight tool to

detect hangs in a timely manner with high accuracy, in a scalable manner with negligible

overhead, and without requiring the user to select a timeout value. For a detected hang,

it tells users whether the hang is the result of an error in the computation phase or the

communication phase. For a computation-error induced hang, our tool pinpoints the faulty

process by excluding hundreds and thousands of other processes.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Dissertation Overview . 4

1.1.1 Concolic Testing for MPI Applications 5
1.1.2 Efficient Concolic Testing of MPI Applications 6
1.1.3 Tackling Scaling Problems with the Use of MPI Collectives 7
1.1.4 Hang Detection at Large Scale . 8

1.2 Dissertation Organization . 9

2 Concolic Testing for MPI Applications 10
2.1 Concolic Testing . 11

2.1.1 Challenges for MPI Application . 13
2.1.2 Our Solution: COMPI . 15

2.2 Overview of COMPI . 16
2.2.1 Work Flow of COMPI . 16
2.2.2 Search Strategy Selection . 18

2.3 Framework Adaptation . 21
2.3.1 Automatic Marking . 21
2.3.2 Constraints Insertion . 22
2.3.3 Conflicts Resolving . 23
2.3.4 Test Setup and Program Launching 25

2.4 Practical Testing . 27
2.4.1 Input Capping . 27
2.4.2 Two-way Instrumentation . 28
2.4.3 Constraint Set Reduction . 29

2.5 Implementation . 31
2.6 Evaluation . 32

2.6.1 Uncovered Bugs . 34
2.6.2 Input Capping . 35

ix

2.6.3 Two-way Instrumentation . 36
2.6.4 Constraint Set Reduction . 37
2.6.5 COMPI Framework and Random Testing 40

2.7 Summary . 41

3 E�cient Concolic Testing of MPI Applications 42
3.1 Issues of COMPI and Our Solution . 43

3.1.1 Issues of COMPI . 43
3.1.2 Our Solution: Input Tuning and Floating-Point Support 44

3.2 Background and Overview of Solutions . 46
3.2.1 Concolic Testing of MPI Programs 46
3.2.2 Overview of Our Solutions . 48

3.3 Input Tuning . 51
3.3.1 Design of Our Approach . 51
3.3.2 Applicability . 56

3.4 Floating Point Support . 57
3.5 Evaluation . 60

3.5.1 HPL . 62
3.5.2 IMB-MPI1 . 65
3.5.3 SUSY-HMC . 67

3.6 Summary . 70

4 Tackling Scaling Problems In and Out of MPI Collectives 71
4.1 Scaling Problems . 73

4.1.1 Challenges . 75
4.1.2 Our Approach . 76
4.1.3 Overview . 78

4.2 Manifesting Scaling Problems . 79
4.2.1 Basics of MPI Collectives . 79
4.2.2 Testing . 80
4.2.3 Scaling Problems Uncovered . 82

4.3 Online Problem Detectors . 84
4.3.1 ClassD: Displacement Array Corruption 85
4.3.2 ClassG: Global Data Bu�er Too Large 88
4.3.3 ClassX : Trigger Form Not General 90
4.3.4 Case Studies: ClassG and X . 91

4.4 Non-intrusive Avoidance . 92
4.4.1 Workaround 1: Communication Partitioning 93
4.4.2 Workaround 2: Big Data Type . 95
4.4.3 Applicability and Limitation . 96
4.4.4 Evaluation . 97

4.5 Summary . 103

x

5 Hang Detection at Large Scale 104
5.1 Program Hang at Large Scale . 105

5.1.1 Challenge . 105
5.1.2 Our Solution: ParaStack . 106
5.1.3 The Case for ParaStack . 108

5.2 Lightweight Hang Detection . 110
5.2.1 Model Based Hang Detection Scheme 116
5.2.2 Robust Model with a Limited Sample Size 120
5.2.3 Lightweight Design Details . 123

5.3 Identifying Faulty Process . 126
5.4 Implementation . 128
5.5 Discussion . 129
5.6 Experimental Evaluation . 131

5.6.1 Hang Detection Evaluation . 132
5.6.2 Faulty Process Identi�cation . 140

5.7 Summary . 142

6 Related Work 143
6.1 General Bug Detection . 143
6.2 Tackling Scaling Bugs . 146
6.3 Techniques for Handling a Program Hang 147

7 Conclusions and Future Work 149
7.1 Contributions . 149
7.2 Future Work . 151

Bibliography 154

xi

List of Figures

1.1 Dissertation overview. 4

2.1 Concolic testing for a sequential C program. 12
2.2 An MPI program's code skeleton and its execution tree. 13
2.3 The iterative testing of COMPI: i -th test to (i + 1)-th test (marked in green). 18
2.4 Branch coverage of HPL using four search strategies. 19
2.5 Resolving the conicts amongrw and r c variables by using the most up-to-

date values. Each row in the left table maps to one communicator, and each
column maps to one process. 24

2.6 The achieved branch coverage as well as the time cost at various matrix sizes
for HPL. 27

2.7 Instrumentation comparison: one-way v.s. two-way. 28
2.8 Constraint set reduction given x is marked as symbolic andx = 0 before

entering the loop. 30
2.9 Evaluation of input capping. 35
2.10 Constraint set size distribution for SUSY-HMC. 38
2.11 Constraint set size distribution for HPL: 38
2.12 Constraint set size distribution for IMB-MPI1. 39

3.1 Concolic testing of MPI programs: (1) on the left is a segment of one in-
strumented program with the code lines in bold being the original code,
mark symbolic() being inserted by developers, and the remaining being the
symbolic execution code inserted automatically; and (2) on the right shows
how the test engine tests the instrumented program. 47

3.2 Input tuning achieves cost-e�ective testing: (1) on the left is an MPI program
performing square matrix multiplication with n denoting the matrix width;
(2) on the right input tuning helps avoiding expensive execution via replacing
1234567 with 101. 49

3.3 Concolic testing of a program without support for oating-point data types
and operations. 50

xii

3.4 Two-stage tuning is applied on the solution generated by the solver | the
solution contains the values generated for variablesx1, x2, and x3, which are
respectivelyC1, C2, C3. After Stage I tuning, the smallest upper bound,B 1,
is found for all involved variables (i.e., x � B 1 for 8x 2 f x1; x2; x3; :::g with
B 1 � maxf C1; C2; C3; :::g). After Stage II, the smallest bound is found for
variable x1 if x1 is the single variable in the target constraint (i.e., x1 � B 2
with B 2 � B 1). Within the limits of these bounds, the constraints are solved
to get the optimized solution. 51

3.5 Branch coverage progress over one-hour of testing of HPL usinginput tuning,
input capping, and None of them: a point (x, y) in each plot indicates that
it takes x seconds to attain the maximum branch coverage ofy. 63

3.6 Branch coverage progress over one-hour of testing of IMB-MPI1 usinginput
tuning, input capping, and None of them: a point (x, y) in each plot indicates
that it takes x seconds to attain the maximum branch coverage ofy. 66

3.7 Branch coverage progress over one-hour testing of SUSY-HMC usinginput
tuning and input capping. 68

3.8 Branch coverage progress of testing of SUSY-HMC based on 3 versions of
COMPI: (Int) only integers; (Real) with oating point extension using re-
als; and (Float) with oating point extension directly using oating point
numbers. 69

4.1 Avoiding scaling problems via interception. 78
4.2 Safe bounds of G problems (Prob. 10, 11 and 13). 91
4.3 Safe bounds of an X problem (Prob. 12). 92
4.4 Illustration of the partitioning strategies for MPI Gatherv (P = 4 and n = 2)

by breaking down the �lling process of the global data bu�er. Process 0 is
the root and the bug would be triggered whennP > 4. 93

4.5 Workaround 1-A for MPI Gatherv. 94
4.6 Performance comparison between W1-A and the default MPIGatherv (MPICH)

before the scaling problem's occurrence. 100
4.7 Performance comparison among the three workarounds for MPIGatherv

(MPICH) whose scaling problem (Class D) is triggered oncesn > 2:625MB
when P = 768. 100

4.8 Performance comparison among the three workarounds for MPIIgather (Open-
MPI) whose scaling problem (Class G) is triggered oncesn > 2:625MB when
P = 768. 100

4.9 Performance trend of W1-B for MPI Gather (MPICH) whose scaling problem
(Class X) is triggered oncesn > 7:75MB when P = 768. 101

4.10 Performance comparison based on MPIGather (MPICH) supposing a Class
G problem is triggered whenn > 128K at P = 768. 101

4.11 Performance comparison based on MPIAllgatherv (MPICH) supposing a
Class G problem is triggered whenn > 128K at P = 768. 102

5.1 ParaStack workow { steps with solid border are performed by ParaStack
and those shown with dashed border require a complimentary tool. 109

xiii

5.2 Dynamic variation of Sout observed from 3 benchmarks: LU, SP, FT from
NPB suite. All are executed with 256 processes at problem sizeD. 111

5.3 The Sout variation of a faulty run of LU, where a fault is injected on the left
border of the red region. 112

5.4 Hang detection. Three panels show the empirical distribution of randomly
sampledSout of LU, where the red region shows the suspicion region, the blue
curve shows the probability density function P(Sout), and the dashed black
curve shows the cumulative distribution function Fn (Sout). The red arrow
crosses the suspicion region 3 times meaning 3 consecutive observations of
suspicion. 118

5.5 Relation among sample size, suspicion probability and tolerance error, where
n̂(p̂) = 3:8416

e2 p̂(1 � p̂). 121
5.6 Faulty process identi�cation for computation-error induced hangs. On the

left is an MPI program skeleton, which hangs due to a computation error in
process 100. Traditionally, the faulty process can be detected based on the
progress dependency graph as shown in the middle. Our technique greatly
simpli�es the idea by just checking runtime states as shown on the right. . 126

5.7 Performance comparison of running applications with ParaStack (I = 100
ms), with ParaStack (I = 400 ms) and without ParaStack (clean) on Stam-
pede at scale 1024 based on 5 runs in each setting. The performance is
evaluated as GFLOPS for HPCG and as time cost in seconds for all the
others, and the the 5 runs are ordered by performance. 133

5.8 Performance comparison of running applications with ParaStack (I = 100
ms), with ParaStack (I = 400 ms) and without ParaStack (clean) on Tianhe-
2 at scale 1024. 135

5.9 The response delay of hang detection based upon 100 erroneous runs for
each application at scale of 256 on Tardis. The horizontal axis represents
response delay in seconds and the vertical axis represents the number of times
ParaStack identi�es a hang with the corresponding delay.. 138

5.10 The percentage of time savings ParaStack brings to application users in batch
mode based on 10 erroneous runs of HPL with the average percentage equal
to 35.5%. 139

xiv

List of Tables

2.1 MPI semantics related variables. 21
2.2 The mapping between local ranks and global ranks. 26
2.3 Complexity of Target Programs. 32
2.4 One-way vs. Two-way . 36
2.5 Evaluation of constraint set reduction based on branch coverage. 37
2.6 Evaluation of COMPI's framework based on branch coverage. 40

3.1 Time cost (unit: seconds) of oating-point constraint solving using reals and
oating-point values based 100 iterative tests of a simple synthetic program. 60

3.2 Comparison amongT uning, Capping (C2, C4, C8, and C8 usingN o T imeout),
and N one based on HPL with two metrics: the time costs of covering 1860
branches and the number of tests completed in one hour. 64

3.3 Comparison amongT uning, Capping (C2, C4, C8, and C8 usingN o T imeout),
and N one based on IMB-MPI1 with two metrics: the time costs of covering
730 branches and the number of tests completed in one hour. 67

4.1 Well-documented scaling problemsreported online [20, 21, 133, 13, 6, 15].
Notes: (1) E�ect - H ang, C rash and performanceDegradation; (2) Failing
scale (P; M) - the Parallelism scale andM essage size that trigger the problem. 72

