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ABSTRACT OF THE DISSERTATION

Extracting Actionable Information From Bug Reports

by

Bo Zhou

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2016

Dr. Rajiv Gupta, Chairperson

Finding and fixing bugs is a major but time- and effort-consuming task for software

quality assurance in software development process. When a bug is filed, valuable multi-

dimensional information is captured by the bug report and stored in the bug tracking

system. However, developers and researchers have so far used only part of this information

(e.g., a detailed description of a failure and occasionally hint at the location of the fault in

the code), and for limited purposes, e.g., finding and fixing bugs, detecting duplicate bug

reports, or improving bug triagging accuracy. We contend that this information is useful

not only for software testing and debugging but also for product understanding, software

evolution, and software management. This dissertation makes several advances in extracting

actionable information from bug reports using data mining and nature language processing

techniques. Both software developers and researchers can benefit from our approach.

We first focus on differences in bugs and bug-fixing processes between desktop and

smartphone applications. Specifically, our investigation has two main thrusts: a quantita-

tive analysis to discover similarities and differences between desktop and smartphone bug
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reports/processes, and a qualitative analysis where we extract topics from bug reports to

understand bugs’ nature, categories, as well as differences between platforms.

Next, we present an approach whose focus is understanding the differences between

concurrency and non-concurrency bugs, the differences among various concurrency bug

classes, and predicting bug quantity, type, and location, from patches, bug reports and

bug-fix metrics.

In addition, we found that bugs of different severities have so far been “lumped

together” even though their characteristics differ significantly. Moreover, we found that

the nature of issues with the same severity, (e.g., high-severity), differs markedly between

desktops and smartphones. To understand these differences, we perform an empirical study

on 72 Android and desktop projects. We study how severity changes, quantify the differences

between classes in terms of bug-fixing attributes and analyze how the topics differ across

classes on each platform over time.

Finally, we aid bug reproduction and fixing: we propose a novel delta debugging

technique to reduce the length of event traces by using a record&replay scheme. When

we capture the event sequence while executing the application, an event dependency graph

(EDG) will be generated. Then we use the EDG to guide the delta debugging algorithm

by eliminating irrelevant events. Therefore, the debugging process can be improved signifi-

cantly if events that are irrelevant to the crash are filtered out.
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Chapter 1

Introduction

1.1 Motivation

In less than a century the software market has grown from being non-existent,

into an almost trillion-dollar industry. The total software and software services revenue for

the Top-500 Software companies alone totalled $748.7 billion in 2015, up 4.3 percent from

2014’s $717.7 billion [132]. Today, software powers almost all devices, from pacemakers to

personal computers, smartphones and tablets, that we have come to rely on so heavily in our

daily lives. In the future even more devices and appliances, such as household appliances,

watches, cars, and even glasses, will become “smart” devices powered by software, hence

the software market will only continue to expand and evolve.

Software companies are very keen on maintaining the quality of their software

products since these products are key. Due to the fallibility of developers and the complex-

ity of maintaining software, bugs invariably creep into these products. Software bug is the

common term used to describe an error, flaw, failure or fault in a computer program or sys-
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tem that causes it to produce an incorrect or unexpected result, or to behave in unintended

ways. Finding and fixing bugs is a major but time- and effort-consuming task for software

quality assurance in software development process.

A key collaborative hub for many software projects is a database of reports de-

scribing both bugs that need to be fixed and new features to be added [35]. This database

is often called a bug tracking system or bug repository. The use of a bug tracking system can

improve the development process by allowing users to inform developers of the problems

encountered while using that software.

Bug reports usually contain valuable information that could be used to improve

the quality of the product (e.g., a detailed description of a failure and occasionally hint

at the location of the fault in the code). One of the challenges is that most of the work

that uses bug reports is focused on improving bug report quality (e.g., finding duplicate

bug reports) and use bug reports to guide maintenance process (e.g., improve bug triaging

accuracy). But there has been only limited use of bug reports in software evolution, software

management and software debugging.

1.2 Dissertation Overview

This dissertation presents a study of several applications of software bug reports in

many new aspects in software engineering which include using bug reports to facilitate bug

understanding, software management, and software debugging process. Figure 1.1 gives the

framework overview of this dissertation – we elaborate on the framework in later chapters.
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Figure 1.1: Framework overview.

1.2.1 Cross-platform Analysis

Smartphones and the applications (“apps”) running on them continue to grow in

popularity [126] and revenue [81]. This increase is shifting client-side software development

and use, away from traditional desktop programs and towards smartphone apps [65,74].

Smartphone apps are different from desktop programs on a number of levels: nov-

elty of the platform (the leading platforms, Android and iOS, have become available in 2007),

construction (sensor-, gesture-, and event-driven [50]), concerns (security and privacy due

to access to sensitive data), and constraints (low memory and power consumption).

Empirical bugs and bug-fixing studies so far have mostly focused on traditional

software; few efforts [21, 99] have investigated the differences between desktop and smart-

phone software. Therefore, in this dissertation we analyzed the similarities and differences
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in bug reports and bug-fixing processes between desktop and smartphone platforms. Our

study covers 88 projects (34 on desktop, 38 on Android, 16 on iOS) encompassing 444,129

bug reports. We analyzed bugs in a time span beginning in 1998 for desktop and 2007 for

Android/iOS, and ending at the end of December 2013.

In particular, we studied the bug-fix process features, bug nature and the re-

porter/fixer relationship to understand how bugs, as well as bug-fixing processes, differ

between desktop and smartphone. We shed light on how bug characteristics vary across

platforms and then use this information to help developers to improve product quality.

1.2.2 Empirical Study on Concurrency Bugs

Concurrent programming is challenging, and concurrency bugs are particularly

hard to diagnose and fix for several reasons, e.g., thread interleavings and shared data

complicate reasoning about program state [95], and bugs are difficult to reproduce due to

non-determinism and platform-specific behavior. As a result, we show that fixing concur-

rency bugs takes longer, requires more developers, and involves more patches, compared to

fixing non-concurrency bugs.

Many recent efforts have focused on concurrency bugs, with various goals. On one

side, there are empirical studies about the characteristics and effects of concurrency bugs [46,

93, 138], but they do not offer a way to predict bug quantity, type and location. On the

other side, static [39] or dynamic analyses [94] aim to detect particular types of concurrency

bugs. Such analyses help with precise identification of bugs in the current source code

version, but their focus is different—finding specific types of bugs in the current version,

rather than using evolution data to predict the future number, kind, and location of bugs;
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in addition, program analysis is subject to scalability constraints which are particularly

acute in large projects. While other prior efforts have introduced models for predicting bug

quantity [78, 116] and bug location [107, 122] without regard to a specific bug category, we

are specifically interested in isolating concurrency bugs and reporting prediction strategies

that work well for them. Hence in this dissertation we study the nature of concurrency

bugs, how they differ from non-concurrency bugs, and how to effectively predict them; we

use statistics and machine learning as our main tools.

Our study analyzes the source code evolution and bug repositories of three large,

popular open-source projects: Mozilla, KDE and Apache. Each project has had a history of

more than 10 years, and their size has varied from 110 KLOC to 14,330 KLOC. Such projects

benefit from our approach for several reasons: (1) large code bases pose scalability, coverage

and reproducibility problems to static and dynamic analyses; (2) large collaborative projects

where bug reporters differ from bug fixers benefit from predictors that help fixers narrow

down the likely cause and location of a bug reported by someone else; (3) a quantitative

predictor for estimating the incidence of concurrency bugs in next releases can help with

release planning and resource allocation.

1.2.3 Bug Analysis on Severity Classes

Bug tracking systems such as Bugzilla, Trac, or Jira are widely popular in large-

scale collaborative software development. Such systems are instrumental as they provide

a structured platform for interaction between bug reporters and bug fixers, and permit

reporting, tracking the progress, collaborating on, and ultimately fixing or addressing the

reported bugs (issues).
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A key attribute of each bug report on these systems is bug severity—an indicator

of the bug’s potential impact on users. While different bug tracking systems use different

severity scales, we found that bugs can be assigned into one of three severity classes: high

severity bugs represent issues that are genuine show-stoppers, e.g., crashes, data corruption,

privacy leaks; medium severity bugs refer to issues such as application logic issues or occa-

sional crashes; and low severity bugs usually refer to nuisances or requests for improvement.

Severity is important for effort planning and resource allocation during the bug-

fixing process; we illustrate this with several examples. First, while our intuition says that

bugs with different severity levels need to be treated differently, for planning purposes we

need to know how bug severity influences bug characteristics, e.g., fix time or developer

workload. Second, assigning the wrong severity to a bug will lead to resource mis-allocation

and wasting time and effort; a project where bugs are routinely assigned the wrong severity

level might have a flawed bug triaging process. Third, if high-severity bugs tend to have a

common cause, e.g., concurrency, that suggests more time and effort needs to be allocated

to preventing those specific issues (in this case concurrency). Hence understanding bug

severity can make development and maintenance more efficient.

To this end, we have performed a thorough study of severity in a large corpus

of bugs on two platforms, desktop and Android. Most of the prior work on bug severity

has focused on severity prediction [83, 84, 105, 141]; there has been no research on how

severity is assigned and how it changes, on how bugs of different severities differ in terms

of characteristics (e.g., in fix time, developer activity, and developer profiles), and on the

topics associated with different classes of severity. Therefore, to the best of our knowledge,
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we are the first to investigate differences in bug characteristics based on different severity

classes across multiple platforms.

1.2.4 Delta Debugging on Android

When a new bug report is filed into the bug tracking system, a developer must

debug it in order to fix the problem. Debugging usually consists of two steps. The first

step is reproducing the failure. Reproducing is important because without reproducing the

bug, the developer will have trouble diagnosing and verifying the problem to figure out

the correct fixing strategy. The second step is finding the root cause of the bug. For this

purpose, the developer must track the cause-back chain which leads to the failure location

and identifies the root cause.

To reproduce a particular bug, developers need information about reproduction

steps, i.e., the sequence of program statement, system events or user steps to trigger the

bug, and information about the failure environment, i.e., the setting in which the bug

occurs [156]. Developers can obtain reproduction steps and failure environment information

mainly in two ways: bug report and collection of field data. Bug reports submitted by users

often do not contain reproduction steps or the information provided by users are wrong

or incomplete [85, 167]. Alternatively, developers can execute the application and collect

field data, i.e., data about the runtime behavior and runtime environment of deployed

programs [115]. Such approaches usually generate enormous amounts of tracing data which

not only makes debugging process difficulty but also risky, as the developer cannot predict

when a particular bug will be found. Therefore, simplification of the bug-revealing trace is

an important and essential step towards the debugging.
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Minimizing Delta Debugging (DD) has been introduced as an effective and efficient

procedure for simplification of the failing test-case by performing at most polynomial (of the

second order) number of tests [157, 159]. DD is an extremely useful algorithm and widely

used in practice. Unfortunately, we cannot directly apply the traditional DD algorithm

on Android platform applications since Android applications are event-based. We cannot

reduce the size of input event sequence without considering the dependency between events.

We present an approach to collect field data automatically and extract reproduc-

tion steps from captured data by using a record & replay scheme. We capture the event

sequence while executing the application and generate an event dependency graph (EDG).

Then we use the EDG to guide the DD algorithm by eliminating irrelevant events.

1.3 Thesis Organization

The remainder of the dissertation is organized as follows. Chapter 2 describes the

framework and general process. In Chapter 3, we present the results of a cross-platform

study between desktop, Android and iOS bugs. In Chapter 4, we analyze concurrency

bugs and introduce three prediction models on bug number, bug type, and bug location,

respectively. In Chapter 5, we compare bug characteristics between different bug severity

classes. Chapter 6 presents the event-based delta debugging algorithm on Android to reduce

the reproduction steps. Chapter 7 describes related work. Finally, Chapter 8 summarizes

the contributions of this dissertation and identifies directions for future work.
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Chapter 2

Framework Overview

In this chapter we describe the data extraction process and our empirical study

framework. Figure 1.1 shows the process of our study. We first collect a large number of

bug reports from multiple platforms and extract useful features. Then we use these features

to build quantitative analyses, qualitative analyses, and prediction models.

2.1 Applications

We chose 88 open source projects for our study, spread across three platforms: 34

desktop projects, 38 Android projects, and 16 iOS projects. We used several criteria for

choosing these projects and reducing confounding factors. First, the projects we selected

had large user bases, e.g., on desktop we chose1 Firefox, Eclipse, Apache, KDE, Linux kernel,

WordPress, etc.; on Android, we chose Firefox for Android, Chrome for Android, Android platform,

K-9 Mail, WordPress for Android; on iOS we chose Chrome for iOS, VLC for iOS, WordPress for iOS,

1Many of the desktop projects we chose have previously been used in empirical studies [17,48,59,82,153,
167].
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etc. Second, we chose projects that are popular, as indicated by the number of downloads

and ratings on app marketplaces. For the Android projects, the mean number of downloads,

per Google Play, was 1 million, while the mean number of user ratings was 7,807. For the

iOS projects, the mean number of ratings on Apple’s App Store was 3,596; the store does

not provide the number of downloads. Third, we chose projects that have had a relatively

long evolution history (“relatively long” because the Android and iOS platforms emerged in

2007). Fourth, to reduce selection bias, we choose projects from a wide range of categories—

browsers, media players, utilities, infrastructure.

Tables 2.1–2.3 show all the projects we use for our study. For each platform, we

show the project’s name, the number of fixed bugs, the lifespan of the project (counted in

years) and the chapter number of the project used in the dissertation.

All the projects in our study offer public access to their bug tracking systems. The

projects used various bug trackers: desktop projects tend to use Bugzilla, Trac, or JIRA,

while smartphone projects use mostly Google Code, though some use Bugzilla or Trac. We

used Scrapy,2 an open source web scraping tool, to crawl and extract bug report features

from bug reports located in each bug tracking system.

For bug repositories based on Bugzilla, Trac, and JIRA, we only considered bugs

with resolution RESOLVED or FIXED, and status CLOSED, as these are confirmed bugs; we

did not consider bugs with other statuses, e.g., UNCONFIRMED and other resolutions, e.g.,

WONTFIX, INVALID. For Google Code repositories, we selected bug reports with type defect

and status fixed, done, released, or verified.

2http://scrapy.org
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Desktop

Project Bugs Time span Used Chapter
Reported Fixed

Mozilla Core 247,376 101,647 2/98-12/13 3, 4, 5

OpenOffice 124,373 48,067 10/00-12/13 3, 5

Gnome Core 160,825 42,867 10/01-12/13 3, 5

Eclipse platform 100,559 42,401 2/99-12/13 3, 5

Eclipse JDT 50,370 22,775 10/01-12/13 3, 5

Firefox 132,917 19,312 4/98-12/13 3, 4, 5

SeaMonkey 91,656 18,831 4/01-12/13 3, 5

Konqueror 38,156 15,990 4/00-12/13 3, 4, 5

Eclipse CDT 17,646 10,168 1/02-12/13 3, 5

WordPress 26,632 9,995 6/04-12/13 3, 5

KMail 21,636 8,324 11/02-12/13 3, 4, 5

Linux Kernel 22,671 7,535 3/99-12/13 3, 5

Thunder-bird 39,323 5,684 4/00-12/13 3, 5

Amarok 18,212 5,400 11/03-12/13 3, 4, 5

Plasma Desktop 22,187 5,294 7/02-12/13 3, 4, 5

Mylyn 8,461 5,050 10/05-12/13 3, 5

Spring 15,300 4,937 8/00-12/13 3, 5

Tomcat 11,332 4,826 11/03-12/13 3, 5

MantisBT 11,484 4,141 2/01-12/13 3, 5

Hadoop 11,444 4,077 10/05-12/13 3, 5

VLC 9,674 3,892 5/05-12/13 3, 5

Kdevelop 7,824 3,572 8/99-12/13 3, 4, 5

Kate 7,058 3,326 1/00-12/13 3, 4, 5

Lucene 5,327 3,035 4/02-12/13 3, 5

Kopete 9,824 2,957 10/01-9/13 3, 4, 5

Hibernate 8,366 2,737 10/00-12/13 3, 5

Ant 5,848 2,612 4/03-12/13 3, 5

Apache Cassandra 3,609 2,463 8/04-12/13 3, 5

digikam 6,107 2,400 3/02-12/13 3, 4, 5

Apache httpd 7,666 2,334 2/03-10/13 3, 4, 5

Dolphin 7,097 2,161 6/02-12/13 3, 4, 5

K3b 4,009 1,380 4/04-11/13 3, 4, 5

Apache Maven 2,586 1,332 10/01-12/13 3, 5

Portable OpenSSH 2,206 1,061 3/09-12/13 3, 5

Total 1,259,758 422,583

Table 2.1: Overview of examined projects for desktop.
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Android

Project Bugs Time span Used Chapter
Reported Fixed

Android Platform 64,158 3,497 11/07-12/13 3, 5

Firefox for Android 11,998 4,489 9/08-12/13 3, 5

K-9 Mail 6,079 1,200 6/10-12/13 3, 5

Chrome for Android 3,787 1,601 10/08-12/13 3, 5

OsmAnd Maps 2,253 1,018 1/12-12/13 3, 5

AnkiDroid Flashcards 1,940 746 7/09-12/13 3, 5

CSipSimple 2,584 604 4/10-12/13 3, 5

My Tracks 1,433 525 5/10-12/13 3, 5

Cyanogen-Mod 788 432 9/10-1/13 3, 5

Andro-minion 623 346 9/11-11/13 3, 5

WordPress for Android 532 317 9/09-9/13 3, 5

Sipdroid 1,149 300 4/09-4/13 3, 5

AnySoft-Keyboard 1,144 229 5/09-5/12 3, 5

libphone-number 389 219 11/07-12/13 3, 5

ZXing 1,696 218 5/09-12/12 3, 5

SL4A 701 204 10/09-5/12 3, 5

WebSMS-Droid 815 197 7/10-12/13 3, 5

OpenIntents 553 188 12/07-6/12 3, 5

IMSDroid 502 183 6/10-3/13 3, 5

Wikimedia Mobile 261 166 1/09-9/12 3, 5

OSMdroid 494 166 2/09-12/13 3, 5

WebKit 225 157 11/09-3/13 3, 5

XBMC Remote 729 129 9/09-11/11 3, 5

Mapsforge 466 127 2/09-12/13 3, 5

libgdx 384 126 5/10-12/13 3, 5

WiFi Tether 1,938 125 11/09-7/13 3, 5

Call Meter NG/3G 904 116 2/10-11/13 3, 5

GAOSP 529 114 2/09-5/11 3, 5

Open GPS Tracker 391 114 7/11-9/12 3, 5

CM7 Atrix 337 103 3/11-5/12 3, 5

Transdroid 481 103 4/09-10/13 3, 5

MiniCM 759 101 4/10-5/12 3, 5

Connectbot 676 87 4/08-6/12 3, 5

Synodroid 214 86 4/10-1/13 3, 5

Shuffle 325 77 10/08-7/12 3, 5

Eyes-Free 322 69 6/09-12/13 3, 5

Omnidroid 184 61 10/09-8/10 3, 5

VLC for Android 151 39 5/12-12/13 3, 5

Total 112,894 18,579

Table 2.2: Overview of examined projects for Android.
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iOS

Project Bugs Time span Used Chapter
Reported Fixed

WordPress for iPhone 1,647 892 7/08-9/13 3

Cocos2d for iPhone 1,506 628 7/08-5/13 3

Core Plot 614 218 2/09-12/13 3

Siphon 586 162 4/08-11/11 3

Colloquy 542 149 12/08-12/13 3

Chrome for iOS 365 129 6/09-12/13 3

tweetero 142 109 8/09-6/10 3

BTstack 360 106 2/08-12/13 3

Mobile Terminal 311 82 8/07-3/12 3

MyTime 247 101 7/11-11/13 3

VLC for iOS 188 80 8/07-12/13 3

Frotz 214 78 9/10-9/12 3

iDoubs 164 74 9/07-7/13 3

Vnsea 173 58 4/08-10/10 3

Meta-syntactic 145 50 7/08-4/12 3

Tomes 148 51 8/07-5/08 3

Total 7,352 2,967

Table 2.3: Overview of examined projects for iOS.