4.2 Newly uncovered scaling problems. 73
4.3 Who can �x the scaling problems? . 76
4.4 Notations. 79
4.5 MPI collectives and their global data bu�er size. If (I) follows a collective, the

collective has a non-blocking variation; if v follows a collective, the collective
has an irregular variation. 80

4.6 Experiment Setup. 81
4.7 Safe bounds. 83
4.8 Scaling problem detectors. 84
4.9 Detector G's lookup table. 90
4.10 Workarounds applicability: " 3 " - apply; " 7" - does not apply; "37 " - apply

with restrictions. 96

xv

4.11 Workarounds' e�ectiveness for MPI Gatherv (D). The unit of ns is 1 M, i.e.
220, and that of RM is GB. 97

4.12 Workarounds' E�ectiveness for MPI Igather (G). The unit of ns is 1 M, i.e.
220, and that of RM is GB. 98

4.13 E�ectiveness of Workaround 1-B for MPI Gather (X). The unit of ns is 1 M,
i.e. 220, and that of RM is GB. 98

5.1 Adjusting the timeout method to various benchmarks, platforms and input
sizes at scale 256 based on 10 erroneous runs per con�guration.Metrics : AC
{ accuracy; FP { false positive rate; D { average response delay in seconds,
i.e. the elapsed time from when the fault is injected to when a hang is detected.114

5.2 Default input sizes used by each application at various running scales. Inputs
D and E are the two largest inputs that come with the benchmarks. The
input size for HPL speci�es the width of a square matrix and the input size
for HPCG speci�es the local domain dimension. 130

5.3 For an execution of HPL on a 15000*15000 matrix, the clean run on average
takes 185.05 seconds.Ot is the total stack trace overhead due ton stack
trace operations. 132

5.4 Performance comparison of running applications with ParaStack (I = 100ms),
with ParaStack (I = 400ms) and without ParaStack (clean) on Tardis at
scale 256. Performance is measured by the deliveredGFLOPS for HPCG
and by the time cost in secondsfor the others, and Standard deviation of
the performance is shown. 134

5.5 ParaStack's Overhead on Tianhe-2 at scale 1024 based on the average of 5
runs. 135

5.6 Accuracy of hang detection. The rough time cost of a correct run is shown. 136
5.7 Response delay on Tianhe-2:D is the average response delay in seconds;S

is the standard deviation. 137
5.8 Response delay on Stampede:D is the average response delay in seconds and

S is the standard deviation. 137
5.9 ParaStack's generality for variation of platforms, benchmarks and input sizes

at scale 256 based on 10 erroneous runs per con�guration. Notes: (1)P
stands for the default ParaStack with I being initialized as 400ms;P� stands
for ParaStack with I being initialized as 10ms. (2)AC, accuracy; FP, false
positive rate; D, average response delay. 140

5.10 Evaluation of faulty process identi�cation. 141

xvi

Chapter 1

Introduction

High-performance computing has been profoundly impacting our world. It pro-

vides vital support to various scienti�c discoveries and technological innovations such as

physics simulation, weather forecasting, climate research, and oil and gas exploration. To

meet this critical demand, ever-increasingly powerful supercomputers have kept being cre-

ated { in 1993 the fastest supercomputer only attained 59.7 gigaops (5:97� 1010 FLOPS),

now the No. 1 supercomputer, Sunway TaihuLight, reaches 93 petaops (9:3� 1016 FLOPS),

and exascale computing (1018 FLOPS) is just around the corner [31]. Over the past two

decades, distributed cluster system has evolved from none to the predominant architecture

in the current HPC world | it accounts for over 85% of the current top500 supercomput-

ers [31]. Along with the rise of cluster, MPI has evolved into the de facto standard for

HPC applications on distributed clusters due to its great portability and performance [52].

Hence, enormous amount of MPI applications have been developed to serve various scienti�c

discoveries and technological innovations.

1

It is known that software bugs undermine the correctness of applications and thus

impair the e�cient use of high performance applications. In the pre-deployment phase, i.e.,

software development phase, general software bugs such as segmentation fault, assertion

violation, and in�nite loop, can lead to abnormal execution termination or program hang

at small scale (i.e., when a program is executed only with a few processes and a small

problem). In the post-deployment phase, i.e., after software release, challenging scaling

problems (bugs) | a class of bug that manifests only at large scale(i.e., when a program

is executed with too many processes or a too large problem) | can escape the testing

and linger inside software, and harm application users' use experience. However, the bug

detection support for MPI applications lags far behind the ever-increasingly sophisticated

hardware. The lack of support manifests in following respects.

� Scarce systematic testing techniques and tools. Though testing is the pre-

dominant technique in industry to manifest bugs prior to software release, there is

little e�ort spent on developing systematic software testing techniques for HPC appli-

cations [70, 106], let alone MPI programs. The lack of testing techniques is likely the

result of inadequate interaction between scientists, who play a leading role in HPC

application development, and industrial software engineers [77, 70, 106, 76]. Without

e�ective testing techniques, general software bugs can easily escape developers' sight

and linger in released MPI applications.

� No immediate remedies for scaling problems. As the complexity of MPI

collectives is directly impacted by both parallelism scale and problem size, their use

often triggers scaling problems. Scaling problems arising from MPI collectives can be

2

very challenging to deal with due to the aggregated complexity of a large number of

processes, a big input, the user code space, the MPI library, the environment setting,

and even platform [134, 92, 13, 14, 6, 15, 16, 20, 22]. It thus is very common that

application users are limited to ine�cient small scale runs prior to an o�cial patch

release which sometimes is even not available as developers cannot reproduce the

reported bug [15].

� De�cient hang detection at large scale. On supercomputers, users execute

programs in batch mode and each job execution occupies the requested computing

resources till its completion. Errors causing a program hang can arise in either the

computation phase, e.g., a thread-level deadlock within a process, an unexpected in-

�nite loop, and a soft error in one single process, or the MPI communication phase,

e.g., a communication deadlock. Program hangs, once occurring, stall the program

execution and thus waste all the requested resources before the allocated time expires.

A suitable solution to reduce wastage is thus detecting hangs at runtime and termi-

nating the job once a hang is detected. Ad hoctimeout mechanism [11, 85, 84, 98]

is a traditional hang detection method; however, it is di�cult to set an appropriate

threshold even for users who have good knowledge of an application considering the

threshold can vary across computing platforms, input sizes, and applications [90].

This thesis addresses all of the above challenges of bug detection for MPI applica-

tions. Our novel bug detection techniques facilitate the experience of software development

for developers as well as the software use experience for software users. Prior to deployment,

our tool automates the testing of MPI applications and provides bug reports using which

3

Figure 1.1: Dissertation overview.

developers can easily reproduce the bug and then �x it. After deployment, our testing suite

can help users test suspicious MPI collectives and our avoidance framework helps avoid

detected bugs, if any, without requiring any changes to MPI library and applications; also

our hang detection tool helps save a great amount of computing resources in presence of a

hang at large scale production runs.

1.1 Dissertation Overview

In this dissertation, we use dynamic techniques to aid the bug detection for both

application developers and users. Figure 1.1 depicts the overview of this dissertation. Prior

to software deployment, we provide an automated testing tool for developers to aid the

detection of general software bugs. With the generated bug reports, developers can easily

reproduce the bug and then �x it. After the deployment, we facilitate the use of applications

in presence of scaling problems in two aspects. First, for users we provide a testing suite

to test suspicious MPI collectives and an easy-to-use avoidance framework as an immediate

remedy for a scaling problem. Also, for users we built a hang detection tool that saves

computing resources in presence of program hangs at large scale production runs.

4

1.1.1 Concolic Testing for MPI Applications

We develop COMPI, the �rst concolic testing framework for MPI applications.

COMPI tackles two major challenges. First, it provides an automated testing framework

for MPI programs | it performs concolic execution on a single process and records branch

coverage across all. Infusing MPI semantics such as MPI rank and MPICOMM WORLD

into COMPI enables it to automatically direct testing with various processes' executions as

well as automatically determine the total number of processes used in the testing. Second,

COMPI employs three techniques to e�ectively control the cost of testing as too high a cost

may prevent its adoption. By capping input values, COMPI is made practical as too large

an input can make the testing extremely slow and sometimes even fail as memory needed

could exceed the computing platform's memory limit. With two-way instrumentation, we

reduce the unnecessary memory and I/O overhead of COMPI and the target program.

With constraint set reduction, COMPI keeps signi�cantly fewer constraints by removing

redundant ones in the presence of loops so as to avoid redundant tests against these branches.

COMPI's framework make it achieve 4.8-81% more coverage than regular concolic

testing. It uncovered four new bugs in one physics simulation program. It achieved 69-86%

branch coverage which far exceeds the 1.8-38% coverage achieved via random testing. Its

testing cost controlling techniques' e�ectiveness for practical testing is justi�ed: (1) input

capping lays the foundation of applying COMPI to practical MPI applications, without

which the testing cost could be unreasonably high; (2) two-way instrumentation enables up

to 66% testing time saving; and (3) constraint set reduction enables 4.7-10.6% more branch

coverage.

5

1.1.2 E�cient Concolic Testing of MPI Applications

COMPI has extended concolic testing to MPI programs. However, two issues

hinder its usability. First, it requires the user to specify an upper limit on input size { if

the chosen limit is too big, considerable time is wasted and if the chosen limit is too small,

the branch coverage achieved is limited. Second, COMPI does not support oating point

arithmetic that is common in HPC applications.

To address the above issues, we propose input tuning and support oating-point

data types and operations. We proposeinput tuning that eliminates the need for users to set

hard limits and generates inputs such that the testing achieves high coverage while avoiding

waste of testing time by selecting suitable input sizes. Moreover, we enable handling of

oating point data types and operations and demonstrate that the e�ciency of constraint

solving can be improved if we rely on the use of reals instead of oating point values. Our

evaluation demonstrates that with input tuning the coverage we achieve in 10 minutes is

typically higher than the coverage achieved in 1 hour when input tuning is not used. Without

input tuning, 9.6-57.1% loss in coverage occurs for a real-world physics simulation program.

For the physics simulation program, using ouroating-point extension that uses realscovers

46 more branches than without using the extension. Also, we cover 122 more branches

when solving oating-point constraints using reals rather than directly using oating-point

numbers.

6

1.1.3 Tackling Scaling Problems with the Use of MPI Collectives

As the complexity of MPI collectives is directly impacted by both parallelism scale

and problem size, their use often triggers scaling problems. Scaling problems' root cause can

be outside of MPI libraries and these can be easily exposed via dynamic interaction between

user code and MPI library as the scale goes up. Speci�cally, irregular collectives su�er the

most as theC int displacement array can easily be corrupted with integer overow. Scaling

problems can also result from a bug inside the released MPI libraries due to the lack of a

systematic testing of MPI libraries as well as the platform or environment dependency of

some scaling problems. Hence it is important for library users to perform testing on their

platform to expose potential scaling problems. Fixing a scaling problem is challenging, and

thus it usually takes much time for users to wait for an o�cial �x, which sometimes is

even not possible due to the di�culty of bug reproduction, root-cause identi�cation, and

�x development. To improve users' productivity, we establish the necessity of user side

testing and provide a protection layer to avoid scaling problems non-intrusively | once the

protection layer detects a condition that triggers a scaling problem it avoids the problem

by either (1) chopping the communication into smaller ones or (2) building big data types.

Our work hence provides an immediate remedy when an o�cial �x is not readily available.

We uncover two kinds of Type-3 scaling problems: (1) an inherent defect in MPI

standard on irregular collectives that impacts 8 MPI routines; and (2) 4 hidden scaling

problems inside the released MPI libraries including OpenMPI and MPICH. Our protection

layer consisting of three potential avoidance strategies is validated to be e�ective to bypass

the scaling problems.

7

1.1.4 Hang Detection at Large Scale

While program hangs on large parallel systems can be detected via the widely

used timeout mechanism, it is di�cult for the users to set the timeout | too small a

timeout leads to high false alarm rates and too large a timeout wastes a vast amount of

valuable computing resources. To address the above problems withhang detection, this

thesis presentsParaStack, an extremely lightweight tool to detect hangs based on runtime

history in a timely manner with high accuracy, negligible overhead with great scalability,

and without requiring the user to select a timeout value. It detect hangs by detecting

dynamic manifestation of following pattern of behavior | persistent existence of very few

processes outside of MPI calls. This simple, yet novel, approach is based upon the following

observation. Since processes iterate between computation and communication phases, a

persistent dynamic variation of the count of processes outside of MPI calls indicates a

healthy running state while a continuous small count of processes outside MPI calls strongly

indicates the onset of a hang. Based on execution history,ParaStack builds a runtime model

of count that is robust even with limited history information and uses it to evaluate the

likelihood of continuously observing a small count. A hang is veri�ed if the likelihood of

persistent small count is signi�cantly high. Upon detecting a hang, ParaStack checks if

there is any process in computation phase. If there is at least one process, it claims the

hang is incurred by a computation error and reports such processes as faulty processes

that contain the root-cause of this hang; otherwise, it claims the hang is incurred by a

communication error.

We have adaptedParaStack to work with the Torque and Slurm batch schedulers

8

and validated its functionality and performance on Tianhe-2 and Stampedethat are re-

spectively the world's current 2nd and 12th fastest supercomputers. Experimental results

demonstrate that ParaStack detects hangs in a timely manner at negligible overhead with

over 99% accuracy. No false alarm is observed in correct runs taking 66 hours at scale of

256 processes and 39.7 hours at scale of 1024 processes.ParaStack accurately reports the

faulty process for computation-error induced hangs.

1.2 Dissertation Organization

The rest of thesis is organized as follows. Chapter 2 presents COMPI, an concolic

testing tool for MPI programs in search of general software bugs. Chapter 3 details we

improve COMPI with our proposed methods: input tuning and oating-point extension.

Chapter 4 details the testing techniques to uncover scaling problems with the use of MPI

collectives as well as our avoidance framework. Chapter 5 introduces our hang detection

technique at large scale considering the detection e�ciency and accuracy. Chapter 6 surveys

existing literature in related areas and Chapter 7 summarizes our work and presents future

outlook.

9

Chapter 2

Concolic Testing for MPI

Applications

In industry, software testing is the predominant technique to ensure software qual-

ity, which is commonly known as an e�ective technique to uncover software bugs. However,

little e�ort has been spent on developing systematicsoftware testing techniques for HPC

applications [70, 106], let alone MPI programs. It is thus not unexpected that the quality

of HPC code is often lacking [78]. The lack of testing techniques for MPI applications is

likely the result of inadequate interaction between scientists, who play a leading role in

HPC application development, and industrial software engineers [77, 70, 106, 76].

We believe that there is an urgent need to explore e�ective systematic testing tech-

niques in the �eld of HPC. As manually generating test inputs is very expensive, error-prone

and non-exhaustive,random testing [38, 49, 57, 47] is commonly employed for automated

test generation. But it is impossible to test all interesting behaviors of a program.Symbolic

10

techniques [37, 82] overcome the limitation by generating inputs to force the execution of

various paths. However, they do not scale to large programs because (1) large programs

result in too complex constraints that are hard to be solved and (2) large programs lead to

path explosion and thus exploring all paths is impractical.

2.1 Concolic Testing

Concolic testing [116, 65] has been proposed as a solution to the problem of solv-

ing complex constraints | it uses concrete values to simplify intractable constraints. To

alleviate the path explosion problem, Burnim and Sen [42] propose a trade-o� between

the capability and practicality: they focus on branch coverage (the percentage of branches

being executed at least once during testing) instead of path coverage, where the former is

a more practical metric to evaluate code than the latter as the former is bounded by the

total number of branches that is signi�cantly smaller than the total number of paths.

Concolic testing automates the iterative testing of a program by automatically

generating inputs with the goal of achieving a high branch coverage. It works as follows.

Given a program, execution-path dominant variables reading inputs (from either a �le or

a command line) need to be marked by developers assymbolic, and then the program is

instrumented such that the symbolic execution codeis inserted into the given program. Test-

ing involves iterative execution of this instrumented program. In each concrete execution,

all operations of the marked variables are captured by the symbolic execution component.

After each execution, symbolic execution history like encountered branches andsymbolic

constraint set satisfying the branches are logged in a �le. In the next execution, the sym-

11

Figure 2.1: Concolic testing for a sequential C program.

bolic execution component reads the log and generates new inputs for marked variables

to potentially force a di�erent execution path as follows: the constraint set is updated by

negating a selected constraint; and the updated constraint set is solved with the results

yielding the new inputs.

Figure 2.1 shows how concolic testing applies to a sequential program. We denote

a branch as [condition id][T=F], where condition id is the branch condition's unique ID

and T=F representsTrue or False evaluation of the condition. On the left is a sequential

program consisting of fourbranches: 0T, 0F , 1T and 1F with a bug hidden at branch 0F .

Variables x and y are marked as symbolic. On the right is the process of concolic testing.

At the start, the program is run with random inputs f x 10; y 50g, which covers

branches 0T and 1F satisfying constraints x 6= 100 and x=2 + y � 200. To cover a new

branch, the testing tool negatesx 6= 100 and thus gets f x = 100g. It then generates the

next inputs f x 100; y 50g by solving the updated constraints. The inputs force the

execution of 0F . As the testing continues, it can derive new inputs and force the execution

12

Figure 2.2: An MPI program's code skeleton and its execution tree.

of 1T. Finally, 100% branch coverage is achieved. It should be noted during testing a bug

is triggered when 1T is executed. The testing logs the error-inducing inputs for developers

to perform further bug analysis.

2.1.1 Challenges for MPI Application

Typical SPMD (single program, multiple data) MPI programs usually consist of

the following steps: read inputs, check the validity of inputs | known as sanity check,

distribute workloads across processes, and �nally solve the problem based on a loop-based

solver. Figure 2.2 shows the code skeleton of a such program where the inputsx and y from

the user are �rst read (the reads are omitted for brevity), a sanity check is performed on

x and y as well as their combination x � y, the work is shared and �nally the while loop

solves the problem. When applying concolic testing to such programs, we encounter two

challenges described next.

13

First, standard concolic testing that only tests one process is not su�cient for

MPI applications that run with multiple processes. It cannot deal with MPI semantics

including MPI rank (a process' unique ID) and the number of processes. Hence, it fails to

cover branches related to such MPI semantics. Suppose concolic testing is only performed

on process 0 for the program in Figure 2.2. During execution, branches 3F and 4T are

encountered only by processes di�erent from process 0, 4F is not encountered, and the

remaining are covered by process 0. The testing fails to cover 3F and 4T as it does not

record branches covered by processes other than process 0; it does not cover 4F as it does

not test processes other than process 0 to satisfy bothrank 6= 0 and y � 100. Besides

the above missed branches, it should be noted that the testing can not cover branches that

can only be executed once a certain number of processes are used as its ignorance of MPI

semantics makes it unable to vary the number of processes.

In addition, concolic testing could be impractical for MPI applications without

carefully controlling the testing cost. This could results from three potential sources. First,

too large an input can make the testing extremely slow and sometimes even fail as the

memory needed could exceed the computing platform's memory limit. Second, running all

processes using the same heavy-weight instrumentation incurs unnecessarily high overhead

as not all processes need to perform symbolic execution. Third, too much e�ort is wasted

in the presence of loops that characterize MPI applications as loops lead to too many

redundant constraints being generated and solving as well as testing with them does not

help to boost branch coverage.

14

2.1.2 Our Solution: COMPI

To address the above issues, this chapter presents COMPI | a practical concolic

testing tool to automate the testing of MPI applications. It is implemented on top of

CREST [42], a scalable open-source concolic testing tool for C programs that replaces

CUTE (one of the �rst implementations of concolic testing) [116]. COMPI supports testing

of SPMD MPI programs written in C. It exposes bugs that result in assertion violation,

segmentation fault, or in�nite loops. It is able to tackle MPI semantics, covering branches

that cannot be covered by standard concolic testing, by employing the following strategies:

(1) it records branch coverages across all processes instead of just the one used to generate

inputs; (2) it automatically determines the number of processes used in the testing as well as

which process' execution should be used to generate the inputs to guide iterative testing. For

the program in Figure 2.2, strategy (1) helps cover 3F and 4T, and strategy (2) helps cover

4F . It curtails testing costs via three simple yet e�ective techniques: (1) input capping |

allowing developers to cap the values of marked variables so as to limit the problem size and

control the testing time cost; (2) two-way instrumentation | generating two versions of the

target program with one being heavily-instrumented to be used by one single process and

the other being lightly-instrumented to be used by the other processes; and (3) constraint

set reduction | reducing the constraint sets by removing redundant constraints resulting

in the presence of loops. COMPI makes the following key contributions.

� COMPI is the �rst practical automated testing tool for complex MPI applications |

it tackles basic MPI semantics and e�ectively controls the testing cost.

� COMPI uncovered four new bugs in one physics simulation program that were con-

15

�rmed by the developers.

� In our experiments COMPI achieved 69-86% branch coverage which far exceeds the

1.8-38% coverage achieved by random testing.

� COMPI exploits MPI semantics causing it to achieve 4.8-81% higher coverage than

standard concolic testing.

� COMPI achieves high branch coverages quicker with input capping delivering practical

testing; it reduces testing time by up to 66% via two-way instrumentation; it achieves

4.7-10.6% more coverage for two programs and achieves the best coverage much faster

for another with constraint set reduction than without it.

2.2 Overview of COMPI

2.2.1 Work Flow of COMPI

The work ow of COMPI consists of two phases: (1) in the instrumentation phase,

COMPI inserts symbolic execution code into the source code; and (2) during the testing

phase, COMPI iteratively tests the program to potentially cover new branches via automatic

input generation.

Instrumentation. Given a program, developers need to mark the execution-path

dominant input-taking variables. Then COMPI instruments the program so as to insert

symbolic execution code. In the instrumentation, COMPI marks MPI-semantics variables

that represent MPI rank or the size of MPI COMM WORLD (the number of processes)

so that these variables' values for the next test could be derived like other variables' input

16

values. Figure 2.2 illustrates the marking of one MPI program | rank is marked by COMPI

and variable x and y are marked manually by developers.

Testing. COMPI performs an iterative testing procedure until a user-speci�ed

budget of iterations (executions of the program under test) is exhausted. In each iteration,

it �rst determines the number of processes, as well as which process should be used to

perform concolic testing so as to generate inputs to drive the next test | we call this

processfocus and the remaining processes asnon-focus . In the �rst iteration, the number

of processes and the focus process can be set by the developer, and all other symbolic

variables are assigned random values; in future iterations, all the values are generated

based on previous iteration. In each iteration, the instrumentation code generates branch

coverage information and a set of constraints via executing the program. COMPI updates

the coverage information. It updates the constraint set by selecting and negating one of the

constraints, and then generates new inputs by solving the updated constraint set. With the

new inputs, it drives the testing in the next iteration.

Highlights of COMPI. In summary, COMPI extends CREST with the following two

critical features:

� It provides an automated testing framework speci�cally for MPI programs | it per-

forms symbolic execution on a single focus process and records branch coverage across

all processes. Due to its knowledge of MPI semantics, it automatically drives the

testing by varying the number of processes as well as the focus process. Recording

coverage across all processes makes sure the overall coverage is recorded accurately.

17

Figure 2.3: The iterative testing of COMPI: i -th test to (i + 1)-th test (marked in green).

� It enables practical testing via e�ectively controlling the testing cost based on three

techniques: input capping, two-way instrumentation, and constraint set reduction.

Figure 2.3 illustrates the iterative testing of COMPI from the i -th test to the

(i + 1)-th test on the program given in Figure 2.2. Suppose after Step 2 of thei -th test,

only branch 4F is left, and in Step 3 the constraint rank = 0 is negated. Supposedly

rank 1 is obtained from the constraint solver. Hence, in the (i +1)-th test COMPI shifts

its focus from rank 0 to rank 1. With this focus change, COMPI can cover the branch 4F

in a future test.