2.2 Collecting Data From Bug Reports

Bug report repositories archive all bug reports and feature enhancement requests

for a project. Each bug report includes pre-defined fields, free-form text, attachments and

dependencies. In Figures 2.1-2.4 we show parts of a sample bug report from Mozilla and

the activity related to it. We collect the following data from bug reports:

1. BugID: the id of the bug report.

2. FixTime: the time required to fix the bug, in days, computed from the day the bug

was reported to the day the bug was closed.
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Figure 2.1: Bug report header information (sample bug ID 95243 in Mozilla).

Figure 2.2: Bug description (sample bug ID 95243 in Mozilla).
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Figure 2.3: Comments for a bug report (sample bug ID 95243 in Mozilla).

3. Severity: an indicator of the bug’s potential impact on customers. When a bug is

reported, the administrators first review it and then assign it a severity rank based

on how severely it affects the program. Since severity levels differ among trackers, we

mapped severity from different trackers to a uniform 10-point scale. Table 2.4 shows

the levels of bug severity and their ranks.

4. Priority: a bug’s priority rates the urgency and importance of fixing the bug, relative

to the stated project goals and priorities. It is set by the maintainers or developers
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Figure 2.4: Bug activity (sample bug ID 142918 in Mozilla).

who plan to work on the bug; there are 5 levels of priority, with P1 the highest and

P5 the lowest.3

3We use the priority definition from Bugzilla: http://wiki.eclipse.org/WTP/Conventions_of_bug_

priority_and_severity.
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Bug Severity Description Score

Blocker Blocks development testing work 10

Critical Crashes, loss of data, severe memory leak 9

Major/Crash/High Major loss of function 8

Normal/Medium Regular issue, some loss of functionality 6

Minor/Low/Small Minor loss of function 5

Trivial/Tweak Cosmetic problem 2

Enhancement Request for enhancement 1

Table 2.4: Bug severity: descriptions and ranks.

5. BugReporter: the ID of the contributor who reported the bug.

6. BugOwner: the ID of the contributor who eventually fixed the bug.

7. DevExperience: the experience of developer X in year Y, defined as the difference, in

days, between the date of the X’s last contribution in year Y and X’s first contribution

ever.

8. BugTitle: the text content of the bug report title.

9. BugDescription: the text content of the bug summary/description.

10. DescriptionLength: the number of words in the bug summary/description.

11. BugComment: the text content of the comments in the bug report.

12. TotalComments: the number of comments in the bug report.

13. CommentLength: the number of words in all the comments attached to the bug report.
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2.3 Quantitative Analysis

To find quantitative differences in bug-fixing processes we performed an analysis

on various features (attributes) of the bug-fixing process, e.g., fix time, severity, comment

length defined in the previous section. We employed three statistical tests in our analysis:

Pairwise comparison test. To check whether feature values differ between different

groups, we conducted pairwise comparisons using the Wilcoxon-Mann-Whitney test (which

is also known as Mann Whitney U test or Wilcoxon rank-sum test).

Trend test. To test whether a feature increases/decreases over time, we build

a linear regression model where the independent variable is the time and the dependent

variable is the feature value for each project. We consider that the trend is increasing

(or decreasing, respectively) if the slope β of the regression model is positive (or negative,

respectively) and p < 0.05.

Non-zero test. To test whether a set of values differs significantly from 0, we

perform a one-sample t-test where the specified value was 0; if p < 0.05, we consider that

the samples differ from 0 significantly.

All statistical tests in our work are implemented by the statistical package R [121].

2.4 Topic Modeling

For the other thrust of our study, we used a qualitative analysis to understand

the nature of the bugs by extracting topics from bug reports. Topic models are a suite of

algorithms that uncover the hidden thematic structure in document collections [24]. Topic

models provide a simple way to analyze large volumes of unlabeled text. A “topic” consists
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of a cluster of words that frequently occur together. Using contextual clues, topic models can

connect words with similar meanings and distinguish between uses of words with multiple

meanings. These algorithms help us develop new ways to search, browse and summarize

large archives of texts.

We used the bug title, bug description and comments for topic extraction. We

applied several standard text retrieval and processing techniques for making text corpora

amenable to text analyses [140] before applying Latent Dirichlet allocation (LDA) algo-

rithm: stemming, stop-word removal, non-alphabetic word removal, programming language

keyword removal. For example, we removed all the special characters (e.g., “&&”,“->”);

identifier names were split into multiple parts (e.g., “fooBar”,“foo bar”); programming lan-

guage keywords (e.g., “while”,“if”) and English keywords (e.g., “a”, “the”) were removed.

Finally we stemmed each word. We then used MALLET [103] for topic training.
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Chapter 3

A Cross-platform Analysis of Bugs

As smartphones continue to increase in popularity, understanding how software

processes associated with the smartphone platform differ from the traditional desktop plat-

form is critical for improving user experience and facilitating software development and

maintenance. Empirical bugs and bug-fixing studies so far have mostly focused on tradi-

tional software; few efforts [21, 99] have investigated the differences between desktop and

smartphone software. Therefore, in this chapter we analyzed the similarities and differences

in bug reports and bug-fixing processes between desktop and smartphone platforms. Our

study covers 88 projects (34 on desktop, 38 on Android, 16 on iOS) encompassing 444,129

bug reports. We analyzed bugs in a time span beginning in 1998 for desktop and 2007

for Android/iOS, and ending at the end of December 2013 (Section 3.1.1 shows projects

details).

In particular, we studied the bug-fix process features, bug nature, and the re-

porter/fixer relationship to understand how bugs, as well as bug-fixing processes, differ
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between desktop and smartphone. The study has two thrusts. First, a quantitative thrust

(Section 3.2) where we compare the three platforms in terms of attributes associated with

bug reports and the bug-fixing process, how developer profiles differ between desktop and

smartphone, etc. Second, a qualitative thrust (Section 3.3) where we apply LDA to extract

topics from bug reports on each platform and gain insights into the nature of bugs, how bug

categories differ from desktop to smartphone, and how these categories change over time.

Our study, findings, and recommendations are potentially useful to smartphone researchers

and practitioners.

3.1 Methodology

We first provide an overview of the examined projects, and then describe how we

extracted bug features and topics.

3.1.1 Examined Projects

We choose all the projects mentioned in Chapter 2.1 for our study. Tables 3.1–3.3

show a summary of the projects we examined. For each platform, we show the project’s

name, the number of reported bugs, the number of closed and fixed bugs, the FixRate (i.e.,

the percentage of fixed bugs in the total number of reported bugs), and finally, the dates of

the first and last bugs we considered.
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Desktop

Project Bugs Time span
Reported Fixed (FixRate)

Mozilla Core 247,376 101,647 (41.09%) 2/98-12/13

OpenOffice 124,373 48,067 (38.65%) 10/00-12/13

Gnome Core 160,825 42,867 (26.65%) 10/01-12/13

Eclipse platform 100,559 42,401 (42.17%) 2/99-12/13

Eclipse JDT 50,370 22,775 (45.22%) 10/01-12/13

Firefox 132,917 19,312 (14.53%) 4/98-12/13

SeaMonkey 91,656 18,831 (20.55%) 4/01-12/13

Konqueror 38,156 15,990 (41.91%) 4/00-12/13

Eclipse CDT 17,646 10,168 (57.62%) 1/02-12/13

WordPress 26,632 9,995 (37.53%) 6/04-12/13

KMail 21,636 8,324 (38.47%) 11/02-12/13

Linux Kernel 22,671 7,535 (33.24%) 3/99-12/13

Thunder-bird 39,323 5,684 (14.45%) 4/00-12/13

Amarok 18,212 5,400 (29.65%) 11/03-12/13

Plasma Desktop 22,187 5,294 (23.86%) 7/02-12/13

Mylyn 8,461 5,050 (59.69%) 10/05-12/13

Spring 15,300 4,937 (32.27%) 8/00-12/13

Tomcat 11,332 4,826 (42.59%) 11/03-12/13

MantisBT 11,484 4,141 (36.06%) 2/01-12/13

Hadoop 11,444 4,077 (35.63%) 10/05-12/13

VLC 9,674 3,892 (40.24%) 5/05-12/13

Kdevelop 7,824 3,572 (45.65%) 8/99-12/13

Kate 7,058 3,326 (47.12%) 1/00-12/13

Lucene 5,327 3,035 (56.97%) 4/02-12/13

Kopete 9,824 2,957 (30.10%) 10/01-9/13

Hibernate 8,366 2,737 (32.72%) 10/00-12/13

Ant 5,848 2,612 (44.66%) 4/03-12/13

Apache Cassandra 3,609 2,463 (68.25%) 8/04-12/13

digikam 6,107 2,400 (39.30%) 3/02-12/13

Apache httpd 7,666 2,334 (30.45%) 2/03-10/13

Dolphin 7,097 2,161 (30.45%) 6/02-12/13

K3b 4,009 1,380 (34.42%) 4/04-11/13

Apache Maven 2,586 1,332 (51.51%) 10/01-12/13

Portable OpenSSH 2,206 1,061 (48.10%) 3/09-12/13

Total 1,259,758 422,583 (33.54%)

Table 3.1: Projects examined, bugs reported, bugs fixed, and time span on desktop.
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Android

Project Bugs Time span
Reported Fixed (FixRate)

Android Platform 64,158 3,497 (5.45%) 11/07-12/13

Firefox for Android 11,998 4,489 (37.41%) 9/08-12/13

K-9 Mail 6,079 1,200 (19.74%) 6/10-12/13

Chrome for Android 3,787 1,601 (42.28%) 10/08-12/13

OsmAnd Maps 2,253 1,018 (45.18%) 1/12-12/13

AnkiDroid Flashcards 1,940 746 (38.45%) 7/09-12/13

CSipSimple 2,584 604 (23.37%) 4/10-12/13

My Tracks 1,433 525 (36.64%) 5/10-12/13

Cyanogen-Mod 788 432 (54.82%) 9/10-1/13

Andro-minion 623 346 (55.54%) 9/11-11/13

WordPress for Android 532 317 (59.59%) 9/09-9/13

Sipdroid 1,149 300 (26.11%) 4/09-4/13

AnySoft-Keyboard 1,144 229 (20.02%) 5/09-5/12

libphone-number 389 219 (56.30%) 11/07-12/13

ZXing 1,696 218 (12.85%) 5/09-12/12

SL4A 701 204 (29.10%) 10/09-5/12

WebSMS-Droid 815 197 (24.17%) 7/10-12/13

OpenIntents 553 188 (34.00%) 12/07-6/12

IMSDroid 502 183 (36.45%) 6/10-3/13

Wikimedia Mobile 261 166 (63.60%) 1/09-9/12

OSMdroid 494 166 (33.60%) 2/09-12/13

WebKit 225 157 (69.78%) 11/09-3/13

XBMC Remote 729 129 (17.70%) 9/09-11/11

Mapsforge 466 127 (27.25%) 2/09-12/13

libgdx 384 126 (32.81%) 5/10-12/13

WiFi Tether 1,938 125 (6.45%) 11/09-7/13

Call Meter NG/3G 904 116 (12.83%) 2/10-11/13

GAOSP 529 114 (21.55%) 2/09-5/11

Open GPS Tracker 391 114 (29.16%) 7/11-9/12

CM7 Atrix 337 103 (30.56%) 3/11-5/12

Transdroid 481 103 (21.41%) 4/09-10/13

MiniCM 759 101 (13.31%) 4/10-5/12

Connectbot 676 87 (12.87%) 4/08-6/12

Synodroid 214 86 (40.19%) 4/10-1/13

Shuffle 325 77 (36.56%) 10/08-7/12

Eyes-Free 322 69 (21.43%) 6/09-12/13

Omnidroid 184 61 (33.15%) 10/09-8/10

VLC for Android 151 39 (25.83%) 5/12-12/13

Total 112,894 18,579 (27.28%)

Table 3.2: Projects examined, bugs reported, bugs fixed, and time span on Android.
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iOS

Project Bugs Time span
Reported Fixed (FixRate)

WordPress for iPhone 1,647 892 (54.16%) 7/08-9/13

Cocos2d for iPhone 1,506 628 (41.70%) 7/08-5/13

Core Plot 614 218 (35.50%) 2/09-12/13

Siphon 586 162 (27.65%) 4/08-11/11

Colloquy 542 149 (27.49%) 12/08-12/13

Chrome for iOS 365 129 (35.34%) 6/09-12/13

tweetero 142 109 (76.76%) 8/09-6/10

BTstack 360 106 (29.44%) 2/08-12/13

Mobile Terminal 311 82 (26.37%) 8/07-3/12

MyTime 247 101 (40.89%) 7/11-11/13

VLC for iOS 188 80 (42.55%) 8/07-12/13

Frotz 214 78 (36.45%) 9/10-9/12

iDoubs 164 74 (45.12%) 9/07-7/13

Vnsea 173 58 (33.53%) 4/08-10/10

Meta-syntactic 145 50 (34.48%) 7/08-4/12

Tomes 148 51 (34.46%) 8/07-5/08

Total 7,352 2,967 (37.40%)

Table 3.3: Projects examined, bugs reported, bugs fixed, and time span on iOS.

3.1.2 Quantitative Analysis

To find quantitative differences in bug-fixing processes we performed an analysis

on various features (attributes) of the bug-fixing process, e.g., fix time, severity, comment

length, which is defined in Chapter 2.2.

Data preprocessing: feature values and trends. We computed per-project values

at monthly granularity, for several reasons: (1) to also study differences between projects

within a platform; (2) to avoid data bias resulting from over-representation, e.g., Mozilla

Core bugs account for 24% of total desktop bugs, hence conflating all the bug reports into a

single “desktop” category would give undue bias to Mozilla; and (3) we found monthly to

be a good granularity for studying trends. For each feature, e.g., FixTime, we compute the
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geometric mean (since the distributions are skewed, arithmetic mean is not an appropriate

measure [88], and we therefore used the geometric mean in our study) and the trend (slope)

as follows:

Input: Feature value per bug

for each project do

for i = start month to last month do

feature[i] = geometric.mean(input)

end for

FeatureMean = geometric.mean(feature)

FeatureBeta = slope(feature ∼ time)

end for

Output: FeatureMean, FeatureBeta

We employed three statistical tests in our analysis:

Trend test. To test whether a feature increases/decreases over time, we build

a linear regression model where the independent variable is the time and the dependent

variable is the feature value for each project. We consider that the trend is increasing

(or decreasing, respectively) if the slope β of the regression model is positive (or negative,

respectively) and p < 0.05.

Non-zero test. To test whether a set of values differs significantly from 0, we

perform a one-sample t-test where the specified value was 0; if p < 0.05, we consider that

the samples differ from 0 significantly.

Pairwise comparison test. To check whether feature values differ significantly

between platforms, we conducted pairwise comparisons (desktop v. Android; desktop v.

iOS; and Android v. iOS) using the Wilcoxon-Mann-Whitney test.
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3.1.3 Qualitative Analysis

For the second thrust of our study, we used a qualitative analysis to understand

the nature of the bugs by extracting topics from bug reports. We used the bug title, bug

description and comments for topic extraction. We applied several standard text retrieval

and processing techniques for making text corpora amenable to text analyses [140] before

applying LDA: stemming, stop-word removal, non-alphabetic word removal, programming

language keyword removal. We then used MALLET [103] for topic training. The parameter

settings are presented in Section 3.3.1.

3.2 Quantitative Analysis

The first thrust of our study takes a quantitative approach to investigating the sim-

ilarities and differences between bug-fixing processes on desktop and smartphone platforms.

Specifically, we are interested in how bug-fixing process attributes differ across platforms;

how the contributor sets (bug reporters and bug owners) vary between platforms; how the

bug-fix rate varies and what factors influence it.

3.2.1 Bug-fix Process Attributes

We start with the quantitative analysis of bug characteristics and bug-fixing pro-

cess features. Moreover, to avoid undue influence by outliers, we have excluded the top 5%

and bottom 5% when computing and plotting the statistical values. We show the results,

as beanplots, which is an alternative to the boxplot for visual comparison of univariate

data between groups, in Figures 3.1 through 3.14. The shape of the beanplot is the entire
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Min 1st Q Median Mean 3rd Q Max Non-zero
test p

Desktop

FixTime 4.361 28.366 77.844 59.990 120.192 500.773
Severity 3.148 5.060 5.421 5.500 6.121 7.463
Desc.Len 32.09 46.18 57.73 71.674 132.37 159.87
TotalComm. 1.780 3.225 4.459 4.268 5.249 9.501
Comm.Len 16.44 43.74 65.87 63.323 93.40 260.38

βFixTime -21.314 -9.551 -2.650 -5.122 -0.086 0.960 < 0.01

betaSeverity -0.025 -0.002 0.004 0.004 0.007 0.031 0.027

betaDesc.Len -0.738 -0.152 0.006 0.053 0.166 1.138 0.470

betaTotalComm. -21.314 -9.551 -2.650 -5.122 -0.086 0.959 < 0.01

betaComm.Len -3.699 -0.375 -0.122 -0.251 0.187 1.893 0.159

Android

FixTime 2.556 12.097 20.694 20.080 33.847 150.800
Severity 3.737 6.001 6.068 6.094 6.305 7.074
Desc.Len 19.24 60.20 69.63 64.136 83.18 105.50
TotalComm. 1.861 2.580 3.555 3.779 4.632 14.064
Comm.Len 11.18 24.78 43.37 40.179 60.73 129.26

betaFixTime -23.352 -1.164 0.025 -1.165 0.391 7.306 0.124

betaSeverity -0.070 -0.010 -0.001 -0.003 0.002 0.105 0.523

betaDesc.Len -1.874 0.107 0.519 0.703 1.017 5.869 0.003

betaTotalComm. -23.352 -1.164 0.025 -1.165 0.391 7.306 0.124

betaComm.Len -22.148 -0.798 -0.149 0.256 1.417 12.608 0.762

iOS

FixTime 8.423 12.257 19.906 19.793 29.828 53.043
Severity 5.985 6.011 6.054 6.236 6.250 7.148
Desc.Len 26.73 47.12 69.10 63.269 85.86 159.41
TotalComm. 1.492 2.547 3.271 3.298 3.980 6.221
Comm.Len 7.844 17.591 37.740 32.730 68.245 143.207

betaFixTime -18.492 -2.461 -0.740 -2.141 0.361 2.055 0.095

betaSeverity -0.093 -0.002 -0.000 -0.001 0.004 0.043 0.908

betaDesc.Len -18.354 -1.758 0.503 -0.250 1.073 12.345 0.870

betaTotalComm. -18.492 -2.461 -0.740 -2.141 0.361 2.055 0.095

betaComm.Len -11.047 -0.627 -0.122 -0.069 0.994 17.249 0.964

Table 3.4: Statistical summary of bug-fix process attributes.

density distribution, which is a better choice for large range of non-normal data, the short

horizontal lines represent each data point, the longer thick lines are the medians, and the
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Figure 3.1: Beanplot of fix time distributions trends per project.

white diamond points are the geometric means. Also we show the statistical summary of

each feature on both platforms in Table 3.4. We now discuss each feature.