2.2.2 Search Strategy Selection

The decision on which constraint to negate (and thus which path to explore next)

is made according to thesearch strategy. There are four strategies available in CREST:

BoundedDFS , random branch search, uniform random search, and control ow graph

18

Figure 2.4: Branch coverage of HPL using four search strategies.

(CFG) search. BoundedDFS allows users to specify adepth bound and thus can skip

branches deeper than the bound, which is better than DFS as it avoids exploring in�nitely

deep execution tree. Random branch search and uniform random search randomly select a

branch to negate, and CFG search selects the branch based on a scoring system that checks

the distance between the covered branches and uncovered branches.

BoundedDFS is a classical search strategy that is slow yetsteady [116] and it

matches the need of MPI programs much better than the others because of the major

di�erence between MPI applications and regular ones: MPI programs usually read many

inputs and thus need to perform a sanity check before entering the solver to ensure

the validity of inputs (see Figure 2.2). The sanity check can consist of many conditional

statements, and only by passing all the checks can the program enter the solving phase.

BoundedDFS is very e�ective in passing the sanity check as it systematically traverses

the execution tree and aims to cover all possible branches. The remaining strategies are

ine�ective as they do not search branches in the order by which they are ordered in an

execution path. Consider an example based on the execution tree of Figure 2.2. Suppose

the current execution path is 0T ! 1T ! 2F with all the branches above 2T being covered

19

already. These strategies may not take the required step (take 2T by negating 2F) and

rather take 0F by negating 0T, and thus they fail to pass the check. This is very common,

especially for a complex sanity check. Even if they pass the check, they can deteriorate to

the limited path in sanity check due to the same reason.

Let's consider High-Performance Linpack Benchmark (HPL) [9] is one of the most

widely used HPC benchmarks. It performs highly optimized LU factorization and has 28

input parameters that include variables and arrays | we treat each array as one regular

variable. In its sanity check, each parameter as well as the combinations of parameters are

checked. Figure 2.4 shows its branch coverage comparison for four strategies using COMPI.

BoundedDFS with default depth of 1,000,000 and BoundedDFS with bound equal to 100

perform the best with a coverage of over 1100 branches while the others cover at most 137

branches as they fail to pass the sanity check. This shows that a bad bound selection results

in poor branch coverage and non-systematic strategies are unable to pass the sanity check.

BoundedDFS for COMPI. To ensure a good choice of the bound for BoundedDFS,

COMPI's testing consists of two phases: (1) it uses DFS �rst so that the maximal size of the

constraint set (the longest execution path) can be observed; and (2) it uses BoundedDFS in

the remaining iterations with the bound being slightly bigger than the observed considering

longer execution path might be observed later. In this way, COMPI has one full execution

tree in its sight.

20

Symbol Meaning

rw Variables denoting global rank in MPI COMM WORLD
r c Variables denoting local rank in other communicators
sw Variables denoting the size of MPI COMM WORLD

Table 2.1: MPI semantics related variables.

2.3 Framework Adaptation

The framework of COMPI can be summarized asone focus and all recorders,

i.e., it drives the testing with one focus process and accurately tracks the branch coverage

across all. One focus is the basic requirement for a concolic testing tool, and all recorders

are needed speci�cally for MPI programs considering that otherwise only recording the

coverage of the focus process is not accurate as it misses the branches already being covered

by non-focus processes. To enable automated testing for MPI programs, we automate the

selection of the focus as well as the determination of the number of processes to be used using

concolic execution. The framework consists of 4 major aspects: (1) automatic marking, (2)

MPI-semantics constraints insertion, (3) conicts resolving, and (4) test setup and program

launching.

2.3.1 Automatic Marking

To make the symbolic execution logic recognize important MPI semantics, COMPI

automatically marks rw , r c and sw shown in Table 2.1 as symbolic. Application developers

mark regular input variables manually with trivial e�ort as these usually cluster together

and read inputs at the beginning of the program from either a user-speci�ed �le or a

command line. Variables includingrw , r c and sw do not have to cluster together considering

21

they obtain their values anytime from MPI environment. Since manually marking them

is laborious, COMPI automatically marks them in the instrumentation phase. At each

invocation of

MPI Comm rank(comm, rank);

COMPI marks rank as arw if comm is checked to be a constant as MPICOMM WORLD

is a constant in MPI semantics; otherwise,rank is marked as ar c. At each invocation of

MP I Comm size(comm; size);

COMPI marks size as a sw if comm is found to be a constant. So far COMPI does not

mark variables representing the size of communicators other than the default.

2.3.2 Constraints Insertion

The inherent relations among rw , r c and sw should be obeyed by the constraint

solver, e.g., one global rank must be smaller than the size of MPICOMM WORLD (rw <

sw). Without knowing these, the solver can generate invalid inputs, e.g.,rw � sw . It is thus

necessary to inform the solver these inherent relations, i.e., add theinherent MPI-semantics

related constraints to the constraint set to be solved. Suppose there arem variables of type

rw | each is represented symbolically as x i with 0 � i < m , n variables of type r c | each

is represented asyi with 0 � i < n , and k variables of type sw | each is represented as

zi with 0 � i < k . As the focus process drives the testing, we need to generate these MPI

inherent constraints from the perspective of the focus considering it may only associate with

some of the non-default communicators. We summarize these inherent constraints as the

22

union of the following:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

S m
i =1 f x0 � x i = 0g

S k
i =1 f z0 � zi = 0g

f x0 � z0 < 0g

S n
i =0 f yi � si < 0 j 0 < i < n g

S n
i =0 f yi � 0g

S
f x0 � 0g

S
f z0 > 0g

where the �rst speci�es the equivalence of all rw variables representing the focus's global

rank, the second speci�es the equivalence of allsw variables representing the default com-

municator's size, the third speci�es the relation between the global rank and the default

communicator's size, the fourth speci�es the relation between the local rank and non-default

communicators' sizesi (0 < i < n), where si is a concrete value obtained by the instru-

mentation code at runtime, and the last speci�es that the size of the default communicator

should be no less than 1 and any of the others should be no less than 0.

2.3.3 Conicts Resolving

The above constraints are not complete as the relation between local ranks and

global ranks is not included. The solver thus could generate conicting constraints | the

generated input values for various variables denoting MPI ranks don't map to the same

process. Figure 2.5 shows an example. Suppose there are 3 processes in total with the focus

being process 0 (global rank). The focus process resides in MPICOMM WORLD as well

as two local communicators, andx0, y0 and y1 respectively record the rank of the focus in

23

Figure 2.5: Resolving the conicts amongrw and r c variables by using the most up-to-date
values. Each row in the left table maps to one communicator, and each column maps to
one process.

each communicator. Starting with an input (0, 0, 0) for (x0, y0, y1), COMPI supposedly

negatesy0 = 0 and generates input values in conict as (0, 1, 0) | x0 = 0 and y1 = 0 map

to global rank 0 but y0 = 1 maps to global rank 2. We resolve the conicts based on the

following important property of the underlying constraint solver.

Incremental solving property. Solving the whole constraint set every time is

time consuming. Incremental solving is thus proposed an e�cient strategy based on the

iterative tests' property | two constraint sets being solved consecutively usually share many

common constraints. It works in following way: (1) it only solves incremental constraints

| the negatedconstraint as well as the constraints dependent upon it, and (2) it assigns old

values from the previous inputs to variables not being solved. We �nd an usefulproperty :

if the value of one variable read from the solver is di�erent from its previous reading, its

value is moreup-to-date compared with those whose values stay the same.

Conict resolving. Because of the presented property, we resolve the potential

conicts by using the most up-to-datevalues amongrw and r c since they satisfy the negated

constraints while stale values don't. As shown in Figure 2.5, onlyy0 is updated and thus is

the most up-to-date value. The conicting values are corrected usingy0, so they map to the

24

same process, i.e., global rank 2. Note this resolving method assumes that ther c and rw

variables are not dependent, which does make sense as one constraint involving both (MPI

ranks) doesn't map to a realistic meaning.

2.3.4 Test Setup and Program Launching

In the iterative testing, we launch the current test by feeding the inputs generated

from the previous test. However, the value passing phase ofrw , r c and sw di�ers from that

of regular input variables: the former has to take place in the test setup phase to guide

the program launching while the latter occurs at runtime, which is due to the fact that the

values of rw , r c and sw are �xed when the program is launched, e.g., global rank can't be

changed at runtime.

Test setup consists of two parts: determine the number of processes used to

launch the program, and select focus process. The number of processes is set as the derived

value for sw . To set the focus, we need to �nd the global rank of the focus as it is the key to

launch the program. Based on the presented property, the focus stays unchanged if there is

not any value change amongrw and r c; otherwise, the focus's global rank should be derived

based on the value change.When rw changes, its new value is the focus' new global rank;

otherwise (r c changes), the case is trickier as the new value ofr c doesn't directly translate

to a global rank. To solve this problem, COMPI builds a mapping data structure between

local ranks and global ranks at runtime | a two dimensional array with each row storing all

the global ranks belonging to one local communicator by the increasing order of local MPI

ranks. Given a local rank with its communicator's index known, its mapped global rank can

be easily retrieved. Table 2.2 illustrates the mapping array from the perspective of the focus

25

Sorted local ranks ! 0 1 2 3 4 5

Global ranks !
Local Comm. 0 0 4 2 - - -
Local Comm. 1 0 3 - - - -

...

Table 2.2: The mapping between local ranks and global ranks.

(global rank 0) given �ve processes in MPI COMM WORLD. There are three global ranks

(0, 4, and 2) in local communicator 0 and two global ranks (0 and 3) in local communicator

1. Suppose we hope to access the global rank oflocal rank 1 in local communicator 0. The

global rank can be obtained asmapping[0][1] = 4.

Program launching. The instrumentation generates two copies of programs:

ex1 and ex2, where the former is used to launch the focus process and the latter is used

to launch the remaining. COMPI runs the given SPMD program in a MPMD (multiple

program, multiple data) style. Suppose the focus' global rank isi and the total number of

processes to run the program iss. We launch the program with

mpiexec -n 1 ./ex1 : -n s� 1 ./ex2

if i = 0; otherwise, we launch it with

mpiexec -n i� 1 ./ex2 : -n 1 ./ex1 :

-n s� i ./ex2

By default, global ranks are assigned by the order in launching processes. We hence can

shift the focus by varying i , and vary the number of processes by varyings.

26

Figure 2.6: The achieved branch coverage as well as the time cost at various matrix sizes
for HPL.

2.4 Practical Testing

The tool would not be practical to be adopted without seeking every means to

reduce its testing cost. Below we detail three major techniques to reduce the test cost.

2.4.1 Input Capping

Usually MPI programs are designed to be capable of solving various problems

sizes. Given a �xed number of parallel processes, the larger the problem size is the more

time-consuming the testing is though very often varying problem sizes lead to very similar

coverages. Take HPL for example. We respectively run it at variousmatrix size (the width

of a square matrix) 100, 200, ..., 1000 while maintaining all other inputs as default (see

Figure 2.6). Except for the small coverage increase from matrix width 100 to 200 the

coverage almost stays the same from 200 to 1000. However, the execution time cost at

matrix width 1000 is 27.2 times the cost at 200. Most importantly, too large an input value

can make the testing fail. This manifests in two ways: (1) too large a problem size might

exceed the testing platform's memory limit; and (2) way too many processes can crash the

platform, e.g., once our rudimentary COMPI made the computer freeze when it demanded

27

Figure 2.7: Instrumentation comparison: one-way v.s. two-way.

hundreds of thousands of processes to run the program.

To avoid unnecessary time-consuming tests, COMPI provides additional marking

interfaces to allow developers to specify a cap for the input variable that plays a pivotal role

on determining the execution time cost. Take the marking of anint variable for example.