FixTime. Figure 3.1a shows the time to fix bugs on each platform and Figure 3.1b shows

how the FixTime change for each project on different platforms. Several observations

emerge. First, desktop bugs took longer to fix than smartphone bugs: 60 days on desktop,

20 days on Android, 19 days on iOS (Figure 3.1a). The pairwise comparison test indicates

that FixTime on desktop differs from Android and iOS (p � 0.01 for both); there is no

statistical difference between Android and iOS (p = 0.8). This is due to multiple reasons,

mainly low severity and large number of comments. According to previous research [59,167],

FixTime is correlated with many factors, e.g., positively with number of comments or bug
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reports with attachments, and negatively with bug severity. As can be seen in Figure 3.5a,

the number of comments for desktop is larger. The severity of desktop bugs is lower, as

shown in Figure 3.3a. We have also observed (as have Lamkanfi and Demeyer [82]) that

on desktop many bugs are reported in the wrong component of the software system, which

prolongs fixing. Also desktop applications are usually more complicate than smartphone

application, it is harder to find root cause and proper fix strategy for desktop applications.

Second, bug-fix time tends to decrease over time on desktop and iOS. In fact, Fix-

Time is the only feature where the non-zero test for β’s turned out significant or suggestive

for all platforms (p < 0.01 for desktop, p = 0.124 for Android, p = 0.095 for iOS based on

Table 3.4). As Figure 3.1b shows, most desktop projects (29 out of 34) and iOS projects

(11 out of 16) have decreasing trends, i.e., negative β’s, on FixTime. For Android, only half

of the projects (19 out of 38) have the same trends. The reasons are again multiple.

The first reason is increasing developer experience: as developers become more

experienced, they take less time to fix bugs. The second reason is increased developer

engagement. High overlap of bug reporters and bug owners results in shorter bug fixing

time, since project developers are more familiar with their own products.

Figure 3.2 shows the percentage of owners who have also reported at least one bug

for each project and their corresponding trend—the graph reveals higher engagement over

time for desktop and iOS, but not for Android (for Android, 23 out of 38 projects show

lower engagement over time).

Other researchers had similar findings: Giger et al. [48] found that older bugs

(e.g., Mozilla bugs opened before 2002 or Gnome bugs opened before 2005) were likely to
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Figure 3.2: Percentage of bug owners who have reported bugs (a) and their trends (b).

take more time to fix than recently-reported bugs; and more recent bugs were fixed faster

because of the increasing involvement of external developers and the maturation of the

project [106].

Severity. High-severity bug reports indicate those issues that the community considers to

be of utmost priority on each platform.

Figure 3.3a shows that desktop bug severity is lower than smartphone bug severity.

When looking at severity trends, as Figure 3.3b indicates, severity is steady at level 6

(Normal/Medium) for Android and iOS and has a small increasing trend for desktop (22

out of 34 projects on desktop have increasing trend). The pairwise comparison indicates

severity on desktop differs from Android and iOS (p � 0.01 for both), and no statistical
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Figure 3.3: Beanplot of severity distributions trends per project.

difference between Android and iOS (p = 0.769). Upon investigation, we found that on

desktop, over time, the frequency of high-severity bugs (e.g., crashes or compilation issues)

increases, which raises the mean severity level. We examined projects’ release frequency,

and saw an increasing frequency for desktop [76], meaning for desktop there is less time for

validating new releases and a higher incidence of severe bugs.

DescriptionLength. The number of words in the bug description reflects the level of

detail in which bugs are described. A higher DescriptionLength value indicates a higher bug

report quality [167], i.e., bug fixers can understand and find the correct fix strategy easier.

The pairwise test indicates there is no statistical significant difference in DescriptionLength

among platforms (p > 0.659 for all three cases). DescriptionLength stays constant on

desktop and iOS (Figure 3.4b), but on Android increased significantly (p = 0.003). We
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Figure 3.4: Beanplot of description length distributions trends per project.

found that the increase on Android is due to more stringent reporting requirements (e.g.,

asking reporters to provide steps-to-reproduce [7]).

TotalComments. Bugs that are controversial or difficult to fix have a higher number

of comments. The number of comments can also reflect the amount of communication

between application users and developers—the higher the number of people interested in a

bug report, the more likely it is to be fixed [54]. The means differ (4.6 for desktop, 4.14

for Android, 3.5 for iOS, as shown in Figure 3.5a) but not significantly (all p > 0.07);

TotalComments also tends to stay constant on all three platforms (non-zero test p > 0.46

in each case). For iOS, TotalComments starts lower and stays lower than for desktop and

Android; we found that this is due to a smaller number of reporters and owners (which
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Figure 3.5: Beanplot of total comments distributions trends per project.

reduces the amount of communication), as well as overlap between reporters and owners

(Figure 3.2), which reduces the need for commenting; we will provide an example shortly,

from the Colloquy project.

CommentLength. This measure, shown in Figures 3.6a and 3.6b, bears some similarity

with TotalComments, in that it reflects the complexity of the bug and activity of con-

tributor community. Results were similar to TotalComments’. However, iOS has smaller

CommentLength values (33) than desktop (63) and Android (40). The pairwise tests show

that desktop differs with Android and iOS (p = 0.005 and 0.01, respectively), but there is no

statistical difference between Android and iOS (p = 0.48). Upon examining iOS bug reports

we found that fewer users are involved in iOS apps’ bug-fixing—bug fixers frequently locate
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Figure 3.6: Beanplot of comments length distributions trends per project.

the bug by themselves and close the report, with little or no commenting. For instance, the

mean CommentLength in the Colloquy project is just 9.63 words. Even for high-severity bugs

such as Colloquy bug #3442 (an app crash, with severity Blocker) there is no communication

between the bug reporter and bug owner—rather, the developer has just fixed the bug and

closed the bug report.

Generality. We also performed a smaller-scale study where we control for process, and

to a smaller extent developers, by using cross-platform projects. The study, which will be

presented in Section 3.2.4, has yielded findings similar to the aforementioned ones.
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3.2.2 Management of Bug-fixing

Software developers have to collaborate effectively and communicate with their

peers in order to avoid coordination problems. Resource allocation and management of the

bug-fixing process have a significant impact on software development [153]; for example,

traditional software quality is affected by the relation between bug reporters and bug own-

ers [17]; information hiding lead development teams to be unaware of other teams work,

resulting in coordination problems [36]. We defined the two roles in Section 2.2 and now set

out to analyze the relationship between bug reporters and bug owners across the different

platforms.

Developer Change

We examined the distribution and evolution of bug reporters, as well as bug owners,

for the three platforms. Table 3.5 shows the results. The second and third columns show

the number of bug reporters and bug owners, respectively. The fourth and fifth columns

show the top reporters’ IDs (for privacy reasons, where the ID refers to an individual, we

use developer numbers instead of developers’ real names) and the number of bugs they have

reported in that year. The sixth column shows the turnover in top-10 reporters. Columns

7–8 contain the ID and number of bugs of the top bug owner that year, while the last

column is the turnover in top-10 bug owners.

To investigate how reporters (or owners) change overtime, we introduce a new

metric, Turnover, i.e., the percentage of bug reporters (or owners) changed compared to

the previous year. In Figure 3.7 and Figure 3.8 we plot the numbers of bug reporters and
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Year Reporters Owners Top # of Turn- Top # of Turn-
reporter bugs over owner bugs over

(%) (%)

Desktop

1998 164 64 dev 1 116 dev 2 67
1999 949 214 dev 3 287 30 dev 4 279 40
2000 3,270 449 dev 5 656 20 Konqueror 3,675 10
2001 5,471 664 issues@www 299 40 Konqueror 5,333 40
2002 7,324 995 dev 6 570 20 Konqueror 2,030 60
2003 7,654 1,084 dev 7 421 50 Konqueror 961 70
2004 8,678 1,273 dev 7 520 60 Konqueror 775 60
2005 8,990 1,327 dev 8 471 50 dev 9 636 40
2006 7,988 1,408 dev 10 448 60 Amarok 872 50
2007 7,292 1,393 dev 10 593 60 dev 11 357 60
2008 8,474 1,546 dev 10 444 40 Plasma 1,188 40
2009 8,451 1,537 dev 12 330 70 Plasma 1,476 40
2010 7,799 1,475 dev 10 351 50 Plasma 1,014 80
2011 6,136 1,381 dev 13 295 40 gnome 790 80
2012 5,132 1,352 dev 13 331 30 gnome 674 50
2013 4,884 1,432 dev 14 325 60 gnome 661 60

Android

2007 8 2 dev 15 3 dev 15 3
2008 429 41 dev 16 32 10 dev 16 28 20
2009 987 104 dev 17 24 10 dev 18 62 30
2010 1,875 163 dev 19 47 30 dev 20 89 70
2011 2,045 218 dev 21 70 10 dev 22 72 20
2012 1,998 340 dev 23 162 40 dev 23 262 60
2013 1,492 419 dev 24 125 80 dev 25 159 70

iOS

2007 70 8 dev 26 23 dev 27 28
2008 159 23 dev 28 27 10 dev 28 34 30
2009 292 36 dev 28 38 20 dev 29 47 30
2010 209 34 dev 30 53 30 dev 31 52 40
2011 245 18 dev 30 61 30 dev 30 55 70
2012 179 28 dev 32 165 40 dev 32 63 60
2013 182 51 dev 33 31 50 dev 33 58 40

Table 3.5: Bug reporters and bug owners.
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Figure 3.7: Bug reporters and trends distribution.

owners for each project; we will discuss the evolution of the numbers of reporters and owners

shortly. Figures 3.9 and 3.10 show the turnover per project for each platform. We make

several observations.

First, desktop projects have larger sets of bug reporters and bug owners. Desktop

projects also have a more hierarchical structure with front accounts for filing and fixing

bugs (e.g., “issues@www” in OpenOffice for reporters, “Konqueror Developers”, “Tomcat

Developers Mailing List” for owners).

Second, among individual reporters and owners, the top contributors on desktop

contribute (report or own, respectively) many more bugs than the top contributors on

smartphone, as seen in the “# of bugs” columns.
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Figure 3.8: Bug owners and trends distribution.

Third, owner turnover is lower than reporter turnover, echoing one of our findings

on bug reporting ramping up and down faster than bug owning (end of Section 3.2.2). The

turnover of bug reporters differs significantly between desktop and smartphone (p � 0.01

for both), but not between Android and iOS (p = 0.917). Furthermore, the turnover of bug

owners differs between desktop and iOS (p = 0.015) as well as Android and iOS (p = 0.018);

the difference is not significant between desktop and Android (p = 0.644).

The number of fixed bugs differs across platforms, so to be able to compare re-

porter and owner activity between platforms, we use the number of bug reporters and bug

owners in each month divided by the number of fixed bugs in that month (which we name

ReporterFixed, OwnerFixed and Reporter/Owner, respectively). Figures 3.11–3.13 show

the result.
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Figure 3.9: Bug reporters turnover and trends distribution.

The ratio of reporter to fixed bugs can reflect the popularity of the applications.

According to Figures 3.11a and 3.11b, ReporterFixed values for Android and iOS are higher

than for desktop, which we believe is due to two reasons: higher user base and popularity

of smartphone apps, and a lower effort/barrier for reporting bugs (e.g., no need to provide

steps-to-reproduce as required on desktop [7]). Pairwise test results show significant differ-

ences between Android and desktop/iOS (p� 0.01 for both), but not between desktop and

iOS (p = 0.715).

OwnerFixed is lower on desktop (Figure 3.12a); this measures the inverse of work-

load and effort associated with bug-fixing (high ratio = low workload); given the low Own-

erTurnover rates for all platforms, it is unsurprising that OwnerFixed (workload) tends to
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Figure 3.10: Owners, reporters, their turnover and trends.

stay constant for all platforms (Figure 3.12b). The pairwise test shows that desktop differs

from smartphone platforms (p < 0.01) but the difference is not significant between Android

and iOS (p = 0.323).

The ratio of reporters to owners (Figures 3.13 and 3.13b) changes in an interesting

way on all platforms—increase, then decrease—which is due to users adopting applications

(and finding/reporting bugs) at a faster pace than the development team is growing, hence

the initial increase; eventually, as applications mature, their reporter base decreases at a

faster pace than their owner base. There are no significant differences between platforms

(p > 0.19 in all cases).
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Figure 3.11: Beanplot of bug reporter fixed metric and trend.
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Figure 3.12: Beanplot of bug owner fixed metric and trend.

41



0
10

20
30

40
50

desktop Android iOS

Reporter/Owner

(a)
-1
0

-5
0

5

desktop Android iOS

bReporter/Owner

(b)

Figure 3.13: Beanplot of bug reporter/owner metric and trend.

Case Study: Contributor Activity in 2012

We now elaborate on the overlap between developer and owner sets which was also

visible in Table 3.5—we found that for Android and iOS, many developers both reported

and owned bugs. We chose 2012 for the case study.

Table 3.6 provides the top-7 contributors for each platform in 2012 (we chose 7

for consistency with Table 5.6). The first column is the developer ID, the second and

fourth columns are the number of bugs reported and fixed by that developer, respectively.

The third and fifth columns are the rank of that developer based on the number of bugs

reported/fixed. Note how for desktop, top bug reporters and top bug owners are separate

sets, indicating a strong separation of responsibilities. In contrast, for Android and iOS,

the situation is opposite: top bug reporters also fix bugs as indicated by the large overlap in
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Name Bugs Rank Bugs Rank
reported owned

Desktop

dev 13 331 1 21 276
dev 35 309 2 280 5
dev 14 273 3 246 7
dev 10 239 4 6 508
dev 36 202 5 0 N/A
dev 37 105 36 325 2
dev 38 192 8 223 8

Android

dev 23 162 1 262 1
dev 21 148 2 6 76
dev 39 126 3 10 57
dev 40 101 4 177 3
dev 41 95 5 176 4
dev 24 80 6 178 2
dev 42 62 10 161 5

iOS

dev 32 165 1 63 1
dev 30 64 2 48 2
dev 43 59 3 44 3
dev 44 30 4 6 10
dev 34 17 5 20 4
dev 33 7 7 9 5
dev 45 9 6 9 6

Table 3.6: Top bug reporters in 2012.

membership between top reporters and top owners. Previous work [69] has similar findings:

21.8% of the sampled participants in an Android contributor survey were developers who

have submitted changes.

3.2.3 Bug Fix Rate Comparison

The bug fix rate is an indication of the efficiency of the bug-fixing process: a low

fix rate can be due to many spurious bug reports being filed, or when reports are legitimate,
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Figure 3.14: Bug fix rate.

developers are unable to cope with the high workload required for addressing the issues.

Figure 3.14 shows the fix rate.

The mean bug fix rate for Android (27.28%) is lower than for desktop (36.56%)

and iOS (37.40%). Our investigation has revealed that this is due to differences in bug

reporter profiles and developer workloads.

In Android, two projects have much lower fix rates than others: Android plat-

form (5.45%) and Wifi Tether (6.45%). When examining their workload compared to other

projects, we found it to be very high (Android platform has 2,433 bug reporters and 130 bug

owners, while Wifi Tether has 117 reporters but only 3 owners), which results in a low fix

rate. On the other hand, WebKit, the project with the highest fix rate (69.78%), has 29 bug

reporters and 18 bug owners—the high fix rate is unsurprising, given the lighter workload.
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For desktop, the fix rate for Firefox (14.53%) and Thunderbird (14.45%) are the

lowest. In contrast, Cassandra (68.25%), Mylyn (59.69%), and Eclipse CDT (57.62%) have

much higher fix rates. The high rate of duplicate bug reports (27.18% for Firefox and

32.02% for Thunderbird) certainly plays a role in the low fix rate. Note, however, that Firefox

and Thunderbird, a Web browser and email client respectively, are used by broad categories

of people that have varying levels of expertise. In contrast, Mylyn is a task management

system, Eclipse CDT is an IDE, Cassandra is a distributed database management system; their

users have higher levels of expertise. Hence we believe that users of the latter applications

are more adept at filing and fixing bugs than Firefox and Thunderbird users, leading to a

higher fix rate.

For iOS, no application stands out as having a much lower fix rate than others.

While Chrome for iOS has a low fix rate (35.34%), it is comparable with Chrome for Android

(42.28%); tweetero has the highest fix rate (76.76%), understandably so as the project has

14 bug reporters and 5 bug owners.

Pairwise tests for fix rates show that the rates for desktop and Android projects

differ (p = 0.010), as do Android and iOS projects (p = 0.039); the difference in fix rate

between desktop and iOS projects is not significant (p = 0.673).

3.2.4 Case Study: Cross-platform Projects

We now present a method and case study for comparing process features in a

more controlled setting, using cross-platform projects. We chose four apps, Chrome, Firefox,

WordPress and VLC: the first two are dual-platform, while the last two are present on all three

platforms. This comparison method is somewhat orthogonal to our approach so far: on one
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hand, it compares desktop, Android and iOS while eliminating some confounding factors,

as within each project, processes and some developers are common across platforms; on the

other hand it uses a small set of projects.

For Chrome, there are 337 bug reporters and 218 bug owners for Android, while

the iOS version has 62 bug reporters and 38 bug owners. We found that 16 bug reporters

and 13 bug owners contribute to both platforms; in fact, 6 of them reported and fixed bugs

on both Android and iOS. For Firefox, we found 3,380 and 423 bug reporters for desktop

and Android, respectively; 216 of them reported bugs on both platforms. We also found

that Firefox has 911 and 203 bug owners on desktop and Android, respectively, with 80

owning bugs on both platforms. Finally, there were 58 developers that have reported and

owned bugs on both platforms. In charge of WordPress bugs, there were 2352, 37, and 99

bug reporters (in desktop, Android and iOS, respectively) and 205, 8, and 31 bug owners

(in desktop, Android and iOS). We found that 3 reporters open bug reports on all three

platforms. For bug owners, we did not find developers who contribute to both desktop and

Android; though 4 developers fixed bugs in both Android and iOS, while 3 developers fixed

bugs for desktop and iOS. For VLC, there were 1451, 28, and 27 bug reporters and 98, 4, and

5 bug owners in desktop, Android and iOS, respectively; only one developer has contributed

to all the platforms as bug reporter and owner.

Table 3.7 shows the geometric mean of features and bug-fixing management met-

rics for each app on different platforms; differences between the means were significant

(p < 0.01), with few exceptions. We again ran a Wilcoxon-Mann-Whitney test between fea-

ture sets on different platforms but within the same project; non-significant features were

46



P
ro

je
c
t

F
ix

T
im

e
S

e
v
e
ri

ty
D

e
sc

ri
p

ti
o
n

T
o
ta

l
C

o
m

m
e
n
t

F
ix

R
e
p

o
rt

e
r

O
w

n
e
r

R
e
p

o
rt

e
r

O
w

n
e
r

R
e
p

o
rt

e
r

L
e
n

g
th

C
o
m

m
e
n
ts

L
e
n

g
th

R
a
te

T
u

rn
o
v
e
r

T
u

rn
o
v
e
r

F
ix

e
d

F
ix

e
d

O
w

n
e
r

C
h

ro
m

e
A

n
d
ro

id
20

.8
2

5.
82

57
.6

9
7.

95
61

.1
2

42
.2

8%
0.

61
0.

22
0.

40
0.

26
1.

50
iO

S
14

.1
1

5.
94

50
.6

1
6.

05
41

.7
3

35
.3

4%
0.

30
0.

10
0.

79
0.

58
1.

44

F
ir

ef
ox

D
es

k
to

p
86

.2
0

5.
61

45
.1

9
8.

59
86

.3
0

14
.5

3%
0.

28
0.

45
0.

36
0.

16
2.

56
A

n
d
ro

id
28

.2
9

6.
16

40
.5

0
8.

64
68

.4
1

37
.4

1%
0.

52
0.

24
0.

30
0.

21
1.

79

W
or

d
P

re
ss

D
es

k
to

p
9.

54
5.

79
38

.3
7

3.
38

42
.0

1
37

.5
3%

0.
27

0.
46

0.
34

0.
04

8.
82

A
n
d
ro

id
9.

70
7.

22
22

.1
2

1.
87

12
.2

0
59

.5
9%

0.
48

0.
17

0.
16

0.
12

2.
17

iO
S

6.
03

6.
97

26
.3

4
2.

84
27

.1
2

54
.1

6%
0.

76
0.

34
0.

25
0.

13
2.

04

V
L

C

D
es

k
to

p
23

.2
0

6.
21

36
.7

7
2.

48
15

.7
6

40
.2

4%
0.

21
0.

39
0.

40
0.

08
5.

00
A

n
d
ro

id
18

.4
0

6.
27

22
.0

2
2.

82
11

.5
2

25
.8

3%
1.

00
0.

00
0.

80
0.

22
3.

76
iO

S
8.

96
6.

77
22

.3
0

2.
24

12
.0

2
42

.5
5%

0.
67

0.
00

0.
33

0.
09

3.
73

T
ab

le
3.

7:
M

ea
n

fe
at

u
re

va
lu

es
fo

r
cr

os
s-

p
la

tf
or

m
p

ro
je

ct
s.

47



Severity and DescriptionLength for Chrome; TotalComment for Firefox; FixTime on desktop v.

Android, Severity (p = 0.873) and DescriptionLength (p = 0.069) on Android v. iOS. for

WordPress; and Android v. iOS on VLC.

We make two observations. First, several findings (e.g., iOS bugs are fixed faster;

Android bugs have larger ReporterTurnover; OwnerTurnover and CommentLength are

higher on desktop) are consistent with the findings in Section 5.2.2, which gives us in-

creased confidence in the generality of those results. Second, researchers and practitioners

can use these findings to start exploring why, within a project, the subproject associated

with a certain platform fares better than the other platforms.

3.3 Qualitative Analysis

We now turn to a qualitative analysis that investigates the nature of the bugs.

Specifically, we are interested in what kinds of bugs affect each platform, what are the most

important issues (high-severity bugs) on each platform, and how the nature of bugs changes

as projects evolve.

We use topic analysis; we first extract topics (sets of related keywords) via LDA

from the terms (keywords) used in bug title, descriptions and comments, as described in

Section 2.2 used each year in each platform, and then compare the topics to figure out how

topics change over time in each platform, how topics differ across platforms, and what were

the prevalent bug topics in smartphone projects.
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3.3.1 Topic Extraction

The number of bug reports varies across projects, as seen in Tables 3.1–3.3. More-

over, some projects are related in that they depend on a common set of libraries, for instance

SeaMonkey, Firefox and Thunderbird use functionality from libraries in Mozilla Core, e.g., han-

dling Web content. It is possible that a bug in Mozilla Core cascades and actually manifests

as a crash or issue in SeaMonkey, Firefox, or Thunderbird, which leads to three separate bugs

being filed in the latter three projects. For example, Mozilla Core bug #269568 cascaded into

another two bugs in Firefox and Thunderbird.

Hence we extract topics using two strategies: Original and Sampled. In the

Original strategy, we use all bug reports from each project. In the Sampled a sampling

strategy, where we sampled bug reports to reduce possible over representation due to large

projects and shared dependences. More concretely, for Sampled we extracted topics from

1,000 “independent” bug reports for each project group, e.g., Mozilla, KDE. The indepen-

dent bug report sets were constructed as follows: since we have 10 projects from KDE,

we sampled 100 bugs from each KDE-related project. We followed a similar process for

Mozilla, Eclipse and Apache. Android and iOS had smaller number of bug reports, so for

Android we sampled 100 bug reports from each project, and for iOS we sampled 50 bug

reports from each project. For those projects have less bug reports (e.g., VLC for Android)

than the sample number, we choose all the bug reports.

We used LDA (as described in Section 2.4) on both Original and Sampled sets;

For Sampled set, since there were only 2 bug reports on 1998 for desktop and 1 for Android

in 2007, we have omitted those years. For Original set, the preprocessing of desktop bug
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reports resulted in 35,083,363 words (510,600 of which were distinct). For Android bug

reports, the preprocessing resulted in 1,535,307 words (36,411 of which were distinct). For

iOS bug reports, the preprocessing resulted in 202,263 words (10,314 of which were distinct).

For Sampled set, The preprocessing of desktop, Android, and iOS sets resulted in 824,275

words (37,891 distinct), 238,027 words (12,046 distinct) and 71,869 words (5,852 distinct),

respectively.

In the next step, we used MALLET [103] for LDA computation. We ran for

10,000 sampling iterations, the first 1,000 of which were used for parameter optimization.

For Original set, we modeled bug reports with K = 400 topics for desktop, 90 for Android

and 50 for iOS. For Sampled set, We modeled bug reports with K = 100 topics for desktop,

60 for Android, and 30 for iOS; we choose K based on the number of distinct words for each

platform; Section 3.5 discusses caveats on choosing K. Finally, we labeled topics according

to the most representative words and confirmed topic choices by sampling bug reports for

each topic to ensure the topic’s label and representative words set were appropriate.

3.3.2 Bug Nature and Evolution

How Bug Nature Differs Across Platforms

Table 3.8 shows the top-5 topics in each platform, in each year, for the Original

data set. As expected, some projects, e.g., “Qt”, the shared library used in KDE, was the

strongest topic in 2008; Mozilla or Android platform, dominate and bugs associated with

them have a high preponderance among topics. Nevertheless, differences among platforms

are clear: on desktop, crashes and GUI issues are preponderant; on Android, the Android
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runtime is a major source of issues; on iOS, crashes are preponderant. Note that the analysis

of Original or Sampled serve different purposes, depending on whether our interest is in

where the bulk of the bugs are in a certain year (Original), or how the nature of the bugs

exhibits similarity across projects Sampled.

Table 3.9 shows the topics extracted from Sampled data set. We found that for

desktop, application crash is the most common bug type, and application logic bugs (failure

to meet requirements) are the second most popular. For Android, bugs associated with the

user interface (GUI) are the most prevalent. For iOS, application logic bugs are the most

prevalent.

There are topics related to specific applications, e.g., Hadoop. The reason is

that with partial assignments, LDA will not try to find mutually exclusive topics, since a

document can be partly about one topic and partly about another [110].

How Bug Nature Evolves

To study macro-trends in how the nature of bugs changes over time, we analyzed

topic evolution in each platform. We discuss our findings on Sampled data set. For desktop,

application logic and crashes are a perennial presence, which is unsurprising. However, while

in the early years (before 2005), compilation bugs were a popular topic, after 2005 new kinds

of bugs, e.g., concurrency (topic “thread”) and multimedia (topics “audio”, “video”) take

center stage.

For Android, it is evident that in the beginning, developers were still learning how

to use the platform correctly: intents are a fundamental structure for intra- and inter-app
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Label Most representative words

Desktop

crash crash fail call check log process item size expect event state
titl menu point block

application logic messag updat configur link control task access thread direc-
tori cach method displai correct command modul

Android

UI android screen applic messag menu button text select option
error fail wrong mode crash icon

thread handler android app thread log type init intern phone zygot event
handler window displai looper invok

phone call call phone send account press devic server servic network
mobil stop receiv wait confirm lock

iOS

general phone file call updat crash touch applic support point type
menu post delet upgrad network

screen display screen button displai view click error scroll bar game imag
left load tap keyboard landscap

compilation user run page receiv attach fail error compil mode revision
map enabl crash devic handl

Table 3.10: Top words associated with major topics.

communication, and “intent” is a predominant topic in 2007 and 2008. The GUI (“UI”),

concurrency (“thread handler”), and telephony (“phone call”) are perennial issues.

For iOS, the GUI (“UI”) and display (“screen display”) are perennial issues, but in

contrast to Android, concurrency and the platform do not appear to pose as much difficulty,

and in later years application bugs take over. However, compilation issues seem to be a

perennial problem as well, whereas for Android they are not. Table 3.10 shows the major

topics and the top keywords within each topic.
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Platform Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Desktop site mgmt. style codex error msg. user mgmt.

Android null pointer post error upload fail user mgmt. codex

iOS post error error msg. upload fail landscape codex

Table 3.11: Top-5 topics for WordPress.

3.3.3 Case Study: WordPress

We now focus on studying topic differences in a single app that exists on all three

platforms: WordPress. We chose WordPress as our case study app for two reasons. First, it

is one of the most popular blogging tools, used by 21.5% of all the websites – a content

management system market share of 60.1% [145]. Second, WordPress is a cross-platform

application and mature on all three platforms—desktop, Android and iOS—which reduces

confounding factors (we employed the same strategy in Section 3.2.4).

To study differences across platforms for WordPress, we used the Section 2.4 process

and set the number of topics K to 80. Table 3.11 shows the resulting top-5 topics for each

platform. The power of topic analysis and the contrast between platforms now becomes

apparent. “Post error” and “upload fail” are topics #2/#3 on Android, and #1/#3 on

iOS: these are bugs due to communication errors, since spotty network connectivity is

common on smartphones; “codex” (semantic error) is a hot topic across all platforms,

which is unsurprising and in line with our findings from Section 5.3.2. For desktop, the #1

topic, “site management” is due to desktop-specific plugins and features. Since the Android

version of WordPress is developed in Java, null pointer bugs stand out (“null pointer” is topic

#1 in Android). For iOS, there are many critical bugs when using landscape mode, e.g.

issues #392, #403 and #768.
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3.3.4 Smartphone-specific Bugs

As mentioned in Chapter 1, smartphone software differs substantially from desktop

software in many regards: app construction, resource constraints, etc. For example, the data

that smartphone software collects from GPS and accelerometer raises significant privacy

concerns that did not exist on the desktop platform. Furthermore, due to device portability,

issues such as performance and energy bugs are significantly more important on smartphone

than on fixed platforms. Understandably, significant research efforts have been dedicated

to smartphone bugs such as location privacy or energy consumption. Hence we aimed to

quantify the prevalence of energy, security, and performance bugs in the topic model.

We found that energy-related bugs (containing keywords such as “power,” “bat-

tery,” “energy,” “drain”) as a topic only ranked high (in top-5) once, in 2010 for Android—

the reason was the release of Android platform version 2.2 (Froyo) in 2010, which contained

a higher number of energy bugs (e.g., Android platform issues #8478, #9307 and #9455).

In all other years, energy did not appear as a topic in top-20.

For security bugs, keywords within the topic included “security,” “vulnerability,”

“permission,” “certificate”, “attack”. We found that, although such bugs are marked with

high severity, their representation among topics was low. We did not find them in top-5

topics; the highest was rank 7 in 2009 and rank 11 in 2010, in Android. For iOS we could

not find security bugs among the top-20 topics.

For performance bugs, associated keywords included “performance,” “slow,” “la-

tency,” “lagging”. We could not find performance-related topics in top-20 on Android or

iOS platform.
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3.4 Actionable Findings

We now discuss how our findings can help point out potential improvements.

3.4.1 Addressing Android’s Concurrency Issues

Android’s GUI framework is single-threaded and requires the application devel-

oper to manage threads manually, offering no thread-safety guarantees. For example, to

build a responsive UI, long-running operations such as network and disk IO have to be per-

formed in background threads and then the results posted to the UI thread’s event queue;

as a consequence, the happens-before relationship between GUI and other events is not

enforced, leading to concurrency bugs [97]. In contrast, the iOS framework handles con-

currency in a safer manner by using GCD (Grand Central Dispatch) to manage inter-thread

communication; as a result, there are fewer concurrency bugs on iOS.

Hence there is an impetus for (1) improving the Android platform with bet-

ter orchestration of concurrency, (2) improving programing practice, e.g., via the use of

AsyncTask as suggested by Lin et al. [89], and (3) constructing analyses for Android race

detection [97].

3.4.2 Improving Android’s Bug Trackers

Many of the Android projects we have examined (27 out of 38) are hosted on, and

use the bug tracking facilities of, Google Code, in contrast to desktop programs, whose bugs

are hosted on traditional bug trackers such as Bugzilla, JIRA and Trac. On Google Code,

bug tracking is conveniently integrated with the source code repository. However, Google
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Code’s tracker has no support for: (1) bug component—while easier for new users to file

bugs as there is no need to fill in bug components, the lack of a component makes it harder

for developers to locate the bug; and (2) bug resolution—they use labels instead. These

aspects complicate bug management (triaging, fixing).

Hence there is an impetus for improving bug tracking in Google Code, which will

in turn improve the bug fixing process for the projects it hosts.

3.4.3 Improving the Bug-fixing Process on All Platforms

As Figure 3.2 in Section 3.2 shows, the overlap between bug reporters and bug

owners is higher on desktop projects. This is good for speeding up the bug-fixing process

since usually bug reporters are more familiar with the bugs they report [28]. Smartphone

projects’ development teams should aim to increase this overlap.

According to Sections 3.2.2 and 3.2.3, Android projects have the lowest workload

(highest OwnerFixed rate), and the lowest fix rate as well, which suggests a need for im-

proving developer engagement. The ReporterTurnover rate on Android and iOS is higher

than that of desktop (Figure 3.9a, Section 3.2.2)—this indicates that there are many new

users of smartphone apps, which can potentially increase product quality [22]. Hence desk-

top projects can improve the bug-fixing process by encouraging more users to report issues

in the bug tracking system [164], e.g., via automatic bug reporting [147].

Furthermore, bug reports containing attachments, e.g., stack traces, tend to be

fixed sooner [59,167]. Yet, few Android bug reports have a system trace (logcat) or crash

report attached. Hence the Android bug-fixing process would benefit from automatically

attaching the logcat to the bug report, which is also recommended in previous research [72].
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3.4.4 Challenges for Projects Migrating to GitHub

For our examined period, we found that many smartphone projects have “mi-

grated” to GitHub: 7 Android projects and 3 iOS projects have fully migrated to GitHub

(source code and bug tracking), while 10 Android projects only moved the source code

repositories to GitHub.1 The rationale was developers’ concern with Google Code’s lack of

features compared to GitHub, e.g., forks and pull requests, source code integration [13,124].

However, the issue tracking system on GitHub lacks several critical features, e.g., severity,

component (instead they only use labels); furthermore, bug reports cannot have attach-

ments; a bug report template is missing as well. Unless GitHub adds those missing bug

management features, the projects will suffer, as it is harder for developers to manage and

ultimately fix the bugs.

3.5 Threats to Validity

We now discuss possible threats to the validity of our study.

3.5.1 Selection Bias

We only chose open source applications for our study, so the findings might not

generalize to closed-source projects. Our chosen projects use one of four trackers (Bugzilla,

Trac, JIRA, Google Code); we did not choose projects hosted on GitHub since several bug

features (e.g., severity) are not available on GitHub, hence our findings might not generalize

to GitHub-hosted projects.

1For details please visit our online supplementary material: http://www.cs.ucr.edu/~bzhou003/cross_
platform.html.
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We studied several cross-platform projects (Chrome, Firefox, WordPress, and VLC) to

control for process. However, we did not control for source code size—differences in source

code size might influence features such as FixTime.

3.5.2 Data Processing

For the topic number parameter K, finding an optimal value is an open research

question. If K is too small, different topics are clustered together, if K is too large, related

topics will appear as disjoint. In our case, we manually read the topics, evaluated whether

the topics are distinct enough, and chose an appropriateK to yield disjoint yet self-contained

topics.

Google Code does not have support for marking bugs as reopened (they show up

as new bugs), whereas the other trackers do have support for it. About 5% of bugs have

been reopened in desktop, and the FixTime for reopened bugs is usually high [130]. This

can result in FixTime values being lower for Google Code-based projects than they would

be if bug reopening tracking was supported.

3.5.3 IDs vs. Individuals

Some projects (especially large ones) have multiple individuals behind a single ID,

as we showed in Section 3.2.2. Conversely, it is possible that a single individual operates

using multiple IDs. This affects the results in cases where we assume one individual per ID.
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3.6 Summary

We have conducted a study to understand how bugs and bug-fixing processes

differ between desktop and smartphone software projects. A quantitative analysis has re-

vealed that, at a meta level, the smartphone platforms are still maturing, though on certain

bug-fixing measures they fare better than the desktop. By comparing differences due to

platforms, especially within the same project, researchers and practitioners could get in-

sights into improving products and processes. After analyzing bug nature and its evolution,

it appears that most frequent issues differ across platforms.
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Chapter 4

Empirical Study of Concurrency

Bugs

Our studies (e.g., Section 3.4) have revealed that concurrency is an important

issue on both desktop and mobile platforms. Concurrent programming is challenging, and

concurrency bugs are particularly hard to diagnose and fix for several reasons, e.g., thread

interleaving and shared data complicate reasoning about program state [95], and bugs are

difficult to reproduce due to non-determinism and platform-specific behavior. As a result,

it appears that fixing concurrency bugs takes longer, requires more developers, and involves

more patches, compared to fixing non-concurrency bugs.

To help with finding and fixing concurrency bugs, prior research has mostly focused

on static or dynamic analyses for finding specific classes of bugs. Hence in this chapter, we

present an approach whose focus is understanding the nature of concurrency bugs and the

differences between concurrency and non-concurrency bugs, the differences among various
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concurrency bug classes, and predicting bug quantity, type, and location, from patches,

bug reports and bug-fix metrics. We use statistics and machine learning as our main tools.

First, we show that bug characteristics and bug-fixing processes vary significantly among

different kinds of concurrency bugs and compared to non-concurrency bugs. Next, we build

a quantitative predictor model to estimate concurrency bugs appearance in future releases.

Then, we build a qualitative predictor that can predict the type of concurrency bug for

a newly-filed bug report. Finally, we build a bug location predictor to indicate the likely

source code location for newly-reported bugs. We validate the effectiveness of our approach

on three popular projects, Mozilla, KDE, and Apache.

4.1 Concurrency Bug Types

We now briefly review the four main types of concurrency bugs, as introduced by

previous research [39,93,95].