It can be marked as

COMPI int with limit(int x, int cap);

where the cap is the upper bound for variable x. COMPI would generate the symbolic

constraint x � cap and feed it to the solver as shown in Section 2.3.2.

2.4.2 Two-way Instrumentation

The instrumentation code performs symbolic execution at runtime. After execut-

ing the program, each process outputs collected symbolic execution information (symbolic

constraints, branch coverage, inputs, etc.) to a �le, which will be read by COMPI to drive

the next test. With very little e�ort, we can enable concolic testing for MPI programs

28

based onone-way instrumentation | all processes run with the same instrumented pro-

gram. However, this e�ort-saving way is not e�cient due to two reasons: (1) it brings about

unnecessarymemory overhead at runtime for non-focus processes since these perform un-

necessary symbolic execution though they only care about recording branch coverage; and

(2) it brings about much unnecessary I/O overhead for non-focus processes considering I/O

on data unrelated to coverage is not useful for the testing framework.

Hence we propose two-way instrumentation: (1) the program (ex1) used to launch

the focus process is instrumented heavily | each expression is instrumented | to enable

full symbolic execution in each concrete run; and (2) the program (ex2) used to launch

the non-focus processes is instrumented lightly | only branches are instrumented | to

only record the branch IDs being covered. This di�erentiating style minimizes the work-

load for non-focus processes and makes testing e�cient. Figure 2.7 illustrates how two-way

instrumentation saves redundant I/O for non-focus processes compared with one-way in-

strumentation.

2.4.3 Constraint Set Reduction

Loops characterize MPI programs and cause hundreds and thousands of reducible

constraints generated from the same branch. They thus cause a signi�cant waste of test-

ing e�orts on the repetitive branches. For example, as shown in Figure 2.8 at least 101

constraints can be generated from one loop's execution | the constraint set size could be

far greater considering function doA() could also contain branches. Repetitive tests over

if(x < 100) simply waste time as the �rst constraint x < 100 subsumes the remaining but

29

Figure 2.8: Constraint set reduction given x is marked as symbolic andx = 0 before
entering the loop.

the last one, i.e.,

f x j x + i < 100 and 0< i < 100g � f x j x < 100g:

We avoid such unnecessary tests via a heuristic based on the property of reducible con-

straints as shown following.

Property of reducible constraints. Given a time-ordered sequence of con-

straints generated by one single conditional statement in one non-nested loop at runtime.

All constraints except the last one evaluate to True (or False), and the last constraint

evaluates to False (or True).

Constraint set reduction. Based on the property, we reduce the number of

constraints generated by each conditional statement using following heuristics. At runtime,

a constraint is recorded only if (1) this conditional statement is encountered for the �rst

time or (2) its evaluated booleanvalue is the opposite of the previous observed value.

30

2.5 Implementation

COMPI is implemented on top of CREST that consists of four main parts: an

instrumentation module, an execution library, and a search strategy framework, and a

constraint solver based on Yices SMT (satis�ability modulo theories) solver [33]. COMPI's

work spreads across all four. COMPI's implementation is based on over 3500 lines of

C++/Ocaml code changes { 1436 lines of CREST were modi�ed and 2151 new lines of code

were added. COMPI is publicly available at https://github.com/westwind2013/compi.

Instrumentation is performed using CIL (C Intermediate Language) [99] un-

der the guidance of an instrumentation module written in OCaml [18]. COMPI provides

two separate OCaml instrumentation modules to achieve two-way instrumentation. Both

modules instrument MPI Init(), MPI Comm rank() and MPI Comm size() so as to equip

COMPI with basic MPI knowledge. Only one module instruments programs heavily by

inserting the symbolic execution code, while the other instruments only programs' branches

to help non-focus processes record coverage.

Concolic execution library de�nes all instrumentation functions. The major

new features of COMPI include following: (1) it provides separate instrumentation functions

for the program used by non-focus process; (2) it de�nes additional marking functions to

achieve input capping; and (3) it implements the constraint set reduction technique.

Search strategy framework is the brain of COMPI as it directs the testing.

Particularly, COMPI selects the focus as well as sets the number of processes based on

derived input values before the program launching. Additionally, COMPI allows developers

to specify a timeout for a test. It logs the derived error-inducing input for further analysis if

31

Program # SLOC #
The number of branches
Total Reachable

SUSY-HMC 19,201 2,870 2030
HPL 15,699 3,754 3,468

IMB-MPI1 7,092 1,290 1,114

Table 2.3: Complexity of Target Programs.

either the program returns a non-zero value or fails to complete within the speci�ed timeout.

Constraint solver solves the constraint sets. COMPI creates additional con-

straints based on MPI semantics and input capping and insert them to the set before

solving.

2.6 Evaluation

We detail the newly uncovered bugs �rst and then evaluate four major features of

COMPI: input capping, two-way instrumentation, constraint set reduction, and framework.

Each feature is evaluated by comparing thedefault COMPI with its variation that either

modi�es or disables the feature of interest while incorporating all the other features.

Target programs Table 2.3 shows the three target programs we use to evaluate COMPI:

(1) SUSY-HMC, a major component in SUSY LATTICE | a physics simulation program

performing Rational Hybrid Monte Carlo simulations of extended-supersymmetric Yang{

Mills theories in four dimensions [110]; (2)HPL (High-Performance Linpack Benchmark)

used for solving a dense linear system via LU factorization; (3)IMB-MPI1 , which is one

major component of IMB (Intel MPI benchmarks) and can benchmark MPI-1 functions'

performance. Table 2.3 also shows the code complexity in di�erent metrics: the source lines

32

of code (SLOC) measured by SLOCCount [27]; the total number of branches obtained in the

instrumentation phase via static analysis; and the estimated number ofreachablebranches

obtained via summing up all the branches of all the encountered functions in testing [42].

We use the reachable branches to evaluate our coverage as some of branches found by static

analysis are not reachable due to build con�gurations [42].

Marking input variables The users of COMPI must mark a subset of input variables

{ these are non-oating point inputs as COMPI does not handle oating-point variables.

The e�ort required is minimal. Respectively, we marked 13 variables in SUSY-HMC, 24

variables in HPL, and 15 variables in IMB-MPI1. For illustration we describe one relevant

input for each program: (1) the lattice size of each of the four dimensions in SUSY-HMC

| we change the four as well as set input caps for them with the same value; (2) thewidth

of the square matrix in HPL; and (3) the number of iterations required to benchmark one

function's performance in IMB-MPI1. We denote these asN .

Experiment setup We perform experiments on a platform that is equipped with two

Intel E5607 CPUs (totaling 8 cores) and 32 GB memory. Initially, 8 processes are used to

launch the program with the focus being process 0. The number of processes is restricted

to no bigger than 16 via input capping. Suppose eachtest consists ofn iterations. To be

consistent as directed in Section 2.2.2, in each test we use pure DFS in the �rstx iterations |

x = 50 for SUSY-HMC, x = 1000 for HPL and IMB-MPI1; we use BoundedDFS afterwards

for the remaining n � x (n > x) iterations | the depth limits are 500 for SUSY-HMC, 600

for HPL, and 300 for IMB-MPI1 (estimated based on the constraint set sizes in the �rst

33

phase). Unless otherwise speci�ed, thedefault capsof the introduced input variable N are:

(1) NC = 5 for SUSY-HMC, (2) NC = 300 for HPL and (3) NC = 100 for IMB-MPI1.

Sometimes the testing can be constrained to a very short shallow path in the execution tree

due to an error that is lacking a constraint for tackling it. Once this error is encountered,

like bugs in SUSY-HMC, concolic testing can not step out of this error as its constraint-

based derivation is broken. Using tens of tests that only costs a few seconds this can be

found easily if the constraint set size is too small. We just redo the testing to avoid it.

In practice, developers should �x such known bugs and then continue testing for covering

additional bugs.

2.6.1 Uncovered Bugs

The use of COMPI on the programs detectedfour bugs in SUSY-HMC, where

three cause segmentation faults [30] and one causes a oating point exception [7].

The segmentation fault occurs due to wrong use of malloc(). Take one bug for

example. The program declares a double pointersrc and allocates space for it:

Twist Fermion � � src = malloc(Nroot � sizeof(� � src));

where Twist Fermion is a struct and Nroot is an integer denoting the number of elements

the allocated space would hold. Variablesrc expects the space allocation to storeNroot

Twist Fermion* elements, but the above allocates space to storeNroot Twist Fermion

elements. This causes a program crash due to a segmentation fault. This can be easily

�xed by changing sizeof(� � src) to sizeof(Twist Fermion�). COMPI detects three bugs due

34

Figure 2.9: Evaluation of input capping.

to this error. We reported these bugs and the �x to the developer, who con�rmed them

and adopted our �x.

The oating point exception bug is a more serious one. It leads to a division-by-

zero error whose triggering requires not only speci�c input values but also a speci�c number

of processes in the run | it manifests with 2 or 4 processes but it does not occur with 1 or

3 processes. We provided the triggering condition generated by COMPI to the developer

and he was easily able to reproduce the bug and then �x it.

2.6.2 Input Capping

We compare the testing cost using various input caps. Each cap is evaluated using

10 times of testing with each containing 50 iterations for SUSY-HMC and 500 iterations for

both HPL and IMB-MPI1, which are enough to show the time cost variance on the basis of

a decent coverage is achieved, i.e., the testing passes the programs' sanity check. Figure 2.9

shows the testing time and the coverage comparison using di�erent caps. For SUSY-HMC,

35

Program N
Time cost (seconds) Avg. log size (B)

1-way 2-way Saving 1-way 2-way

SUSY-HMC
2 163 86 47.0% 104M 6.4K
4 479 226 52.8% 337M 6.4K

HPL
300 92 35 62.0% 71.1M 4.5K
600 382 127 66.8% 261.8M 4.5K

IMB-MPI1
100 7 7 0.0% 562.0K 1.9K
400 16 14 12.5% 1.8M 1.9K
1600 43 38 11.6% 5.5M 1.9K

Table 2.4: One-way vs. Two-way

the average time increases by four times asNC increases from 5 to 10 while the coverages

using two caps are comparable. For HPL, the coverage ranges from about 1100 to 1300

(such variance can occur even for the same cap size), and whenNC = 1200 the testing time

cost in the worst case is about seven times of the cost whenNC = 300. For IMB-MPI1, the

average cost increases by four times asNC increases from 50 to 400 while always about 685

branches are discovered. Obviously, bigger caps lead to more expensive testing cost on the

basis of providing comparable coverages. Without it the concolic testing is never possible.

2.6.3 Two-way Instrumentation

COMPI using two-way instrumentation is compared with its variation that uses

one-way instrumentation based on simulated testing that �xes the inputs to defaults for each

program (the dynamic derivation of input values is disabled). The time cost is �xed and thus

the comparison reects only the di�erence between instrumentations. Each con�guration

is evaluated using one 10-iteration test. Table 2.4 shows the testing cost comparison of

two instrumentation methods given di�erent input values. Two-way instrumentation saves

over 47% testing time for SUSY-HMC, over 62% for HPL, and 0-12.5% for IMB-MPI1.

36

Program #
COMPI (R) NRBound NRUnl
Avg. Max. Avg. Max. Avg. Max.

SUSY-HMC 84.7% 86.1% 80.0% 82.0% 80.1% 80.2%
HPL 69.6% 71.9% 59.0% 59.6% 59.4% 60.4%

IMB-MPI1 69.0% 69.1% 69.0% 69.1% 69.0% 69.0%

Table 2.5: Evaluation of constraint set reduction based on branch coverage.

Also Table 2.4 shows the average size of non-focus processes' log �les | the I/O between

the target program and COMPI. Using two-way instrumentation non-focus processes only

output a few kilobytes while using one-way instrumentation the log size could be as high

as a few hundred megabytes. Moreover, the trivial log �le size indicates that non-focus

processes don't eat too much memory at runtime as they do not need to perform tasks

other than executing the program and recording the branch coverage information.