Atomicity violations result from a lack of constraints on the interleaving of operations

in a program. Atomicity violation bugs are introduced when programmers assume some

code regions to be atomic, but fail to guarantee the atomicity in their implementation. In

Figure 4.1 we present an example of an atomicity violation, bug #21287 in Apache: accesses

to variable obj in function decrement refcount are not protected by a lock, which causes the obj

to be freed twice.

Order violations involve two or more memory accesses from multiple threads that hap-

pen in an unexpected order, due to absent or incorrect synchronization. An order violation
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Thread 1 Thread 2

ap r a t om i c d e c (&obj−>r e f c o u n t ) ;

i f ( ! obj−>r e f c o u n t ) {
c l e a n u p c a c h e o b j e c t ( ob j ) ;

}

ap r a t om i c d e c (&obj−>r e f c o u n t ) ;
i f ( ! obj−>r e f c o u n t ) {

c l e a n u p c a c h e o b j e c t ( ob j ) ;
}

Figure 4.1: Atomicity violation bug #21287 in Apache (mod mem cache.c).

Thread 1 Thread 2

nsThread : : I n i t ( . . . ) {
. . .

mThread = PR CreateThread (Main
, . . . ) ;

. . .

nsThread : : Main ( . . . ) {
. . .
mState = mThread−>GetSta te ( . . . ) ;
. . .

Figure 4.2: Order violation bug #61369 in Mozilla (nsthread.cpp).

example, bug #61369 in Mozilla, is shown in Figure 4.2: nsThread::Main() in Thread 2 can

access mThread’s state before it is initialized (before PR CreateThread in Thread 1 returns).

Data races occur when two different threads access the same memory location, at least

one access is a write, and the accesses are not ordered properly by synchronization.

Deadlocks occur when two or more operations circularly wait for each other to release

acquired resources (e.g., locks).

4.2 Methodology

We now present an overview of the three projects we examined, as well as the

methodology we used for identifying and analyzing concurrency bugs and their bug-fix

process.
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4.2.1 Projects Examined

We selected three large, popular, open source projects for our study: Mozilla,

KDE and Apache. The Mozilla suite is an open-source web client system implementing a

web browser, an email client, an HTML editor, newsreader, etc. Mozilla contains many

different sub-projects, e.g., the Firefox web browser, and the Thunderbird mail client. In

this chapter, we mainly focus on the core libraries, and the products related to the Firefox

web browser. KDE is a development platform, a graphical desktop, and a set of applications

in diverse categories. Apache is the most widely-used web server; we analyzed the HTTP

server and its supporting library, APR, which provides a set of APIs that map to the

underlying operating system. The evolution time span and source code size are presented

in Table 4.1.

We focus on these three projects for several reasons. First, their long evolution

(more than 10 years), allow us to observe the effect of longer or shorter histories on prediction

accuracy. Second, they are highly concurrent applications with rich semantics, and have

large code bases, hence predicting bug type and location is particularly helpful for finding

and fixing bugs. Finally, given the popularity of their core components that constitute the

object of our study, finding and fixing concurrency bugs is a key priority for these projects.

We believe that these characteristics make our chosen projects representative of some of the

biggest challenges that the software development community faces as complex applications

become more and more concurrent.
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4.2.2 Identifying Concurrency Bugs

We now describe the process for collecting concurrency bugs and computing the

attributes of their bug-fixing process. All three projects offer public access to their bug

trackers [12, 75, 108]. We first selected the fixed bugs; then we split the fixed bugs into

concurrency and non-concurrency bugs using a set of keywords and cross-information from

the commit logs; finally we categorized the concurrency bugs into the four types. Our

process is similar to previous research [46, 93]. Potential threats to the validity of our

process will be discussed in Section 4.7. The results, explained next, are given in Table 4.1.

Identifying “true” bugs. To identify the viable bug report candidates, we only

considered bugs that have been confirmed and fixed; that is, we only selected bug reports

marked with resolution FIXED and status CLOSED. We did not consider bugs with other

statuses, e.g., UNCONFIRMED and other resolutions (e.g., INVALID, or WONTFIX)—the reason

is that for bugs other than FIXED and CLOSED, the bug reports did not have detailed in-

formation and discussions also in general, they will not contain correct patches. Without

reasonably complete bug reports it would be impossible for us to completely understand

the root cause of the bugs.

We limited the searching process to those parts of the project with a long history

and large source code base. For Mozilla, we only selected 8 products which are directly

related to the core and browser parts: Core, Firefox, Directory, JSS, NSPR, NSS, Plugins,

and Rhino [19]. For Apache, we only chose C/C++ products: the Apache HTTP Server

and the Apache Portable Runtime. For KDE, we considered all products in the KDE

Bugtracking System.

67



Candidate concurrency bug reports. As the 5th column of Table 4.1 shows, there

were more than 250,000 bugs left after the previous step. To make our study feasible, we

automatically filtered bugs that were not likely to be relevant to concurrency by performing

a search process on the bug report database. We retained reports that contained a keyword

from our list of relevant concurrency terms; the list included terms such as “thread”, “syn-

chronization”, “concurrency”, “mutex”, “atomic”, “race”, “deadlock”. Note that similar

keywords were used in the previous research [46,93]. In Table 4.1 (6th column), we show the

number of bug reports that matched these keywords. Many bugs, however, are mislabeled,

as explained shortly. Our keyword-based search for bug reports could have false negatives,

i.e., missing some of the real concurrency bugs (which we identify as a threat to validity in

Section 4.7). However, we believe that a concurrency bug report that did not contain any

of the aforementioned keywords is more likely to be incomplete and much more difficult to

analyze its root cause.

Determining the concurrency bug type. We then manually analyzed the 2,459 bug

reports obtained in the previous step to determine (1) whether they describe an actual

concurrency bug and if yes, (2) what is the concurrency bug type. In addition to the

bug description, some reports also contain execution traces, steps to reproduce, discussion

between the developers about how the bug was triggered, fix strategies, and links to patches.

We used all these pieces of information to determine whether the bug was a concurrency

bug and its type.

For all bugs we identified as concurrency bugs, we analyzed their root cause and fix

strategy, and binned the bug into one of the four types described in Section 4.1. In the end,
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we found 250 concurrency bugs: 134 in Mozilla, 75 in KDE, and 41 in Apache; the numbers

for each category are presented in the last set of grouped columns of Table 4.1; the Mozilla

and Apache numbers are in line with prior findings by other researchers, though their study

has analyzed bugs up to 2008 [93]. We found that, in Mozilla and Apache, atomicity

violations were the most common, while in KDE, data races were the most frequent.

Note that searching bug reports alone is prone to false positives (incorrectly iden-

tifying a non-concurrency bug as a concurrency bug) and false negatives (missing actual

concurrency bugs) [46]. To reduce the incidence of such errors, we also keyword-searched

the commit logs (e.g., CVS and Mercurial for Mozilla) and then cross-referenced the infor-

mation obtained from the bug tracker with the information obtained from the commit logs.

For instance, Mozilla bug report #47021, did not contain any of the keywords but we found

the keyword race in the commit log associated with the bug, so based on this information

we added it to our set of concurrency bugs to be categorized.

Concurrency bug types and keywords. We found many bug reports that contained

keywords pertaining to other types of bugs. The following table shows the percentage of

bug reports in each category (computed after our manual categorization) containing each

of the four keywords that one would naturally associate with the corresponding bug type.

Percentage of bug reports containing the keyword
Atomicity Order Race Deadlock

Keyword bug reports bug reports bug reports bug reports

“atomic” 29.35 14.54 8.16 1.85

“order” 21.74 40.00 16.33 14.81

“race” 70.65 63.64 51.02 7.41

“deadlock” 16.30 16.36 12.24 94.44

Note how 70.65% of the atomicity violation reports contain the keyword “race”,

while only 29.35% contain the keyword “atomic”. In fact, a higher percentage of atomicity
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violation and order violation bug reports contain the term “race” (70.65% and 63.64%,

respectively) compared to the race bug reports (51.02%). These findings suggest that: (1)

while searching for concurrency bug reports using an exhaustive keyword list followed by

manual analysis has increased our effort, it was essential for accurate characterization, as

many bugs contain misleading keywords, and (2) using approaches that can assign weights

to, and learn associations between, keywords, are likely to be promising in automatically

classifying bug types—we do exactly that in Section 4.5.

4.2.3 Collecting Bug-fix Process Data

To understand the nature of, and differences in, bug-fixing processes associated

with each concurrency bug type, we gathered data on bug features—the time, patches,

developers, files changed, etc., that are involved in fixing the bugs. We now provide details

and definitions of these features.

Patches represents the number of patches required to fix the bug; we extract it

from the bug report. Days represents the time required to fix the bug, computed as the

difference between the date the bug was opened and the date the bug was closed. Files

is the number of files changed in the last successful patch. We extracted the number of

files changed by analyzing the bug report and the commit information from the version

control system. Total patch size indicates the combined size of all patches associated with

a bug fix, in KB. Developers represents the number of people who have submitted patches.

Comments is the number of comments in the bug report. Severity: to capture the impact

that the bug has on the successful execution of the applications, our examined projects use
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a numerical scale for bug severity. Mozilla uses a 7-point scale1, while KDE and Apache

use 8-point scales. To have a uniform scale, we mapped KDE2 and Apache3 severity levels

onto Mozilla’s.

4.3 Quantitative Analysis of Bug-fixing Features

Prior work has found that fixing strategies (that is, code changes) differ widely

among different classes of concurrency bugs [93]; however, their findings were qualitative,

rather than quantitative. In particular, we would like to be able to answer questions such

as: Which concurrency fixes require changes across multiple files? Do atomicity violation

fixes require more patches to “get it right” compared to deadlock fixes? Which concurrency

bug types take the longest to fix? Are concurrency bugs more severe than non-concurrency

bugs? Do concurrency bugs take longer to fix than non-concurrency bugs?

Therefore, in this section we perform a quantitative assessment of the bug-fix

process for each concurrency bug type, as well as compare concurrency and non-concurrency

bugs, along several dimensions (features). While bug-fixing effort is difficult to measure,

the features we have chosen provide a substantive indication of the developer involvement

associated with each type of bug. Moreover, this assessment is essential for making inroads

into predicting the number of concurrency bugs in the code that are yet to be discovered.

To compare concurrency bugs and non-concurrency bugs, we randomly selected

250 non-concurrency bugs found and fixed in the same product, component, software version

and milestone with the 250 concurrency bugs we found. The reason why we used the same

10=Enhancement, 1=Trivial, 2=Minor, 3=Normal, 4=Major, 5=Critical, 6=Blocker.
20=Task, 1=Wishlist, 2=Minor, 3=Normal, 4=Crash, 4=Major, 5=Grave, 6=Critical.
30=Enhancement, 1=Trivial, 2=Minor, 3=Normal, 4=Major, 4=Regression, 5=Critical, 6=Blocker.
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product/component/version/milestone for concurrency and non-concurrency bugs was to

reduce potential confounding factors. We manually validated each non-concurrency bug

and bug report for validity, as we did with concurrency bugs.

4.3.1 Feature Distributions

We now present our findings. For each feature, in Figure 4.3 we show a boxplot

indicating the distribution of its values for each concurrency bug type. Each boxplot repre-

sents the minimum, first quartile, third quartile and maximum values. The black horizontal

bar is the median and the red diamond point is the mean. The second-from-right boxplot

shows the distribution across all concurrency bugs. The rightmost boxplot shows the distri-

bution for non-concurrency bugs. For legibility and to eliminate outliers, we have excluded

the top 5% and bottom 5% when computing and plotting the statistical values. We now

discuss each feature.

Patches are one of the most important characteristics of bug fixing. Intuitively, the

number of patches could be used to evaluate how difficult the bugs are—the more patches

required to “get it right,” the more difficult it was to fix that bug. We found (Figure 4.3)

that atomicity violations take the highest number of patches (usually 2–5, on average 3.5),

while order violations take on average 2.4 patches, followed by races at 1.7 patches and

deadlocks at 1.6 patches. Non-concurrency bugs require on average 1.4 patches.

Days. Predicting the bug-fix time is useful for both concurrency bugs and non-

concurrency bugs, as it helps managers plan the next releases. We found (Figure 4.3) that

the average bug-fix time is longer than 33 days for all 4 types of concurrency bugs, which
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Figure 4.3: Feature distributions for each class of concurrency bugs (Atomicity, Order, Race,

Deadlock), all concurrency bugs combined (Overall) and non-concurrency bugs (NC).

means that usually the time cost associated with concurrency bugs is high. Similar to the

number of patches, atomicity violation bugs took the longest to fix (123 days on average),

order violations and races took less (66 days and 44 days, respectively), while deadlocks
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were fixed the fastest (33.5 days on average). Non-concurrency bugs take on average 34

days to be fixed.

One example of why atomicity bugs take long to resolve is Mozilla bug #225525.

This bug, reported on 2003/11/12, was first identified as a data race and the same day the

developer added a condition check to fix it. However the issue resurfaced on 2006/03/30,

the bug was deemed to actually be an atomicity violation, and after a lengthy fixing process,

was finally marked as FIXED on 2006/08/22. On the other hand, the root cause of Mozilla

#165639 is deadlock, it was got fixed the next day.

Files. This characteristic can be used to estimate the extent of changes and also

the risk associated with making changes in order to fix a bug—the higher the number

of affected files, the more developers and inter-module communications are affected. We

found (Figure 4.3) that bug fixes affect on average 2.8 files for atomicity, 2.4 files for order

violations, 1.9 files for races and 1.8 files for deadlocks. Non-concurrency bugs affect on

average 1.6 files.

Total patch size. The total size of all patches, just like the number of files, can be

used to indicate the risk associated with introducing the bug-fixing changes: if the size of

the patches is large, many modifications have been made to the source code (e.g., pervasive

changes, large-scale restructuring). We found that average concurrency patch sizes tend to

be large, with atomicity (27.6KB) and order violations (19.7KB) far ahead of races (7.7KB)

and deadlocks (5.1KB). Non-concurrency patches are smaller, 3.8KB on average.

Comments. The number of comments in the report can indicate hard-to-find/hard-

to-fix bugs that developers solicit a lot of help with. Examples of such bugs that are hard
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to reproduce and fix include Mozilla bugs #549767, #153815, #556194, where even after

removing the “mark as duplicate” comments, there are more than 100 comments dedicated

to reproducing and fixing the bug. We found that the average number of comments is again

highest for atomicity violations (29.4) followed by order violations (20.7), races (12.0) and

deadlocks (10.6). The number is much smaller for non-concurrency bugs (7.6).

Developers. The more developers are involved into submitting patches for a bug,

the more difficult it was to find and fix that bug. We found that atomicity fixes involve

on average 1.39 developers while the other bugs involve fewer developers (1.21). Non-

concurrency bugs involve, on average, 1.03 developers.

Severity. Bug severity is important as developers are more concerned with higher

severity bugs which inhibit functionality and use. We found that all types of concurrency

bugs have average severity between 3.6 and 3.7. Since severity level 3 is Normal and level

4 is Major, we can infer that concurrency bugs are higher-priority bugs. Non-concurrency

bugs tend to be lower severity (mean 3.1), which underlines the importance of focusing on

concurrency bugs.

4.3.2 Differences Among Concurrency Bugs

We now set out to answer another one of our initial questions: Are there significant

differences in the bug-fix process among different categories of concurrency bugs?

To answer this question we performed a pairwise comparison across all pairs of

concurrency bug types. For generality and to avoid normality assumptions, we performed

the comparison via a non-parametric test, the Wilcoxon signed-rank test. To avoid type I

errors, we performed a Wilcoxon signed-rank test by applying false discovery rate (FDR)
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Features Category Order Race Deadlock

Atomicity 0.0116∗ <0.0001∗∗ <0.0001∗∗

Patches Order 0.0168∗ 0.0084∗∗

Race 0.8427

Atomicity 0.0790 0.1728 0.0002∗∗

Days Order 0.6302 0.0790
Race 0.0270∗

Atomicity 0.4654 0.1215 0.0868
Files Order 0.6378 0.5034

Race 0.7363

Atomicity 0.0079∗∗ <0.0001∗∗ <0.0001∗∗

Patch Order 0.2666 0.0412∗

size Race 0.2814

Atomicity 0.0367∗ <0.0001∗∗ <0.0001∗∗

Comments Order 0.0034∗∗ 0.0063∗∗

Race 0.5370

Atomicity 0.0110∗ 0.0110∗ 0.0005∗∗

Developers Order 0.9690 0.2695
Race 0.2695

Atomicity 0.7933 0.7933 0.9228
Severity Order 0.7933 0.7933

Race 0.7933

Table 4.2: Wilcoxon Rank Sum and Signed Rank Tests results; p-values were adjusted using

the FDR procedure; ∗∗ indicates significance at p = 0.01 while ∗ at p = 0.05.

procedures [18]. We present the results, obtained after the correction, in Table 4.2. The

starred values indicate significance at p = 0.01 (∗∗) and p = 0.05 (∗), respectively. We found

that atomicity and deadlock tend to be significantly different from the other categories,

while for order and race, it depends on the feature. We also found that bug severity does

not differ significantly among concurrency bug types.
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4.3.3 Discussion

Concurrency bugs v. non-concurrency bugs. We found significant differences for

all these features between concurrency and non-concurrency bugs. In Figure 4.3, the last

two boxplots in each graph show the distribution of values for that feature for all con-

currency bugs (Overall) and non-concurrency bugs (NC). We found that, compared to

non-concurrency bugs, concurrency bugs involve 72% more patches for a successful fix, take

twice as long to fix, bug-fixes affect 46% more files, require patches that are four times

larger, generate 2.5 times as many comments, involve 17% more developers, and have a

17% higher severity.

For each feature, the differences between concurrency and non-concurrency bugs

are significant (p < 2e−16)); we used Cliff’s delta to compute the effect size measure; the

results indicated significance (effect size Large for all features except severity, where they

were Medium). For brevity, we omit presenting the individual results.

Differences among types. Based on our findings, we infer that (1) concurrency bugs

are usually difficult to find the root cause of and get the correct fix for, and (2) there are

significant differences between different types of concurrency bugs hence these types should

be considered separately. These two points provide the impetus for the work presented in

the remainder of the chapter.
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4.4 Predicting the Number of Concurrency Bugs

Costs associated with software evolution are high, an estimated 50%–90% of total

software production costs [80,131]. Predicting the number of extant bugs, that will have to

be fixed in upcoming releases, helps managers with release planning and resource allocation,

and in turn can reduce software evolution costs. Therefore, in this section we focus on

predicting the future number of concurrency bugs.

In Section 4.3, we observed relationships between the number of concurrency bugs

and the features we analyzed. Hence, to estimate the likelihood of concurrency bugs in

the project, we naturally turn to using the features as inputs. In this section we focus on

(1) understanding the effect of each feature on each type of concurrency bug, as well as

its prediction power for the number of those concurrency bugs, (2) using the features to

build predictor models and evaluating the accuracy of the models, and (3) understanding

the effect of time and autocorrelation on prediction accuracy. In particular, we explore two

predictors models—one based on multiple linear regression and one based on time series.

Time granularity. There is an accuracy–timeliness trade-off in how long a window we use

for bug prediction. A time frame too short can be susceptible to wild short-term variations

or lack of observations, while too long a time frame will base predictions on stale data.

Therefore, we built several models, with varying time spans, for computing past values of

independent variables and bug numbers. In the first model, named Monthly, we counted

the dependent variable (number of bugs) and independent variables (patches, days, files,

patch size, etc.) at a monthly granularity based on the open date of the bugs, e.g., one
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observation corresponds to May 2010, the next observation corresponds to June 2010, and

so on. We also tried coarser granularities, 3-months, 6-months, and 12-months, but the

predictions were less accurate (albeit slightly). Therefore, in the remainder of this section,

monthly granularity is assumed.

4.4.1 Generalized Linear Regression

To analyze the relationship between the number of concurrency bugs and each

feature, we built a generalized linear regression model to avoid the normality assumption.

We choose the number of bugs as dependent variable and the features, i.e., patches, days,

files, patch size, comments, developers, and severity, as independent variables.

In Table 4.3 we present the regression results for each type of concurrency bug and

across all concurrency bugs (again, this is using the monthly granularity). For each inde-

pendent variable, we show the regression coefficient and the p-value, that is, the significance

of that variable. We found that not all independent variables contribute meaningfully to the

model. For example, for data race bugs, files, patch size, developers and severity are good

predictors (low p-value), but the other features are not; moreover, the regression coefficients

for files, developers and severity are positive. Intuitively, these results indicate that past

changes to files, high number of developers and high bug severity are correlated with a high

incidence of data race bugs later on; since the coefficient for patch size is negative, it means

that past patches will actually reduce the incidence of data races in upcoming releases. For

atomicity violations and order violations we have similar results. When predicting the num-

ber of all concurrency bugs (last two columns in Table 4.3), we found that three variables

contribute to the model: files, developers and severity.

79



F
e
a
tu

re
s

A
to

m
ic

it
y

v
io

la
ti

o
n

O
rd

e
r

v
io

la
ti

o
n

D
a
ta

ra
c
e

D
e
a
d

lo
ck

A
ll

c
o
n

c
.

co
effi

ci
en

t
p
-v

al
u

e
co

effi
ci

en
t

p
-v

al
u

e
co

effi
ci

en
t

p
-v

al
u

e
co

effi
ci

en
t

p
-v

al
u

e
co

effi
ci

en
t

p
-v

al
u

e

P
at

ch
es

0.
01

96
0.

0
14
∗

0.
01

97
0.

09
4

0.
01

71
0.

17
3

-0
.0

09
0

0.
60

7
0.

00
32

0.
70

9

D
ay

s
-0

.0
00

1
0.

0
04
∗∗

<
0.

00
01

0.
91

2
<

0.
00

01
0.

36
0

<
0.

00
01

0.
95

0
-0

.0
00

1
0.

08
4

F
il

es
0.

01
47

0.
0
01
∗∗

0.
03

21
<

0.
00

1
∗∗

0.
01

61
0.

00
2∗
∗

0.
03

13
<

0.
00

1
∗∗

0.
01

36
0.

00
3
∗∗

P
at

ch
si

ze
-0

.0
01

1
<

0.
00

1∗
∗

-0
.0

01
1

<
0.

00
1
∗∗

-0
.0

03
8

<
0.

00
1∗
∗

0.
00

17
0.

14
1

-0
.0

00
4

0.
12

2

C
om

m
en

ts
-0

.0
00

6
0.

1
76

-0
.0

01
7

0.
00

3
∗∗

0.
00

08
0.

12
6

0.
00

17
0.

04
9
∗

-0
.0

00
4

0.
35

4

D
ev

el
o
p

er
s

0.
15

17
<

0.
00

1∗
∗

0.
20

35
¡0

.0
01
∗∗

0.
18

47
<

0.
00

1∗
∗

0.
20

86
<

0.
00

1
∗∗

0.
17

57
<

0.
00

1
∗∗

S
ev

er
it

y
0.

12
57

<
0.

00
1∗
∗

0.
10

55
<

0.
00

1
∗∗

0.
11

73
<

0.
00

1∗
∗

0.
10

35
<

0.
00

1
∗∗

0.
13

31
<

0.
00

1
∗∗

P
se

u
d

o
R

2
0
.9

3
8
8

0
.9

5
7
2

0
.9

7
0
1

0
.9

6
5
3

0
.9

1
6
5

T
a
b

le
4.

3:
R

es
u

lt
s

o
f

th
e

g
en

er
a
li

ze
d

re
gr

es
si

on
m

o
d

el
;
∗∗

in
d

ic
at

es
si

gn
ifi

ca
n

ce
at
p

=
0.

01
;
∗

in
d

ic
at

es
si

gn
ifi

ca
n

ce
at
p

=
0.

05
.

80



HHH
HHHBug

Independent variables

category Patches Days Files Patch size Comments Developers Severity

Atomicity X X X X X X X
Order X X X X X X
Race X X X X X X
Deadlock X X X X X X
All concur. X X X X X X

Table 4.4: Summary of stepwise regression model.

Finally, we used the Cox & Snell pseudo R2 to measure how well the model fits the

actual data—the bigger the R2, the larger the portion of the total variance in the dependent

variable that is explained by the regression model and the better the dependent variable is

explained by the independent variables. We show the results in the last row of Table 4.3;

the results indicate high goodness of fit, 0.91–0.97, which confirms the suitability of using

the model to predict the number of concurrency bugs based on feature values.

Finding parsimonious yet effective predictors. To balance prediction accuracy with

the cost of the approximation and avoid overfitting, we looked for more parsimonious mod-

els that use fewer independent variables. We applied backward stepwise regression, a semi-

automated process of building a model by successively adding or removing independent

variables based on their statistical significance, then computing the Akaike Information

Criterion (AIC) for finding the important variables. Table 4.4 shows the result of stepwise

regression; we use ‘X’ to mark the independent variables that should be used when con-

structing predictor models. For example, for races, we can still get a good prediction when

eliminating the days feature.
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4.4.2 Times Series-based Prediction

Since our data set is based on time series, and prior work has found bug au-

tocorrelation (temporal bug locality [78]), we decided to investigate the applicability of

time series forecasting techniques for predicting concurrency bugs. In particular, we used

ARIMA (Autoregressive integrated moving average), a widely-used technique in predict-

ing future points in time series data, to build a concurrency bug prediction model. In a

nutshell, given a time series with t observations X1, . . . , Xt and error terms ε1, . . . , εt, an

ARIMA model predicts the value of an output variable X̂t+1 at time step t + 1; that is,

X̂t+1 = f(X1, . . . , Xt, ε1, . . . , εt). Note that prior values for X, i.e., X1, . . . , Xt are part

of the model, hence the term “autocorrelation”. The quality of the model is measured in

terms of goodness of fit (adjusted R2) and other metrics such as RMSE—the root mean

squared error between the predicted (X̂t) and actual (Xt) values.

Concretely, we constructed ARIMA predictor models for each bug class. In each

case X1, . . . , Xt were the number of bugs; ε1, . . . , εt were the values of independent variables

(patches, days, files, etc.); and X̂1 . . . , X̂t were the predicted values; the differences between

Xi and X̂i were used when computing the prediction accuracy. For example, if XMay 2010

was the actual number of atomicity bugs in May 2010, then the time series model used

XApril 2010, XMarch 2010, . . ., as lagged (true) values; PatchesApril 2010, PatchesMarch 2010,

. . ., DaysApril 2010, DaysMarch 2010, . . ., FilesApril 2010, F ilesMarch 2010, . . ., etc. as error

terms; and X̂May 2010, X̂April 2010, . . . as predicted values.

Table 4.5 shows the ARIMA results for each concurrency bug type and each time

granularity; we performed this analysis using the R toolkit. The first column shows the
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Bug RMSE Adjusted ARIMA
category R2 parameter

Atomicity 0.3485 0.8626 ARIMA(1,1,1)

Order 0.1947 0.9149 ARIMA(0,0,0)s

Race 0.1832 0.9285 ARIMA(1,0,0)

Deadlock 0.1728 0.9244 ARIMA(2,0,0)s

All conc. 0.5400 0.8965 ARIMA(0,0,0)

Table 4.5: Time series based prediction model result.

concurrency bug type, the second column shows the root mean square error (the lower, the

better); the third column shows the goodness of fit R2; the last column shows the ARIMA

parameter that was automatically chosen by R as best-performing model. ARIMA has

three parameters: (p, d, q) where p is the autoregressive (AR) parameter, d is the number

of differencing passes and q is the moving average (MA) parameter; put simply, p and q

indicate the number of past samples involved in the prediction. For example, for Atomicity,

the best model was ARIMA(1,1,1) meaning it got best results when X̂t was computed using

just the prior observation Xt−1 and the prior error term εt−1, and differencing once. The

time series analysis has also found seasonal patterns in the bug time series. Such entries

are marked with a trailing ‘s’, e.g., for Order and Deadlock bugs. In all cases, the season

length was determined to be 12 months—this is not surprising, given that certain projects

follow a fixed release cycle; we leave further investigation of seasonal patterns to future

work. We observed that the RMSE is low for our data sets—the typical difference between

the predicted and actual bug numbers was 0.17–0.54, depending on the bug type. To

illustrate the accuracy of time series-based prediction, in Figure 4.4 we show the predicted

(blue, triangle marks) and actual (red, round marks) time series for the total number of

concurrency bugs each month.
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Discussion. We now discuss why multiple models are needed. ARIMA is based on au-

tocorrelation, that is, it works well when the current value Xt and the lagged value Xt−l

are not independent. While accurate in helping managers forecast the number of bugs, the

autoregressive nature of ARIMA models in a sense espouses the time locality of concurrency

bugs: if the prior release was buggy, the next release is likely to be buggy, too—in that

case the managers can delay the next release to allow time for finding and fixing the bugs.

However, at the risk of stating the obvious, the managers cannot control the past number of

bugs, but by examining the model and the non-autoregressive features (number of patches,

files, developers, etc.) they can adjust the software process so that future values of the

non-autoregressive features will permit the number of bugs to decrease. It is also up to the

project managers to decide whether a one-month horizon is enough for release planning, or

longer horizons (e.g., 3- or 6-months) would be more suitable.

4.5 Predicting the Type of Concurrency Bugs

When a new bug report has been filed and is examined, determining the nature

of the bug is essential for a wide range of software engineering tasks, from bug triaging to

knowing whom to toss a bug to [68], to finding the root cause and eventually fixing the bug.

In particular for concurrency bugs, the root causes and fixing strategies can vary

widely among bug categories (Section 4.1). Therefore, when a concurrency bug report is

filed, it is essential that the developers determine its category in order to speed up the fixing

process. To support this task, using the categorized bugs reports described in Section 4.3,

we built a predictor model that, given a newly-filed bug report, predicts which type it is:

85



atomicity violation, order violation, deadlock or race. We next describe the approach and

then the results.

4.5.1 Approach

The approach is based on machine learning, i.e., classifiers that use relevant key-

words extracted from bug reports as input features and learn the association between key-

words and specific concurrency bug types based on a Training Data Set (TDS). Next, we

verify the prediction accuracy by presenting the classifier with validation inputs and com-

paring the classifier output with the true output; the set of bug reports used for validation

is called a Validation Data Set (VDS). We now describe the predictor construction process.

Textual data preparation. We applied standard information retrieval techniques to

extract relevant keywords from bug reports: we used Weka to transform bug reports from

the textual description available in the bug tracker into a set of keywords usable by the

classifier4 and build our TDS.

Classifier choice. After preparing the TDS, the next step was to train the classifier and

validate the learned model. We use Weka’s built-in Näıve Bayes, Bayesian Network, C4.5

and Decision Table classifiers in our approach.

Training and validation. As shown in our prior work [20], using a larger dataset for

training bug classifiers does not necessarily yield better results; in fact, training a classifier

4To extract keywords from bug reports, we employed TF-IDF, stemming, stop-word and non-alphabetic
word removal [101], using Weka’s StringtoWordVector class.
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Training Validation Classifier
set set Näıve Bayesian C4.5 Decision

Bayes Net Table

Mozilla 39.39 63.64 45.45 60.61
All KDE 37.50 56.25 56.25 31.25

All projects 38.00 60.00 48.00 50.00

Mozilla 50.00 60.00 40.00 63.33
2004+ KDE 63.64 72.73 36.36 72.73

All projects 52.38 61.90 38.10 66.67

Mozilla Mozilla 60.00 65.00 55.00 50.00

KDE KDE 46.67 60.00 60.00 53.33

Apache Apache 57.14 71.43 71.43 71.43

Table 4.6: Accuracy of bug category prediction (%); highest accuracy indicated in bold.

with old samples can decrease prediction accuracy as the classifier is trained with stale

input-output pairs that do not match the current project state.

To quantify the effect of recent vs. old training samples, we constructed two

bug training/validation sets: one set, referred to as All, contained all the concurrency bug

reports since project inception (that is 1998–2012 for Mozilla, 1999–2012 for KDE, and

2000–2012 for Apache); the other set, referred to as 2004+, contained only more recent

samples, i.e., bug reports from 2004–2012 for each project. We chose threshold 2004 as a

trade-off between still having a significant history yet eliminate the initial evolution period.

In both cases, the TDS/VDS split was 80%/20%, as follows. To construct the VDS,

we sorted the bug reports in the 2004+ dataset chronologically. For the 2004+ scenario,

we set aside the most recent 20% as the VDS. For the All scenario, to preserve the 80/20

proportion, we kept the same VDS but from the TDS we discarded a random set so that

the TDS size for All was the same as for 2004+.
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4.5.2 Results

Table 4.6 shows each classifier’s accuracy. The first column indicates the training

set we used, while the second column indicates the validation set. The rest of the columns

show the prediction accuracy, in percents, using different classifiers. We highlight the best

results in bold; in a nutshell, Bayesian Net performs best (as it is usable across the board).

The first set of rows shows the results when the All training set was used, that is

bug reports selected from all projects across the entire time span. In the second column

we show the VDS used: bugs from Mozilla, KDE, or from all three projects (we did not

perform this validation for Apache due to its low representation in the VDS). We found that

the best classifier was Bayesian Net, which attained 56.25%–63.64% prediction accuracy in

identifying the concurrency bug type.

The second set of rows shows the results when the 2004+ (recent history) training

set was used. We found that the best classifier was Decision Table, which attained 63.33%–

72.73% prediction accuracy in identifying the concurrency bug type. We consider a predictor

with this level of accuracy to be potentially very useful to developers. Also, the deleterious

effect of “stale” training samples is readily apparent, as all classifiers except C4.5 perform

better on this more recent data set, 2004+, than on the All data set.

In the last three rows we show the results obtained by using project-specific TD-

S/VDS sets. We used the complete-history data set for Mozilla and Apache; in KDE we

could not find any concurrency bugs prior to 2004. We found that Bayesian Net performs

best for Mozilla (65%), Bayesian Net and C4.5 perform best for KDE (60%), while for

Apache, Bayesian Net, C4.5 and Decision Table are tied, with 71.43%.
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Training Bug Evaluation measure
/Validation set category precision recall F-measure

Atomicity 0.647 0.524 0.579
All Order 0.600 0.429 0.500
/All projects Race 0.429 0.750 0.545

Deadlock 0.778 1.000 0.875

Atomicity 0.625 0.625 0.625
2004+ Order 0.571 0.333 0.421
/All projects Race 0.545 0.750 0.632

Deadlock 0.750 1.000 0.857

Table 4.7: Detailed result of the Bayesian Net classifier.

Overall the Bayesian Net classifier had the best performance in most cases (7 out

of 9). Hence in Table 4.7 we show the precision, recall and F-measure attained with this

classifier. We found that deadlock bugs have the highest precision, recall and F-measure

value since they are quite different from the other three classes. Order violation has the

lowest precision, recall and F-measure value. Upon manual inspection, we found that in

several cases order bugs were classified as data races (the nature of order and race bugs

makes them difficult to distinguish in certain cases). For instance, KDE bug #301166 was

classified as data race due to the keywords “thread” and “asynchronously”, but it could be

considered both an order violation and data race bug.

Observations. These results reveal several aspects. First, for a new project we recom-

mend that project managers choose Bayesian Net as classifier, since it has performed best

in most cases. Second, recent training sets achieve the highest accuracy (compare 2004+

with All) when using the right classifier—Decision Table in our case. Third, a large, cross-

project training dataset can yield better results than per-project training sets—compare

KDE trained on 2004+ with KDE trained on its own data sets; this might be due to lower
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Mozilla KDE Apache All projects

deadlock deadlock between deadlock

moztrap cef mac warhammer

structure synchron crash concur

race concur import first

network hang got atom

spin order id network

xpcom callback call race

semaphore backport determine spin

gclevel manage intern lock

runtime cur subsequ backgroundparser

Table 4.8: Strongest prediction keywords.

bug report quality in KDE. This might be promising for predicting bugs in a new project

for which we have no large concurrency bug sets; we leave this to future work.

What do classifiers learn? To gain insight into how classifiers learn to distinguish

among bug types, we extracted the 10 “strongest” nodes, i.e., with the highest conditional

probability in the trained Bayesian Nets, on the data sets used in the last four rows of

Table 4.6 (that is, each project trained on its own bug reports and an all-projects VDS

trained on the 2004+ TDS). Table 4.8 lists the keywords in these nodes, in the order of

strength. We found that, in addition to textual keywords (e.g., “deadlock”, “race”, “spin”,

“hang”), the network has learned to use names of program classes, variables and functions

(e.g., “gclevel”, “cef”, “cur”, “backgroundparser”). We believe that the high prediction

power of these program identifiers could be a useful starting points for static analysis, an

investigation we leave to future work. Interestingly, another high-probability node was the

developer ID of a frequent Mozilla contributor (“warhammer” in the last column).

Note that we have built our classifier assuming the input is a concurrency bug

report. However, as future bug reports will not be subject to our manual analysis to decide
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whether they are concurrency or non-concurrency (our goal is to avoid manual intervention)

we will not have ground truth on whether they represent a concurrency or a non-concurrency

bug. To solve this, we have built a high-accuracy (90%) “pre-classifier” that triages bug

reports into concurrency and non-concurrency. For brevity, we leave out details of this

classifier. Since the proportion of concurrency bugs is small compared to other bugs, we

would still have some false positives to manually eliminate among the classified bug reports,

but the workload is reduced greatly thanks to the pre-classifier.

4.6 Predicting Concurrency Bugs’ Location

The previous section showed one useful step for finding and fixing a bug: predicting

its type. It is also useful to figure out where, in the source code, the new bug is likely to be

located; hence in this section we present our approach for predicting the likely location of

a concurrency bug.

4.6.1 Approach

We used a classifier that takes a bug report as input and produces a set of source

code paths as output. More specifically, the classifier’s output is a vector of binary values,

and each position in this vector corresponds to a source code path. For example, consider

three bugs #1, #2, and #3, such that #1’s location was code path /foo/, #2’s location was

path /bar/, and #3 has affected both code paths /bar/ and /baz/. Suppose the order in the

output vector is (/foo/, /bar/, /baz/). Then the correct classifier output for bug #1 would be

(1,0,0); for bug #2 it would be (0,1,0); and for bug #3 it would be (0,1,1).
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4.6.2 Results

The training process is similar to the one used in the prior section, that is, we used

80% of the bug set for training and 20% for validation. Measuring prediction accuracy is

slightly more convoluted, because a bug can affect multiple files, and we are interested in

predicting a Top-k of most likely locations, rather than a single location.