2.6.4 Constraint Set Reduction

We evaluate constraint set reduction by comparing COMPI with reduction (R)

with its two variations: non-reduction with a depth limit (NRBound) (the same to COMPI's

default depth limit for each program) and non-reduction with unlimited depth (NRUnl). To

perform a fair comparison, we apply COMPI (R), NRBound and NRUnl to each program

based on a �xed time budget. The time budget of each test experiment is set to match the

time taken by COMPI (R) to achieve the maximum attainable coverage. The durations are

1.5 hours for SUSY-HMC, 3.5 hours for HPL, and 34 minutes for IMB-MPI1. The reported

results are based upon three repetitions of each experiment.

37

Figure 2.10: Constraint set size distribution for SUSY-HMC.

SUSY-HMC As shown in Table 2.5, R in average achieves about 4.6% more coverage

than NRBound and NRUnl. Also we notice that sometimes bothNRBound and NRUnl

need to spend tens of minutes to derive a set of inputs. This occurs due to two reasons:

too many redundant constraints are generated and negating these makes the constraint set

insolvable. Figure 2.10 shows that our reduction technique generates constraint sets whose

size are always smaller than 500, but without using it the constraint set could be as large

as a few thousands to tens of millions.

Figure 2.11: Constraint set size distribution for HPL:

HPL Based on the average coverage, we observe following: (1)R achieves respectively

10.6% and 10.2% more coverage thanNRBound and NRUnl ; (2) all three achieve about

59% coverage (the maximum ofNRUnl) in three minutes; (3) In the remaining time of over

three hours, NRBound's and NRUnl 's coverages stay the same as the coverage in the �rst

38

Figure 2.12: Constraint set size distribution for IMB-MPI1.

three minutes, let alone get any closer toR's coverage. This results from the fact that the

non-reduction methods spend a signi�cant portion of time traversing redundant branches.

Figure 2.11 shows that our reduction technique signi�cantly reduces the constraint set size

| R's maximal size is about 500 but the size for other two can be over 1600.

IMB-MPI1 All of them achieve equivalent coverages with a di�erence of only 1 or 2

branches | the average coverage rate is 69.0%. The required time to achieve the minimum

of all methods' maximal coverages, i.e., 767 branches, are respectively: (1) 116s, 64s and

386s forR; (2) 257s, 279s and 966s forNRBound; and (3) 226s, 286s and 4433s forNRUnl.

By excluding the outliers 966s and 4433s | their occurrences are related to the randomness

feature of COMPI, the average time costs to cover 767 branches are respectively 189s, 268s

and 256s. Most importantly, Figure 2.12 shows thatR generates less than 300 constraint

in testing while the other two generate more than 2,000 constraints in over 30% testing

iterations.

39

Program #
COMPI(Fwk) No Fwk Random
Avg. Max. Avg. Max. Avg. Max.

SUSY-HMC 84.7% 86.1% 3.4% 3.5% 38.3% 38.3%
HPL 69.4% 71.6% 58.9% 59.1% 2.2% 2.2%

IMB-MPI1 69.0% 69.1% 64.2% 64.3% 1.8% 1.8%

Table 2.6: Evaluation of COMPI's framework based on branch coverage.

2.6.5 COMPI Framework and Random Testing

We evaluate the e�ectiveness of COMPI's framework by comparing COMPI with

the framework enabled (Fwk, COMPI itself) with its variation with the framework disabled

(No Fwk) | No Fwk drives the testing using only one �xed focus process, records the

coverage of this process only, and always uses 8 processes (the initial setting of COMPI).

we apply COMPI (Fwk) and No Fwk to each program based on a �xed time budget as used

in Section 2.6.4. The reported results are based on three repetitions of each experiment. As

No Fwk doesn't vary the focus process, the above evaluation is performed on each process

and the obtained branch coverage using each process are combined to formNo Fwk's �nal

coverage. As shown in Table 2.6, for SUSY-HMCFwk achieves an average coverage of

84.7% which is about 25 times the coverage ofNo Fwk; for HPL Fwk achieves an average

coverage of over 69% that is about 10% higher thanNo Fwk; for IMB-MPI1, Fwk achieves

69% coverage that is about 5% higher thanNo Fwk. We observe that No Fwk performs

far worse than Fwk only for SUSY-HMC because under the condition of using 8 processes

persistently No Fwk fails to generate sound inputs that exercise the full program. The

e�ectiveness of our framework is hence obvious | it gives COMPI the freedom to vary not

only the focus process but also the number of processes and this freedom helps COMPI

achieve higher coverages.

40

We also compared the default COMPI with purely random testing (Random).

Random testing generates random values for marked variables and randomly sets the num-

ber of processes used as well as the focus process. For a fair comparison, all the random

values are generated under the limits set by the input capping. We apply COMPI and

Random to each application using the �xed time budgets as used in Section 2.6.4. The

reported results are based on three repetitions of each experiment. As shown in Table 2.6,

COMPI's coverage is over 2 times that ofRandom's for SUSY-HMC, and it is over 30 times

the coverage ofRandom for HPL and IMB-MPI1.

2.7 Summary

We presented COMPI that automates the testing of MPI programs. In COMPI,

MPI semantics guide testing using di�erent processes and dynamically varying the number

of processes used in testing. Its practicality is achieved by e�ectively controlling its testing

cost. COMPI was evaluated using widely used complex MPI programs. It uncovered new

bugs and achieved very high branch coverages.

41

Chapter 3

E�cient Concolic Testing of MPI

Applications

COMPI [91] applied concolic testing [116, 65] to boost thebranch coverageof

MPI applications. It proposed a concolic testing framework for MPI applications with

adaptations enabling practical testing via controlling the cost of testing MPI programs. It

performs symbolic execution only on onefocus process in each execution and records branch

coverage across all processes. Based on the same input, it can dynamically vary thenumber

of processes(i.e., the size of MPI COMM WORLD), as well as the focus such that it can

cover branches whose conditional statement depends on the size of MPICOMM WORLD

or MPI rank such as the statement if (rank == 0).

42

3.1 Issues of COMPI and Our Solution

3.1.1 Issues of COMPI

First, the input values generated by COMPI do not guarantee cost-e�ective testing.

It is known that the larger the problem size presented to an MPI program, the more

time-consuming is the execution. If an excessively large value is generated for a variable

that is closely related to the size of the problem, the testing cost can be exorbitant. To

address this problem, COMPI proposes a technique, known asInput Capping, allowing

developers to set an upper limit, referred to as thecap, for the input generation of each

variable. Its underlying idea is that with a well-selectedsmaller cap values, inputs generated

achieve branch coverages that are comparable to larger cap values at a far less testing

cost. However, selecting such good caps is challenging. Excessively large caps ensure good

coverage but incur exorbitantly high testing cost. Conversely, too small caps ensure the

overhead per program execution is low but this comes at the cost of lower coverage because

some constraints may have no solution under thecap limits and thus some branches cannot

be explored. For simple programs manual inspection of the constraints of all branches can

help developers �nd caps such that the caps do not prevent the constraints from being

solved. However, manual inspection is infeasible for complex or large programs and thus an

automated approach is essential.

Second, COMPI does not support oating-point types and operations that are

commonly used in HPC applications. Using COMPI to test an MPI program that reads

many oating-point values requires developers to manually �x the oating-point variables

to selected values. But �xing the variables to certain values prevents testing from cover-

43

ing branches depending on these variables (e.g., thetrue side of conditional statement if

(x < 1) cannot be exercised if we �xx to 2.0). Furthermore, oating-point operations are

either ignored or recorded imprecisely (e.g., assignment statementx = y + 1 :5 is ignored

as expressiony + 1 :5 is a oating point operations). The lack of oating-point support

can cause some constraints not to be recorded or solved, and branches related to the use of

oating-point types and operations may never be covered during testing.

3.1.2 Our Solution: Input Tuning and Floating-Point Support

We proposeinput tunning to make testing cost-e�ective while avoiding the need

for user to manually set hard cap limits. Its overall idea is as follows. COMPI generates

new input values via solving a subset of dependent constraints (details in Section 3.2.1) |

the new values are consumed by the variables appearing in these constraints in the next test

run. Input tuning aims to make these values as small as possible as follows. It identi�es the

largest value L in the generated values and then, via binary search over the range (0; L],

it �nds the smallest values for the involved variables such that the constraints can still be

satis�ed and thus uses them to drive the next test run. That is to say, we can achieve cost-

e�ective testing via searching for small values to drive the testing as (1) the search does

not disrupt the constraint solving unlike hard cap limits, and (2) they are small enough to

ensure the least-expensive execution during testing.

We also extend COMPI to support oating-point data types and operations and

show that the e�ciency of constraint solving can be greatly improved if we rely on the use

of reals instead of oating point values. Satis�ability modulo theories (SMT) solvers like

Z3 [50] have begun to support oating point reasoning due to the recent advances of the

44

solver technology. This leads to the incorporation of oating-point reasoning into concolic

testing [95]. However, solving constraints over oating-point numbers is far slower than

over reals. Though approximating oating-point arithmetic using real arithmetic sacri�ces

precision, we show that the high e�ciency of the approximation outweighs the imprecision

in terms of achieving higher testing coverage in practice.

Our main contributions include:

� We present input tuning to achieve the most cost-e�ective testing via automatically

searching for the smallest values that satisfy the collected constraints and thus elimi-

nate the need for manually setting hardcap limits.

� We support oating-point data types and operations and demonstrate signi�cant im-

provement in constraint solving and testing e�ciency by approximating oating-point

arithmetic using real arithmetic.

� We evaluate input tuning for HPL, IMB-MPI1, and SUSY-HMC based on one-hour of

testing. For HPL, with input tuning we cover 1865 branches in less than 10 minutes

which is 6� faster than the time it takes to achieve the same coverage without using

input tuning. For IMB-MPI1, with input tuning we achieve coverage of 766 branches

in less than 8 minutes while without it only 735 branches are covered in one hour.

For SUSY-HMC, with input tuning we achieve the highest coverage, while with input

capping 9.6-57.1% coverage loss occurs in other settings.

� We evaluate our oating-point extension using SUSY-HMC physics simulation pro-

gram with one-hour of testing. With our oating point extension using reals we cover

45

46 more branches than without it. Also we cover 122 more branches when solving

oating point constraints using reals rather than directly using oating point numbers

during solving.

3.2 Background and Overview of Solutions

Here we briely describe the concolic testing process for MPI programs and the

incremental constraint solving approach used for testing. We also illustrate with examples

the existing issues of the current concolic testing tool for MPI programs as well as overview

our proposed solutions.

3.2.1 Concolic Testing of MPI Programs

Testing process. The concolic testing of a given MPI program consist of two major steps:

instrumentation and iterative testing.

In the instrumentation step, developers manually mark variables that read input

values and dominate the program execution, then the marked program is transformed into

a simpli�ed program in C Intermediate Language (CIL) [99], and �nally the simpli�ed

program is instrumented with symbolic execution code as shown in Figure 3.1. With the

simpli�cation, branch statements like loops and switch are all translated into goto and if

statements. Each if statement only contains a simple condition, e.g.,f x > 0g instead of

f x > 0 and x < 10g, and is always accompanied with anelse statement. The true/false

branch outcome causes the execution of theif -side/else-side of the conditional statement.

The branch coveragemetric represents the number of branch outcomes covered during

46

Figure 3.1: Concolic testing of MPI programs: (1) on the left is a segment of one instru-
mented program with the code lines in bold being the original code, marksymbolic() being
inserted by developers, and the remaining being the symbolic execution code inserted auto-
matically; and (2) on the right shows how the test engine tests the instrumented program.

testing. Note the term branch coverageused in this chapter refers to the branch coverage

of the simpli�ed CIL program.