We now explain how we compute Top-k accuracy when a single bug spans multiple

code paths. For each bug i in the VDS, assuming the bug has affected j paths, we have a

list of true source code paths {tpathi1, . . . , tpathij} (each unique path is called a “class”;

we employed Mulan [142] for this part). We present the bug report i to our classifier,

which returns a list of m likely output paths {opathi1, . . . , opathim}. More specifically,

for each validation input, Mulan returns as output a vector of real numbers indicating

the probability of the sample belonging to each class; probabilities under a threshold are

replaced with 0. Next, from the set {opathi1, . . . , opathim} we select the highest-ranked k

output paths, in order of probability, i.e., a subset {opathi1, . . . , opathik}. Then, we check

if the set {tpathi1, . . . , tpathij} is a subset of {opathi1, . . . , opathik}. Finally, we compute

Top-k accuracy: for Top-1 accuracy, we count a hit if the probability value assigned to the

true path class is the highest-ranked in output vector; for bugs affecting multiple files, say

2, if the 2 highest probabilities correspond to the true path classes, and so on. To compute

Top-10% accuracy, we check whether the bug location(s) is(are) in the Top-10% highest

output class probabilities; similarly for Top-20%.

In Table 4.9 we present the results. In the first column we show the project, and

in the columns 2–4 we present the attained accuracy for each of the three metrics. The last
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Project Accuracy (%) Classifier
Top-1 Top-10% Top-20%

Mozilla 31.82 50.00 59.09 Decision Table

KDE 25.00 50.00 56.25 Näıve Bayes

Apache 22.22 44.44 55.56 Bayesian Net

All projects 26.09 47.83 52.17 Näıve Bayes

Table 4.9: Source path prediction results.

column shows the classifier used to achieve that accuracy (we only present the best results

across the four classifiers).

We achieve 22.22%–31.82% Top-1 accuracy, depending on the project (column

2). We consider this to be potentially very useful for locating bugs, because it means the

developer is presented with the exact bug location in 22.22%–31.82% of the cases, depending

on the project (we had 45 path locations for Mozilla, 47 for KDE and 19 for Apache). When

measuring Top-10% accuracy, the accuracy increases to 44.44%–50%. When measuring

Top-20% accuracy, we obtained higher values, 55.26%–59.09%, which is expected. That is,

in more than half the cases, the bug location is in the Top-20% results returned by the

classifier. Since all our projects have large code bases, narrowing down the possible bug

location can considerably reduce bug-fixing time and effort.

On a qualitative note, we found that certain locations are more prone to concur-

rency bugs: Mozilla had 6 bugs in files under /mozilla/netwerk/cache/src and 4 bugs files under

/mozilla/xpcom/base, whereas KDE had 6 bugs in /KDE/extragear/graphics/digikam/libs. Our method

can guide developers to these likely bug-prone locations after receiving a bug report to help

speed up bug finding and fixing.
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4.7 Threats to Validity

4.7.1 Selection Bias

We have chosen three projects for our study. These projects are mostly written

in C/C++ and are, we believe, representative for browsers, desktop GUI, and server pro-

grams that use concurrency. However, other projects, e.g., operating systems, database

applications or applications developed in other programming language (Java), might have

different concurrency bug characteristics. For example, prior efforts [46, 93] have found

that deadlocks in MySQL represent 40% of the total number of concurrency bugs, whereas

for our projects, deadlocks account for 22% (Mozilla), 25% (KDE), and 12% (Apache) of

concurrency bugs. Nevertheless, for atomicity violation and order violation, our results are

similar to prior findings [93].

4.7.2 Data Processing

Our keyword-based search for bug reports could have missed some concurrency

bugs—a weakness we share with other prior studies [46, 93]. However, a concurrency bug

report that did not contain any keywords on our list is more likely to be incomplete and

more difficult to analyze its root cause. To reduce this threat, we used an extensive list

of concurrency-related keywords, and searched both the bug tracker and the commit logs.

Completely eliminating this threat is impractical, as it would involve manual analysis (which

itself is prone to errors) for more than 250,000 bug reports.
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4.7.3 Unfixed and Unreported Bugs

Some concurrency bugs might go unfixed or unreported because they strike infre-

quently, on certain platforms/software configurations only, and are hard to reproduce. It

would be interesting to consider these kinds of bugs, but they are not likely to have detailed

discussions and they will not have patches. As a result, these bugs are not considered as

important as the reported and fixed concurrency bugs that are used in our study.

4.7.4 Short Histories

When relying solely on machine learning and statistics for training, our approach

works better for projects with larger training data sets—this could be problematic for

projects with short histories or low incidence of concurrency bugs, though cross-project

prediction could be useful in that case, as we have shown.

4.7.5 Bug Classification

We used four categories and manual categorization for concurrency bugs. We

excluded bugs which did not have enough information to be categorized. This can lead

to missing some concurrency bugs, as discussed previously. As a matter of fact, some

concurrency bugs may belong to multiple categories, e.g., an order violation could also be

considered a data race.

95



4.8 Summary

We have performed a study of concurrency bugs in three large, long-lived, open

source projects. We have found that concurrency bugs are significantly more complicated,

taking more time and resources to fix, than non-concurrency bugs. We have also found

that concurrency bugs fall into four main categories (atomicity violations, order violations,

races, and deadlocks) and that among these categories, deadlocks are easiest, while atom-

icity violations are hardest to fix. We have shown that effective forecast methods can be

constructed to help managers and developers predict the number of concurrency bugs in

upcoming releases, as well as the bug type and location for new concurrency bug reports.
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Chapter 5

Bug Analysis Across Severity

Classes

Severity is important for effort planning and resource allocation during the bug-

fixing process; we illustrate this with several examples. First, while our intuition says that

bugs with different severity levels need to be treated differently, for planning purposes we

need to know how bug severity influences bug characteristics, e.g., fix time or developer

workload. Second, assigning the wrong severity to a bug will lead to resource mis-allocation

and wasting time and effort; a project where bugs are routinely assigned the wrong severity

level might have a flawed bug triaging process. Third, if high-severity bugs tend to have a

common cause, e.g., concurrency, that suggests more time and effort needs to be allocated

to preventing those specific issues (in this case concurrency). Hence understanding bug

severity can make development and maintenance more efficient. Most of the prior work on

bug severity has focused on severity prediction [83,84,105,141]; there has been no research
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on how severity is assigned and how it changes, on how bugs of different severities differ

in terms of characteristics (e.g., in fix time, developer activity, and developer profiles), and

on the topics associated with different classes of severity. To this end, in this chapter we

perform a thorough study of severity in a large corpus of bugs on two platforms, desktop

and Android. To the best of our knowledge, we are the first to investigate differences in

bug characteristics based on different severity classes.

Our study is based upon 72 open source projects (34 on desktop and 38 on Android)

comprising of 441,162 fixed bug reports. The study has two thrusts, centered around nine

research questions, RQ1–RQ9. First, a quantitative thrust (Section 5.2) where we study

how severity assigned to a bug might change; next, we compare the three severity classes in

terms of attributes associated with bug reports and the bug-fixing process, how developer

profiles differ between high, medium and low severity bugs, etc. Second, a topic thrust

(Section 5.3) where we apply LDA (Latent Dirichlet Allocation [25]) to extract topics from

bug reports and gain insights into the nature of bugs, how bug categories differ among bug

severity classes, and how these categories change over time.

Since our study reveals that bug-fixing process attributes and developer traits differ

across severity levels, our work confirms the importance of prior work that has focused on

accurately predicting bug severity [84,105,141].

5.1 Methodology

We now present an overview of the projects we examined, as well as the method-

ology we used to extract the bug features and topics.
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5.1.1 Examined Projects

We choose the projects mentioned in Chapter 2.1 for our study. Tables 5.1 and 5.2

show a summary of the projects we examined. For each platform, we show the project name,

the number of fixed bugs, the percentage of bugs in each severity class (High, Medium, and

Low), the percentage of bugs that had severity changes, and finally, the time span, i.e., the

dates of the first and last bugs we considered.

5.1.2 Severity Classes

Since severity levels differ among bug tracking systems, we mapped severity from

different trackers to a uniform 10-point scale, as follows: 1=Enhancement, 2=Trivial/Tweak,

5=Minor/Low/Small, 6=Normal/Medium, 8=Major/High, 9=Critical/Crash, 10=Blocker.

Then we classified all bug reports into three classes, High, with severity level ≥ 8, Medium,

with severity level=6, and Low, with severity level ≤ 5. This classification is based on

previous research [83,84]; we now describe each category.

– High severity bugs represent issues that are genuine show-stoppers, e.g., crashes, data

corruption, privacy leaks.

– Medium severity bugs refer to issues such as application logic issues or occasional crashes.

– Low severity bugs usually refer to either nuisances or requests for improvement.

5.1.3 Quantitative Analysis

To find quantitative differences in bug-fixing processes we performed an analysis on

various features (attributes) of the bug-fixing process, e.g., fix time, as defined in Chapter 2.

99



Desktop

Project Fixed Severity(%) Time span
bugs Hi Med Low Change

Mozilla Core 101,647 20 73 7 8 2/98-12/13

OpenOffice 48,067 14 73 13 1 10/00-12/13

Gnome Core 42,867 13 71 17 8 10/01-12/13

Eclipse platform 42,401 15 71 14 10 2/99-12/13

Eclipse JDT 22,775 11 71 18 10 10/01-12/13

Firefox 19,312 9 79 12 6 4/98-12/13

SeaMonkey 18,831 21 64 14 13 4/01-12/13

Konqueror 15,990 18 72 10 3 4/00-12/13

Eclipse CDT 10,168 12 74 14 10 1/02-12/13

WordPress 9,995 14 67 19 8 6/04-12/13

KMail 8,324 15 57 27 4 11/02-12/13

Linux Kernel 7,535 18 76 5 3 3/99-12/13

Thunder-bird 5,684 14 69 17 7 4/00-12/13

Amarok 5,400 20 58 22 6 11/03-12/13

Plasma Desktop 5,294 24 62 14 6 7/02-12/13

Mylyn 5,050 8 50 41 11 10/05-12/13

Spring 4,937 63 0 37 NA 8/00-12/13

Tomcat 4,826 21 55 24 9 11/03-12/13

MantisBT 4,141 26 0 74 2 2/01-12/13

Hadoop 4,077 82 0 18 NA 10/05-12/13

VLC 3,892 19 72 9 8 5/05-12/13

Kdevelop 3,572 24 57 19 5 8/99-12/13

Kate 3,326 15 61 24 5 1/00-12/13

Lucene 3,035 65 0 35 NA 4/02-12/13

Kopete 2,957 18 60 22 8 10/01-9/13

Hibernate 2,737 80 0 20 NA 10/00-12/13

Ant 2,612 14 47 39 9 4/03-12/13

Apache Cassandra 2,463 54 0 46 NA 8/04-12/13

digikam 2,400 20 56 25 5 3/02-12/13

Apache httpd 2,334 21 52 27 9 2/03-10/13

Dolphin 2,161 32 51 17 5 6/02-12/13

K3b 1,380 18 70 13 8 4/04-11/13

Apache Maven 1,332 85 0 15 NA 10/01-12/13

Portable OpenSSH 1,061 11 57 31 5 3/09-12/13

Total 422,583 20 69 11 7

Table 5.1: Projects examined, number of fixed bugs, severity classes percentage, severity

level change percentage and time span on desktop.
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Android

Project Fixed Severity(%) Time span
bugs Hi Med Low Change

Android Platform 3,497 1 97 2 1 11/07-12/13

Firefox for Android 4,489 12 86 2 4 9/08-12/13

K-9 Mail 1,200 4 94 2 4 6/10-12/13

Chrome for Android 1,601 2 79 19 14 10/08-12/13

OsmAnd Maps 1,018 2 97 1 8 1/12-12/13

AnkiDroid Flashcards 746 41 48 10 50 7/09-12/13

CSipSimple 604 5 92 3 7 4/10-12/13

My Tracks 525 11 87 2 5 5/10-12/13

Cyanogen-Mod 432 1 99 0 1 9/10-1/13

Andro-minion 346 2 92 5 3 9/11-11/13

WordPress for Android 317 78 0 22 0 9/09-9/13

Sipdroid 300 0 100 0 0 4/09-4/13

AnySoft-Keyboard 229 41 59 0 32 5/09-5/12

libphone-number 219 4 95 1 4 10/10-12/13

ZXing 218 6 62 32 13 11/07-12/13

SL4A 204 0 100 0 0 5/09-5/12

WebSMS-Droid 197 44 52 4 46 10/09-12/13

OpenIntents 188 28 61 10 5 12/07-6/12

IMSDroid 183 1 99 0 1 6/10-3/13

Wikimedia Mobile 166 15 37 48 8 1/09-9/12

OSMdroid 166 1 96 3 4 2/09-12/13

WebKit 157 1 98 1 0 11/09-3/13

XBMC Remote 129 37 58 5 33 9/09-11/11

Mapsforge 127 23 73 4 NA 2/09-12/13

libgdx 126 0 100 0 0 5/10-12/13

WiFi Tether 125 2 96 2 3 11/09-7/13

Call Meter NG&3G 116 47 52 1 46 2/10-11/13

GAOSP 114 6 89 5 11 2/09-5/11

Open GPS Tracker 114 30 68 2 12 7/11-9/12

CM7 Atrix 103 0 95 5 5 3/11-5/12

Transdroid 103 23 73 4 22 4/09-10/13

MiniCM 101 0 100 0 4 4/10-5/12

Connectbot 87 3 94 2 6 4/08-6/12

Synodroid 86 29 63 8 20 4/10-1/13

Shuffle 77 9 87 4 9 10/08-7/12

Eyes-Free 69 7 91 1 9 6/09-12/13

Omnidroid 61 22 68 10 20 10/09-8/10

VLC for Android 39 17 81 3 8 5/12-12/13

Total 18,579 10 85 5 8

Table 5.2: Projects examined, number of fixed bugs, severity classes percentage, severity

level change percentage and time span on Android.
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5.1.4 Topic Analysis

For the second thrust of our study, we used a topic analysis to understand the

nature of the bugs by extracting topics from bug reports. We follow the process mentioned

in Section 2.4. The parameter settings are presented in Section 5.3.1.

5.2 Quantitative Analysis

The first thrust of our study takes a quantitative approach to investigating the

similarities and differences between bug-fixing processes on severity classes. Specifically,

we are interested in how bug-fixing process attributes differ across severity classes on each

platform; how the contributor sets (bug reporters and bug owners) differ across classes; and

how the contributor profiles vary over time.

The quantitative thrust is centered around several specific research questions:

RQ1 Does the severity level change and if so, how does it change?

RQ2 Are bugs in one severity class fixed faster than in other classes?

RQ3 Do bug reports in one severity class have longer descriptions than in other classes?

RQ4 Are bugs in one severity class more commented upon than in other classes?

RQ5 Do bugs in one severity class have larger comment sizes than other classes?

RQ6 How do severity classes differ in terms of bug owners, bug reporters, and owner or

reporter workload?
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RQ7 Are developers involved in handling one severity class more experienced than devel-

opers handling other classes?

5.2.1 Severity Change

As mentioned in the beginning of this chapter, bug severity is not always fixed for

the lifetime of a bug—after the initial assignment by the bug reporter, the severity can be

changed, e.g., by the developers: it can be changed upwards, to a higher value, when it

is discovered that the issue was more serious than initially thought, or it can be changed

downwards, when the issue is deemed less important that thought initially. In either case,

the result is that not enough resources (or too many resources, respectively) are allocated to

a bug, which not only makes the process inefficient, but it affects users negatively, especially

in the former case, as it prolongs bug-fixing. Hence severity changes should be avoided, or

at least minimized. We now quantify the frequency and nature of severity changes.

We show the percentage of bugs that have at least one change in severity in the

6th columns of Table 5.1 and Table 5.2, respectively. The overall change rates are less

than 10% for both desktop and Android. For desktop, severity change is not available for

projects hosted on JIRA; we marked these as ‘NA’ in the table. The low change rates in

both platforms indicate that bug reporters are accurate in assessing severity when a bug

is reported. Still, for Android, the change rate is higher in some projects, e.g., AnkiDroid

and WebSMS. We investigated the reasons for high change rates in AnkiDroid (50%) and

WebSMS (46%) and found that it was apparently due to a project-specific configuration—

large numbers of bugs being filed with severity initially set to ‘undecided’. In the next step,

we will shed light on the nature of severity changes.
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We found that, for those bug reports that did change severity, 89.40% of desktop

bugs and 98.63% of Android bugs have changed severity once; 8.6% of desktop bugs and

1.11% of Android bugs changed severity twice; finally, only 2% of desktop bugs and 0.26%

of Android bugs have more than 3 severity changes. Repeated severity changes naturally

lead to higher bug-fixing effort and longer fix times. For example, Firefox bug #250818

changed severity level 13 times, the highest number of severity changes of all the bugs. It

took developers 329 days to finally fix this bug. Next, we are going to show how severity

changes.

We show the top-5 most common severity change patterns in Table 5.3.1 We

found that ‘Normal→Major’ and ‘Medium→High’ are the most common severity changes for

desktop and Android, respectively. We also found the common pattern ‘Undecided→High’

on Android platform. These patterns indicate that bug reporters tend to underestimate

bug severity more than they overestimate it. For instance, Mozilla Core bug #777005 was

assigned Normal severity initially, but the severity level increased from Normal to Critical,

and eventually further increased to Blocker, which indicates the bug had to be fixed as soon

as possible. The pattern ‘Undecided →High’ only exists on Android since issue tracking

systems on desktop have Normal as default severity level.

RQ1: Less than 10% of bugs change severity on both desktop and Android; in

those cases where severity does change, it tends to only change once. Normal→Medium and

Major→High are the most common change patterns on desktop and Android, respectively.

1We only used the 10-point scale in Table 5.3 since the 3-category scale would be too coarse-grained. The
rest of the study uses only the 3-category scale.
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Rank Desktop Android

1 Normal→Major (18.2%) Medium→high (33.5%)

2 Normal→Critical (16.3%) Medium→Low (13.2%)

3 Normal→Enhancement (13.1%) Medium→Critical (12.7%)

4 Normal→Minor (8.3%) Undecided→High (8.9%)

5 Normal→Blocker (3.9%) Undecided→Normal (5.5%)

Table 5.3: Top 5 severity change patterns.

5.2.2 Bug-fix Process Attributes

We now proceed with the quantitative analysis of bug characteristics and bug-

fixing process features. Rather than presenting aggregate values across the entire time

span, we analyze the evolution of values on each platform, at yearly granularity, for two

main reasons: (1) as feature values change over time, changes would not be visible when

looked at in aggregate, and (2) we want to study the trends of severity classes. The evolution

graphs, presented in Figures 5.1 through 5.8, will be discussed at length.

Data preprocessing. For each feature, e.g., FixTime, we compute the geometric

mean for feature values in each year. Since the distributions are skewed, arithmetic mean

is not an appropriate measure [88], and we therefore used the geometric mean in our study.

Moreover, to avoid undue influence by outliers, we have excluded the top 5% and bottom

5% when computing and plotting the statistical values.

Pairwise tests between classes. To test whether the differences in bug characteris-

tics between classes are significant, we performed a non-parametric Mann-Whitney U test

(aka Wilcoxon rank sum test) for each year, for each platform comparing the distributions

of each attribute, e.g., FixTime for high vs medium severity, high vs. low severity, and

medium vs. low severity. For brevity, when we discuss the results of the pairwise tests, we
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only provide summaries, e.g., the year, platform, and class pair for which differences are

significant.