Next, iterative testing (i.e., iteratively executing the target program with generated

inputs) is performed so as to increase the branch coverage and potentially uncover software

bugs. At the end of each execution, a series of symbolic constraints mapped to the branches

along the program execution path are recorded. The testing tool can generate a set of input

values via solving constraints in a pre�x of the execution path followed by a negation of

the next constraint in the pre�x. Due to the negation, the new inputs can potentially cover

a new branch outcome. Among these inputs, some are used to determine the number of

processes to be used as well as which process should be thefocus process | the focus is the

only process on which symbolic execution is performed while all the other processes only

perform concrete execution (e.g., the code lines in bold in Figure 3.1). Based on these, the

test engine can con�gure the right number of processes and the focus when launching the

program. The remaining input values are passed to the marked variables at runtime, e.g.,

variable x takes one value via marksymbolic() in Figure 3.1.

47

Incremental constraint solving is a widely used approach in many concolic testing

tools due to its e�ciency when solving similar constraints repeatedly. CREST [42], on

which COMPI is built, bene�ts from it as well. Its basic idea is to exploit the similarity

between two constraint sets being solving consecutively to speedup the solving process. It

works as follows: (1) it only solves subset of constraints | the target negated constraintas

well as constraints depending on it 1 | such that new values are generated for variables

appearing in these constraints; and (2) it assign old values from previous input to all the

other variables that do not appear in the constraints. Since each time only a subset of,

instead of all, the constraints are solved, this technique greatly speedups the constraint

solving.

We observe that a property inherent to this technique is: An input value generated

for a variable remains unchanged as long as the variable does not appear in the incrementally

solved constraints.

3.2.2 Overview of Our Solutions

Input tuning. Though COMPI's input capping relieves the issue to a certain degree, it

is very challenging to select a good set ofcap limits. Consider the MPI program performing

square matrix multiplication shown in Figure 3.2 where variable n representing the matrix

width determines the execution time. The program is designed to use di�erent strategies for

di�erent range of matrix widths to optimize performance | small matrix multi() is invoked

when n < 100 and largematrix multi() is invoked otherwise. If the upper cap limit is set

to 50 (i.e., n � 50), large matrix multi() will not be explored during testing. On the other

1Two symbolic constraints are claimed to be dependent if only they share the same variables.

48

Figure 3.2: Input tuning achieves cost-e�ective testing: (1) on the left is an MPI program
performing square matrix multiplication with n denoting the matrix width; (2) on the right
input tuning helps avoiding expensive execution via replacing 1234567 with 101.

hand, if the upper limit is set to 500, the testing could be very expensive as the matrix

width could be as high as 500. The property of incremental solving as discussed earlier in

Section 3.2.1 exacerbates the high cost problem | once a large width value is generated it

could stay unchanged for a long time and thus repeated time-consuming executions will be

performed.

With our input tuning technique we can achieve the best cost-e�ective testing

without the need for �nding the best upper limits as input tuning always �nds the smallest

value to satisfy a given constraint. In Figure 3.2, the input tunning technique is illustrated.

Suppose in the �rst run a random value is generatedn 10. After execution, constraint

n � 100 is obtained. Via negating it (n > 100) the testing aims to cover the branch outcome

that invokes large matrix multi(). The solver can generate any value liken 1234567 to

satisfy n > 100. This obviously is the worst scene the testing needs to avoid. With

input tuning, we can �nd that n 101 also satisfyn > 100. This small value ensures

large matrix multi() is invoked with the minimum possible execution time.

49

Figure 3.3: Concolic testing of a program without support for oating-point data types
and operations.

Floating-point support. We exemplify the consequence of missing oating point sup-

port with the example shown in Figure 3.3. In this program, variable a and b read inputs

from users. We marka as symbolic. As there is no marking interface to support marking

of b, a oat variable, as symbolic in COMPI, we can only �x it to a selected value (e.g.,

1.1). Variable c is also aoat and its value is derived from a. Supposea is initialized to

1 in the �rst test. However, function f1() cannot be explored as b = 1 :1 does not satisfy

b > 1:1 && b < 1:2, and f2() cannot be explored as the symbolic constrainta � 1:1 � 2

is not recorded, which is ultimately due to the fact that oating-point multiplication like

a � 1:1 is ignored by COMPI's symbolic execution component.

To address this issue, we provide an interface to developers for marking oating-

point variables and allow oating-point arithmetic in the symbolic execution component.

Our extension helps cover branches related to the use of oating-point calculations.

50

Figure 3.4: Two-stage tuning is applied on the solution generated by the solver | the
solution contains the values generated for variablesx1, x2, and x3, which are respectively
C1, C2, C3. After Stage I tuning, the smallest upper bound, B 1, is found for all involved
variables (i.e., x � B 1 for 8x 2 f x1; x2; x3; :::g with B 1 � maxf C1; C2; C3; :::g). After
Stage II, the smallest bound is found for variablex1 if x1 is the single variable in the target
constraint (i.e., x1 � B 2 with B 2 � B 1). Within the limits of these bounds, the constraints
are solved to get the optimized solution.

3.3 Input Tuning

Directly applying the values generated by the constraint solver often incurs high

testing cost that is not necessary. Though setting upper limits relieves this problem to

a certain degree, it is challenging to manually �nd the best limits with which the testing

achieves a high coverage yet incurs the least time cost. We thus proposeinput tuning as a

solution to achieve e�ective testing that eliminates the challenge of setting hardcap limits.

3.3.1 Design of Our Approach

The tuning process consists of two stages: (Stage I)Multi-variable tuning that

optimizes all variables appearing in thedependent constraintssuch that their values are

no bigger than the detected smallest upper bound; and (Stage II)Single-variable tuning

that optimizes the single variable in the target negated constraint, i.e., the target negated

constraint only contains one variable, under the limit of the detected bound. Figure 3.4

51

illustrates how the two-stage tuning optimizes the solution, i.e., input values. These two

stages are complimentary. Stage I ensures a dependent variable, likex2 andx3 in Figure 3.4,

is not signi�cantly increased when tuning the single variable in the target constraint, like

x1. Stage II ensures the single variable gets the smallest value under the upper bound

detected in Stage I. Below we details the two-stage tuning process shown as Algorithm 1,

Algorithm 2, and Algorithm 3.

Stage I. Supposetarget is the negated constraint, cstrs stands for the constraint set

including target as well as the constraints depending ontarget (see Section 3.2.1),excls is

a set ofsymbolic symbols2 that do not need tuning, and soln stores the generated values for

symbolsappearing in cstrs as key-value pairswith key being a symbolic symbol andvalue

being the generated value for symbolkey. The goal of Stage I tuning is to �nd the lowest

upper bound for all symbols not appearing inexcls, i.e., we exclude symbols/variables that

do not need to be tuned. This process is composed of the following steps:

� Decide to tune or not (Algorithm 1 and Algorithm 2). At �rst, we �nd the largest

value, denoted asbound, among the generated values, stored insoln, for symbols not

appearing in excls (lines 3 in Algorithm 1, i.e., Algorithm 2). If the largest value is

too small (i.e., bound < 2), we directly return soln as the input values are already

small enough and there is no need to tune them further (lines 4-5 in Algorithm 1).

� Fix variables requiring no tuning (Algorithm 1). We �x the variables that do not

2Each symbolic symbol represents a variable marked in the tested program. In the chapter, we use the
term symbol and variable interchangeably

52

Algorithm 1 Two-stage Input Tuning
1: function tune (target; cstrs; excls; soln)
2: / � � � STEP 1 : optimize a group of variables� � � /
3: bound get largest(soln; excls)
4: if bound < 2then return soln . 1.1
5: end if
6: cstrs cstrs . 1.2
7: // �x the values of symbols in excls
8: for all s:key 2 excls do
9: // construct new constraint: s:key = s:value

10: c new cstr (" = " ; s:key; s:value)
11: cstrs cstrs [f cg
12: end for
13: opt bound optimize multi (cstrs; excls; . 1.3
14: soln; bound);
15: // set upper bounds . 1.4
16: for all s 2 soln AND s:key =2 excls do
17: c new cstr (" < = " ; s:key; opt bound)
18: cstrs cstrs [f cg
19: end for
20: / � � � STEP 2 : optimize a single variable� � � /
21: if target contains more than one variablethen . 2.1
22: return solve(cstrs)
23: end if
24: if opt bound < 2 then
25: return solve(cstrs)
26: end if
27: symb single symbolic symbol intarget
28: opt bound2 optimize single(cstrs; excls; . 2.2
29: opt soln; opt bound; symb)
30: if opt bound2 < opt bound then . 2.3
31: c new cstr (" < = " ; symb; opt bound2)
32: cstrs cstrs [f cg
33: end if
34: return solve(cstrs) . 2.4
35: end function

53

Algorithm 2 Retrieve the largest value in a solution
1: function get largest (soln; exls)
2: max � 1
3: for all s 2 soln do
4: // largest not in excls
5: if s:key =2 excls and s:value > max then
6: max s:value
7: end if
8: end for
9: return max

10: end function

Algorithm 3 Search for the lowest upper bound
1: function optimize multi (cstrs; excls; soln; bound)
2: / � � � optimize variables � � � /
3: lower 0, upper bound
4: prev upper upper
5: while lower + 1 < upper do
6: mid lower + (upper � lower)=2
7: cstrs ;
8: for all s 2 soln do
9: if s:key =2 excls then

10: // construct constraint: s:key � mid
11: c new cstr (" < = " ; s:key; mid)
12: cstrs cstrs [f cg
13: end if
14: end for
15: if cstrs is consistent with cstrs then
16: upper mid
17: else
18: lower mid
19: end if
20: end while
21: return upper
22: end function

54

need tuning, i.e., those appearing inexcls, to the generated values insoln to avoid

any value changes caused by the tuning (lines 6-12).

� Search the lowest upper bound (Algorithm3). We search for the smallest upper

bound for symbols/variables to be tuned using binary search in the range of (0; bound]

(lines 2-21). In the search, we construct new constraints via newcstr() that speci�es

tuned variables are no greater thanmid , where mid is the average of the lower and

upper bound (lines 6-14). Then we check if the new constraintscstrs are consistent

with old ones cstrs (line 15), and set the upper bound asmid if they are consistent

(line 16) and the lower bound asmid otherwise (line 18). The lowest bound is obtained

after the search is complete.

� Set upper bound (Algorithm 1). We set an upper bound for tuned variables via con-

structing new constraints specifying their values must be no larger than the detected

bound (lines 15-19).

Stage II. Stage II aims to optimize the value for the single variable within the restriction

of the upper bound detected in Stage I only if the variable is the single variable in the target

negated constraint. It consists of similar steps.

� Decide to tune or not (Algorithm 1). We check if the target negated constraint,

namely target, only contains single variable (lines 21-23) and if the detected bound

is already small enough (lines 24-26). If either is not satis�ed, we directly solve and

return; otherwise, we proceed to the next step.

� Search for the lowest upper bound (Algorithm 1). This is the same to the search

55

in Stage I except that it optimize only a single variable (lines 27-29).

� Update upper bound (Algorithm 1). If the new bound is smaller than the older

one, we update the upper bound for the single variable (lines 30-33).

� Generate optimized values (Algorithm 1). We solve the updated constraints, i.e.,

cstrs, to get the optimized values (line 34).

Additional setup. As no constraints are available prior to the �rst test, input generation

for the �rst test is not available. We need to assign input values. We make all the initial

values as the smallest positive integer for integer varaiables (i.e., 1). This setting makes not

only the �rst test as well as latter tests e�cient enough considering the value persistence

property of incremental constraint solving.

3.3.2 Applicability

Input tuning is e�ective for tuning input values for a variable when the following

conditions are satis�ed: (1) the variable is of integer type like char, int, and long; (2) the

larger the value of the variable is the longer the execution takes; and (3) eligible values

allowing the program performing its function must be positive. For example, for the square

matrix multiplication program the matrix width must be positive so as to perform valid ma-

trix multiplication. Below we detail how we deal with the cases when one of the conditions

is not satis�ed.

Floating-point variables do not satisfy condition (1). We do not perform input

tuning for oating-point variables as usually the values of integer variables, like matrix

56

width in the matrix multiplication program, determine the problem size. However, this

technique can be applied for oating-point variables as well.

There two types of variables that do not satisfy condition (2): Type-1 variables

whose values are unrelated to execution time and Type-2 variables for which increase in

value leads to shorter execution. We do not di�erentiate type-1 when applying the tuning

as tuning it does not have much side-e�ect other than the tuning cost. To deal with type-2,

we allow developers to mark variables that need to be excluded from the tuning process.

A variable representing the number of processes, i.e., the size of MPICOMM WORLD,

is a good example of Type-2. As aforementioned, the testing also generates input values

used for determining the number of processes: for the same workload the execution takes

more time when less processes are used to run the program. In this chapter, we only mark

variables representing the number of processes inexclusion, but application developers can

feel free to add more when needed.

We do not tune the variables violating condition (3) as for the majority of, if not

all, HPC applications only positive values are meaningful.

3.4 Floating Point Support

Enabling oating-point data types and operations in concolic testing requires

adapting three components of COMPI: instrumentation module, symbolic execution library,

and the constraints solving component.

Instrumentation module guides the insertion of symbolic execution code into the target

program. The instrumentation is performed at instruction level. For example, the instruc-

57

tion x = y + z needs to be inserted with four code sequences to achieve symbolic execution:

two for loading the symbolic expressions ofx and y, one for applying the add operation,

and one for storing the symbolic expression fory + z into x. The instrumentation module

of COMPI only instruments integer variables and operations. We adapted the module such

that it also instrument oating-point variables and operations.

Symbolic execution library de�nes all the instrumentation functions | the instru-

mented instructions discussed above are function calls to the functions of the library.

These functions manipulate symbolic expressions according to the original instructions.

In COMPI, all symbolic expressions only represent linear arithmetic operations as

E = C +
i = N � 1X

i =0

Ci � x i ;

whereE is a symbolic expression,C is a constant,x i denotes a symbolic symbol representing

one input-taking variable, Ci is the coe�cient of x i , and N is the number of symbolic symbols

in E . COMPI ensures linear constraints via replacing symbolic expressions with concrete

values as needed. For example, consider the multiplication of two symbolic expressions:

x � y with both x and y being symbolic expressions. To avoid non-linear operationx � y

being recorded, COMPI substitutes the symbolic expression ofy with the concrete value of

y like 2 such that the result expression is 2x which is still linear. As COMPI only targets

integers, it recordsC and Ci using 64-bit integers.

Our oating-point extension requires us to represent integer expressions in the

same way, but for a oating-point expression we recordC and Ci using double-precision

58

oating point values. Also, the extension also needs conversion between oating-point and

integer expressions. We convert a integer expression into a oating -point expression via

converting C and Ci from 64-bit integers to double precision oating point numbers. We

convert a oating-point expression into an integer expression via converting the concrete

value of the oating-point expression into an 64-bit integer, i.e., after the conversion the

integer expression is a concrete value instead of symbolic expression. In addition, we provide

the marking functions for developers to mark variables of data typeoat and double as

symbolic such that these variables can also be involved in the symbolic execution.

Constraints solving component solves constraints to generate new inputs that are

used in the next test run and this process is used repeatedly during iterative testing. For

incremental solving, this component �nds all constraints depending on the target negated

constraint, and uses Yices-1.0 [33], an SMT solver, to solve the dependent constraints. In

COMPI, the component is only able to solve integer constraints.

As SMT solvers likeZ 3 [50] has begun to support oating-point reasoning, concolic

testing is also able to solve constraints with oating-point arithmetic based on the oating-

point reasoning of Z3. However, the oating-point reasoning is known for its high cost

| the cost of solving oating-point constraints is hundreds of times the cost of solving

integer constraints [129]. Therefore, instead we propose simulating oating-point arithmetic

using real arithmetic that is far less expensive. To compare the e�ciency between solving

using reals and using oating-point values, we created two versions of COMPI: one solves

constraints using oating-point reasoning of Z3, and the other solves constraints using real

arithmetic of Z3. We use the two versions of the tool to test a simple synthetic program

59

Expression! x x + y x + y + z

Float ! 31.4 75.0 91.2
Real ! 8.2 8.1 8.2

Table 3.1: Time cost (unit: seconds) of oating-point constraint solving using reals and
oating-point values based 100 iterative tests of a simple synthetic program.

with 3 if statements below:

i f (expr == 0) . . .

i f (expr < 0) . . .

i f (expr <= 0) . . .

where expr stands for an C oating-point expression. In the testing, the program can

generates 6 constraints includingexpr = 0, expr 6= 0, expr < 0, expr � 0, expr � 0, and

expr > 0 such that all the relational operators are covered.

Based on 100 iterative tests, we measured the time cost of constraints solving using

reals and using oating-point values based on three expressions:x, x + y, x + y + z (the

data type of x, y and z are all oat). Table 3.1 shows that the solving time using oating

point values is 3.8� to 11.1� times the solving time using reals. Also the solving time using

oating point value grows as the number of variables in the expression grows, while the

solving time using reals stays almost the same. Hence, we believe the e�ciency of solving

oating point constraints using reals makes it a better �t for practical testing.

3.5 Evaluation

We evaluate input tuning and oating point extension of concolic testing based on

three non-trivial MPI applications.

60

Hardware and Tool setup. The evaluation is performed on a computer equipped with

two Intel E5607 CPUs with total of 8 cores and 32 GB memory. In the evaluation, COMPI

tool uses Z3 instead of Yices-1.0 as its constraint solver due to the oating point extension.

By default, the tool runs the target program with 8 processes with the focus being rank

0 in the �rst test. Additionally, the number of processes is restricted to no more than 16

during dynamic variation as without it the computer can crash when running with too many

processes. Our tool sets all input values to 1 for the �rst test run for both input tuning and

input capping techniques for fair comparison. The decision on which constraint to negate

is made by the search strategy | COMPI uses is BoundedDFS. BoundedDFS explores the

execution tree using a variation of depth-�rst search (DFS) strategy which skips constraints

as well as branches that are deeper than aspeci�ed depth boundin the execution tree. The

depth bound is selected to ensure that COMPI has the ability to explore the entire execution

tree. The testing process using BoundedDFS (1) appliesx tests without setting a bound

�rst so that the maximal number of constraints M can be observed and (2) performs the

testing with a selected boundB , which is obtained via rounding up M to the next hundred.

In the default setting, we perform 100 tests to detect the bound, i.e.,x = 100.

Evaluation goals and applications. Our evaluation aims to show that input tuning is

more e�ective than input capping, i.e., it achieves higher coverage at lower testing cost. We

use HPL [9], IMB-MPI1 [10], and SUSY-HMC [111] to evaluate input tuning as they all have

integer inputs. For oating-point support, we aim to show that testing with oating-point

extension achieves higher coverage than without it and solving oating-point constraints

using real values saves testing time without sacri�cing branch coverage. This evaluation

61

uses only SUSY-HMC as it has multiple oating-point inputs while HPL has only one and

IMB-MPI1 has none.

3.5.1 HPL

HPL [9] is a high-performance Linpack benchmark for distributed memory com-

puters. It solves a dense linear system using LU factorization. Many of the algorithm

features can be exploited by con�guring the abundant parameters it provides. To enable

concolic testing, we need to mark variables for which the testing tool is to generate input

values. HPL read inputs from a designated �le, marking variables requires us to insert the

marking lines as well as commenting out the reading from the �le. For HPL we mark 23

integer variables (the variable can also be an array) by inserting 23 lines of code as well as

commenting out the same amount of lines. The depth bound forBoundedDFS is 500 based

on the observations in the �rst 100 tests.

We compare input tuning with four input capping settings as well as the case

where neither input tuning or input capping is used (called None). In the input capping

evaluations, we set the same cap (or upper bound limit), denoted asc, for all variables,

and use three caps:c = 2, c = 4, and c = 8. We also evaluate c = 8 without the timeout

mechanism | the tool by default uses timeout to identify excessively long executions such

as those caused by in�nite loops | to avoid the interference from timeout as many large

input values cause the execution to timeout whenc = 8. We allow each of the above

con�gurations to test for one hour.

Figure 3.5 shows that usinginput tuning, the testing covers 1865 branches, which

62

Figure 3.5: Branch coverage progress over one-hour of testing of HPL usinginput tuning,
input capping, and None of them: a point (x, y) in each plot indicates that it takes x
seconds to attain the maximum branch coverage ofy.

is only 1 less the highest coverage. Using input capping withc = 2, the testing achieves

the highest coverage but the time cost to achieve such coverage is almost 1 hour while the

time cost of covering 1865 branches using input tuning is less than 10 minutes. This is

because, forc = 2 the values of all variables must be smaller than 2, and thus very often the

constraints have no solution. Using capping withc = 4, the testing coverage is 17 branches

fewer than when usinginput tuning. Using capping with c = 8 in the default setting, 321

63

Metric # T C2 C4 C8 C8 NT N

Cost (1860) 539 3563 { { { {

tests 390 1717 231 63 32 215

Table 3.2: Comparison amongT uning, Capping (C2, C4, C8, and C8 usingN o T imeout),
and N one based on HPL with two metrics: the time costs of covering 1860 branches and
the number of tests completed in one hour.

branches fail to be covered as larger upper bound permits larger values and larger values

make the execution unnecessarily long such that many executions are killed by the timeout

mechanism. Using capping withc = 8 without the timeout scheme, the coverage obtained

is even less due to the same reason | too large values can cause one program execution to

take tens of minutes (the program execution that started after 768 seconds did not �nish

till �nally 1 hour expired). The None con�guration that directly uses the values generated

by the solver (i.e., neither tuning nor capping is used) delivers coverage of 1840 branches

after running for over 30 minutes. This is not only worse coverage thaninput tuning but

also at a much higher execution time cost (10 minutes vs. 30 minutes).

Table 3.2 demonstrates the high e�ciency of testing using input tuning. The

time it takes to cover 1860 branches usinginput tuning is 539 seconds which is only 15.1%

cost of using capping with c = 2. In all other con�gurations the coverages and time

costs are signi�cantly worse. This high e�ciency is the result of input tuning preferring

smaller values and only using larger values when necessary. Thus, input tuning ensures

testing makes progress at a good pace. Table 3.2 also shows the e�cient testing usinginput

tuning executed 390 tests in one hour. All other con�gurations, except input capping with

c = 2, perform fewer tests in one hour because unnecessarily long executions are involved.

Although input capping with c = 2 executes many more test cases with short runs, it still

64

takes about one hour to deliver nearly the same coverage because frequently constraints

have no solution. In other words,input tuning choses neither too small nor too large inputs

and as a result execution runs are just long enough to keep delivering solvable constraints

and thus higher and higher coverage.

3.5.2 IMB-MPI1

IMB-MPI1 [10] is a major component of Intel MPI Benchmarks (IMB) and is

used for benchmarking MPI-1 functions. It reads inputs by parsing the command line. We

mark 14 integer variables by commenting out the whole code block that parses command

line and inserting 30 lines with about half of them being the marking lines and the others

being sanity checks on the inputs. The depth bound forBoundedDFS is 200 based on the

observation in the �rst 100 tests. We compare input tuning with input capping as well as

the case where neither tuning nor capping is used. In theinput capping evaluation, we set

the same cap for all variables, and use three con�gurations:c = 2, c = 4, c = 8. We also

evaluate c = 8 without using timeout. Once again we perform testing for one-hour testing

in each con�guration.

Figure 3.6 shows usinginput tuning, we cover the most branches, i.e., 766 branches.

Using capping with c = 2, we cover about 700 branches as the cap limit is too small. When

we use bigger cap limits likec = 4 and c = 8 in the default setting, the coverage is over

30 branches less than the coverage based on input tuning. Using capping whenc = 8

without timeout scheme, the coverage does not improve since without timeout expensive

tests costing several minutes are used and thus one hour is not enough to explore the

65