FixTime. Figures 5.1a–5.1c show how the bug fixing time has changed over the years

for each severity class on desktop and Android. Since the values after 2007 on desktop are

much smaller than those pre-2007, we provide a zoom-in of FixTime for years 2007 to 2013

in Figure 5.1b. We make several observations regarding FixTime.

We found that in addition to severity, priority also affects FixTime. However,

not all bug reports have an associated priority, as not all bug trackers support it: for our

datasets, 67.68% of desktop bugs have an associated priority while only 6.44 of Android

bugs do (Google Code does not support priority). We first provide several examples of how

priority and severity can influence FixTime; later we will show the results of a statistical

analysis indicating that severity influences FixTime more than priority does:

• High Severity & High Priority: major functionality failure or crash in the basic work-

flow of software. These bugs usually took less time to fix since they have huge and

deleterious effects on software usage. For instance, Mozilla Core bug #474866, which

caused plugins to fail upon the second visit to a website, is a P1 blocker bug; it took

developers just two days to fix it.

• High Severity & Low Priority: the application crashes or generates an error message,

but the cause is a very specific situation, or a hard-to-reproduce circumstance. Usually

developers need more time to fix these kind of bugs. For example, Mozilla Core bug
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Figure 5.1: FixTime distribution per year; units are defined in Section 5.1.3.
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Features Desktop Android
coefficient p-value coefficient p-value

Severity -95.850 < 2e-16 -20.892 6.44e-13

Priority 4.162 0.108 -14.891 0.00109

Table 5.4: Results of the generalized regression model.

92322 had severity Blocker (highest) but priority P5 (lowest). The bug took 2 months

to fix because it required adding functionality for an obscure platform (at the time).

• Low Severity & High Priority: this characterizes bugs such as a typo in the UI, that

do not impact functionality, but can upset or confuse users, so developers try to fix

these bugs quickly. For instance, Eclipse JDT bug #13141, whose severity is trivial,

had priority P1 since it was a typo in the UI; it was fixed in one day.

• Low Severity & Low Priority: bugs in this class comprise nuisances such as mis-

spellings or cosmetic problems in documents or configuration files. Developers would

fix these bugs when the workload is low. For example, Apache httpd bug #43269, a

typo in the server error message with trivial severity and P5 priority, took more than

3 years to be fixed.

To check the influence of severity and priority on FixTime, we built a linear re-

gression model in which FixTime was the dependent variable, while severity and priority

were independent variables. Table 5.4 shows the results. We found that severity is a better

FixTime predictor than priority, with p-values much smaller than those of priority, but nev-

ertheless the priority’s p-values, 0.1 for desktop and 0.001 for Android suggest a relationship

between priority and FixTime.
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Year Severity Priority
Hi. vs. Med. Hi. vs. Low Med. vs. Low Hi. vs. Med. Hi. vs. Low Med. vs. Low

Desktop

1998 0.0189 0.2183 0.5654 < 0.01 < 0.01 0.7325
1999 < 0.01 < 0.01 < 0.01 < 0.01 0.0102 < 0.01
2000 < 0.01 < 0.01 < 0.01 0.3180 < 0.01 0.0346
2001 < 0.01 < 0.01 < 0.01 < 0.01 0.6562 < 0.01
2002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2003 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2004 0.4082 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2005 < 0.01 < 0.01 < 0.01 0.9191 < 0.01 < 0.01
2006 0.2646 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2007 < 0.01 0.9771 0.0102 < 0.01 < 0.01 < 0.01
2008 0.9800 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2009 < 0.01 < 0.01 < 0.01 < 0.01 0.7295 < 0.01
2010 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2011 0.2227 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
2012 < 0.01 < 0.01 < 0.01 < 0.01 0.0267 < 0.01
2013 < 0.01 < 0.01 < 0.01 < 0.01 0.2575 0.2535

Android

2008 < 0.01 0.0831 < 0.01 NA NA NA
2009 < 0.01 0.2286 < 0.01 < 0.01 NA NA
2010 < 0.01 < 0.01 0.9944 < 0.01 NA NA
2011 < 0.01 < 0.01 0.0105 0.0429 0.2958 0.0304
2012 < 0.01 0.0604 0.3382 0.0347 0.0711 0.9072
2013 < 0.01 0.1118 0.4905 0.4140 0.5035 0.8857

Table 5.5: Significance values of whether FixTime differs between classes on Desktop and

Android.

We now present the results of a per-year statistical analysis that shows FixTimes

tend to differ significantly among severity classes and among priority classes. The “Severity”

columns of Table 5.5 provide the p-values of pairwise two-means tests of FixTimes between

different severity classes. The results indicate that on desktop, with few exceptions (1998,

2007), FixTimes do differ significantly between classes. On Android, though, FixTimes

differ less among severity classes.
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The “Priority” columns of Table 5.5 show the results of a similar analysis—how

does FixTime differ between priority classes. To make comparisons with severity easier, we

used a 3-point scale for priority. High means priority level ≤ 2; Medium means priority

level=3; and Low means priority level ≥ 4.

The table values indicate that differences in FixTime across priority classes again

tend to be significant on desktop, but not on Android; the “NA” entries indicate that most

of the Android bugs in that class were hosted on Google Code, which does not support

priority.

For Android, FixTime differs significantly between high and medium severity bugs

in all years, but does not differ significantly between high and low severity or between

medium and low severity: this is explained by the fact that the Wilcoxon test is not transi-

tive [49]. For high severity vs. low severity, only 2010 and 2011 have significant differences;

for medium severity vs. low severity, the differences are only significant in 2008 and 2009.

Figures 5.1a–5.1c indicate how the population means vary for each class, year, and

platform. We can now answer RQ2:

RQ2: Fix time for desktop bugs is affected by severity and to a lesser extent by

priority. FixTime does vary significantly across severity classes for desktop, but for Android

the only significant difference is between high and medium severity.

DescriptionLength. The number of words in the bug description reflects the level of

detail in which bugs are described. A higher DescriptionLength value indicates a higher

bug report quality [59], i.e., bug fixers can understand and find the correct fix strategy easier.

As shown in Figure 5.2a, high-severity bugs on desktop have significantly higher description
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Figure 5.2: DescriptionLength distribution per year; units are defined in Section 5.1.3.

length values while medium and low-severity bugs have lower values (the DescriptionLength

differences between medium and low-severity bugs is significant in only 10 out of 16 years).

We found that the reason for high DescriptionLength for high-severity bugs is that reporters

usually provide stack traces or error logs for the bugs.

However, as shown in Figure 5.2b, we found different trends on Android: medium

severity bugs have the highest values of DescriptionLength, followed by high-severity bugs,
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while low-severity bugs usually have the smallest DescriptionLength. The difference between

classes is small. The pairwise tests show that only during half of the studied time frame

(2009–2011), the differences between severity classes are significant, for other years they are

not. The reason for high-severity bugs not having the highest DescriptionLength is that

unlike on desktop, for projects hosted on Google Code, reporters do not adhere to providing

a stack trace or error log as strictly as they do on desktop.

RQ3: On desktop, DescriptionLength is significantly higher for high-severity bugs

compared to medium and low-severity bugs. DescriptionLength differences are not always

significant between medium and low-severity on desktop, or between classes on Android.

TotalComments. Bugs that are controversial or difficult to fix have a higher number

of comments. The number of comments can also reflect the amount of communication

between application users and developers—the higher the number of people interested in a

bug report, the more likely it is to be fixed [54]. According to Figure 5.3a, there are more

comments in high-severity bug reports on desktop, while low-severity bug reports have the

least number of comments. This indicates that high-severity bugs are more complicated,

and harder to fix, while low-severity bugs are in the opposite situation.

The pairwise tests show that all classes are different from each other except for

a few years (medium vs. low in 1999 and 2001). TotalComments evolution is similar on

Android (Figure 5.3b), i.e., high-severity bugs have the highest value while low-severity bugs

have the lowest value. The pairwise tests indicate that differences are significant between

all class pairs, except for 2008 and 2009.
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Figure 5.3: TotalComments distribution per year; units are defined in Section 5.1.3.

RQ4: On desktop and Android, high-severity bugs are more commented upon than

the other classes, whereas low-severity bugs are less commented upon.

CommentLength. This measure, shown in Figures 5.4a and 5.4b, bears some similarity

with TotalComments, in that it reflects the complexity of the bug and activity of contributor

community. We found similar results as for TotalComments on desktop. Pairwise tests

indicate that high-severity bugs do differ from medium and low in all the cases while medium

and low-severity bugs have significant differences only after 2004. For Android, the trends
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Figure 5.4: CommentLength distribution per year; units are defined in Section 5.1.3.

are not so clear: the pairwise tests show that the difference between high and medium are

not significant in 2009 to 2011. But differences between high and low, and medium and

low, are significant in all years.

RQ5: High severity bugs on desktop have higher CommentLength than other

classes. On Android, the differences between high and medium severity classes are not

significant, but they both are significantly higher than for the low-severity class.
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5.2.3 Management of Bug-fixing

Resource allocation and management of the bug-fixing process have a significant

impact on software development [153]; for example, software quality was found to be im-

pacted by the relation between bug reporters and bug owners [17]. We defined the Bu-

gOwner and BugReporter roles in Section 5.1.3 and now set out to analyze the relationship

between bug reporters and bug owners across the different severity classes.

Developer Changes

We examined the distributions and evolutions of bug reporters, as well as bug

owners, for the three severity classes on the two platforms. Table 5.6 summarizes the

results. Column 2 shows the total number of bug reporters in each year; columns 3–5 show

the percentages of bug reporters who have reported high, medium, and low-severity bugs.

Columns 6 through 9 show the numbers and percentages of bug owners.

We make several observations. First, the sums of percentages for high, medium,

and low severity are larger than 100%, which indicates that there are reporters or owners

who contribute to more than one severity class. Second, high-severity bug owners have

larger contribution (percentage) values than those of corresponding bug reporters, because

fixing high-severity bugs requires more resources.

Figure 5.5 shows the trend of bug reporters and owners of each severity class. For

desktop, according to Figures 5.5a and 5.5b, we found similar evolutions for the numbers

of high, medium and low severity classes for both bug reporters and owners. For Android,

Figures 5.5c and 5.5d indicate that there are many more medium severity reporters and
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Year Reporters Owners
# (%) # (%)

High Med. Low High Med. Low

Desktop

1998 164 33.5 76.2 17.1 64 43.8 78.1 29.7
1999 949 45.6 75.3 17.8 214 58.9 86.4 38.3
2000 3,270 35.0 76.1 15.7 449 42.5 80.0 35.0
2001 5,471 29.4 71.7 17.7 664 44.4 69.0 39.2
2002 7,324 35.5 55.6 18.5 995 41.2 60.5 33.9
2003 7,654 29.5 52.2 18.0 1,084 34.3 55.2 31.9
2004 8,678 28.5 52.5 21.0 1,273 36.4 56.2 32.8
2005 8,990 28.2 47.8 21.0 1,327 37.8 56.7 33.5
2006 7,988 30.7 51.2 21.8 1,408 39.9 58.9 33.7
2007 7,292 30.0 52.5 19.7 1,393 39.1 64.0 32.7
2008 8,474 30.9 55.5 20.4 1,546 39.7 65.3 32.5
2009 8,451 32.6 56.2 20.1 1,537 41.9 64.7 34.2
2010 7,799 34.0 56.6 18.0 1,475 45.5 65.5 32.4
2011 6,136 33.2 64.2 17.9 1,381 43.7 75.7 31.1
2012 5,132 32.1 67.9 17.1 1,352 47.4 76.0 29.6
2013 4,884 31.2 66.6 18.1 1,432 47.3 72.8 27.7

Android

2008 429 4.4 97.7 2.6 41 36.6 95.1 17.1
2009 987 8.1 95.1 2.9 104 29.8 92.3 12.5
2010 1,875 12.6 87.0 7.3 163 33.1 88.3 21.5
2011 2,045 10.6 91.5 4.1 218 33.0 93.6 16.1
2012 1,998 11.6 89.6 6.4 340 26.8 87.9 20.3
2013 1,492 7.8 84.2 11.3 419 16.2 89.5 29.4

Table 5.6: Numbers of bug reporters and bug owners and the percentage of them who

contribute to each severity class.

owners than other severity classes. The differences in these trends between desktop and

Android are due to the percentage of medium severity bugs on Android (Table 5.1 and

Table 5.2) being larger than the percentage of medium-severity bugs on desktop.

The number of fixed bugs differs across platforms, so to be able to compare reporter

and owner activity between platforms, we use the number of bug reporters and bug owners
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Figure 5.5: Number of bug reporters and owners for each platform.

in each year divided by the number of fixed bugs in that year. Figures 5.6a, 5.6b, 5.7a

and 5.7b show the results; we will explain them one by one.

For desktop, the ratio of reporter or owner to fixed bugs have similar trends (Fig-

ures 5.6a, 5.6b): low-severity bugs have large values as they are easier to find and fix.
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Figure 5.6: Developer trends on desktop.
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Figure 5.7: Developer trends on Android.
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They are followed by high-severity bugs since, although hard to fix, the importance of high-

severity bugs plays a significant role and instills urgency. For Android, the ratios of bug

owners to fixed bugs (Figure 5.7b) have similar trends as on desktop, since the bug-fixing

process is similar on both platforms. On the contrary, the ratio of bug reporters to fixed

bugs (Figure 5.7a) on Android and desktop are different. On Android, high severity has the

lowest value for this ratio while the medium severity class has the lowest value on desktop.

The reason is that the percentage of high-severity bugs on Android is less than that of desk-

top. Also the severity classification on Android is not as strict as on desktop (most projects

hosted on Google Code only have 3 severity levels); and finally, the difference between high

and medium is smaller on Android.

Furthermore, the ratio of owners to fixed bugs can reflect the inverse of workload

and effort associated with bug-fixing (high ratio value = low workload). We find that

for both desktop and Android (Figures 5.6b and 5.7b), low-severity bugs have the lowest

workload (the highest curve) since they are easiest to fix. Medium-severity bugs require

most resources due to their large quantity.

The ratio of reporters to owners (Figures 5.6c and 5.7c) reveals that medium-

severity bugs have the highest ratio— this is unsurprising since most reports are at this

severity level. Low severity has the smallest ratio as these bugs are the easiest to report

and fix.

RQ6: Medium-severity bugs have the most reporters, most owners, and highest

workload. Low-severity bugs are at the opposite end of the spectrum; high-severity bugs are

in-between.
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Developer Experience

To analyze differences in contributors’ level of experience, we use the DevExperi-

ence metric defined in Section 2.2.2 Figure 5.8 shows the evolution of DevExperience, in

days, for bug reporters and bug owners of each severity class on desktop and Android. For

bug reporters and owners, the experience on all severity classes increases with time. The

dip in DevExperience for bug reporters on desktop in 2009 is caused by a large turnover

that year; the fast rise afterwards is due to a surge in popularity of several projects (mainly

Gnome Core, Amarok and Plasma).

For desktop, as Figures 5.8a and 5.8b show, bug reporters and bug owners of

medium-severity bugs are more experienced than the other two severity classes due to there

being more medium-severity bugs, hence contributors can gain more experience. Low-

severity bug reporters and owners have the lowest levels of experience since the number of

low-severity bugs is small and these bugs are easiest to find and fix.

For Android, bug owners have similar trends as on desktop, medium-severity bug

owners have more experience than high and low-severity owners. On the other hand, high-

severity bug reporters on Android are more experienced than medium severity than low

severity, but the difference in experience levels between severity classes is smaller than on

desktop. Upon further investigation, we found that the portion of new bug reporters on

Android is much larger than that of desktop, which we attribute to the lower “barrier to

entry”: it is easier to report a bug in an Android project than in a desktop project since

2 A handful of developers have made a lot of contributions over a short period while some made few
contributions over a long period. Since these situations are extremely rare, they will not affect the overall
result.
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Figure 5.8: DevExperience for each severity class and each platform, in days.

most apps include a streamlined bug reporting functionality (send the crash report and/or

Android logcat to developers by just pressing a button).

Also as Figure 5.7a shows, the high-severity class has the lowest ratio of reporters-

to-fixed bugs, which indicates there are fewer new bug reporters for high severity. As a

result, high-severity bug reporters are more experienced than others on Android.
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RQ7: Medium-severity class developers are more experienced (have been active

for longer) than high-severity class developers than low-severity class developers.

5.3 Topic Analysis

So far we have focused on a quantitative analysis of bugs and bug fixing. We now

turn to a topic analysis that investigates the nature of the bugs in each severity class. More

concretely, we are interested in what kinds of bugs comprise each severity class on different

platforms and how the nature of bugs changes as projects evolve.

We use topic analysis for this purpose: we extract topics (sets of related keywords)

via LDA from the terms (keywords) used in bug title, descriptions and comments, as de-

scribed in Section 2.4. We extract the topics used each year in each severity class of each

platform, and then compare the topics to figure out how topics change over time in each

class and how topics differ across severity classes.

For the topic analysis, to investigate the difference between severity classes on bug

nature, we designed the following research questions:

RQ8 Do bug topics differ between severity classes?

RQ9 How do topics evolve over time?

5.3.1 Topic Extraction

The number of bug reports varies across projects, as seen in Table 5.1 and Ta-

ble 5.2. Moreover, some projects are related in that they depend on a common set of

libraries, for instance SeaMonkey, Firefox and Thunderbird use functionality from libraries in
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Mozilla Core for handling Web content. It is possible that a bug in Mozilla Core cascades and

actually manifests as a crash or issue in SeaMonkey, Firefox, or Thunderbird, which leads to

three separate bugs being filed in the latter three projects. For example, Mozilla Core bug

#269568 cascaded into another two bugs in Firefox and Thunderbird. A similar issue may

appear in projects from the KDE suite, e.g., Konqueror, Kdevelop, or Kate might crash (and

have a bug filed) due to a bug in shared KDE libraries.

Hence we extract topics using a proportional strategy where we sample bug reports

to reduce possible over-representation due to large projects and shared dependences. 3

More concretely, for high/medium/low severity classes on desktop, we extracted

topics from 500/1,000/400 “independent” bug reports for each severity class, respectively.

The independent bug report sets were constructed as follows: since we have 10 projects from

KDE, we sampled 100 medium severity bugs from each KDE-related project. We followed

a similar process for Mozilla, Eclipse and Apache. Android projects had smaller number

of bug reports, so for Android we sampled 50/100/50 bug reports from high/medium/low

severity classes, respectively.

With the proportional sets at hand, we followed the LDA preprocessing steps

described in Section 5.1.4; since there are only two bug reports in 1998 for desktop and

one for Android in 2007, we have omitted those years. For desktop, the preprocessing of

high, medium, and low severity sets resulted in 755,642 words (31,463 distinct), 758,303

words (36,445 distinct) and 352,802 words (19,684 distinct), respectively. For Android,

the preprocessing of high, medium, and low severity sets resulted in 116,010 words (7,230

3We performed a similar analysis using the original data sets in their entirety, with no sampling. As
expected, the topic analysis results were influenced by the large projects, e.g., “Qt”, the shared library used
in KDE, was the strongest topic in 2008. We omit presenting the results on the original sets for brevity.
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distinct), 289,422 words (13,905 distinct) and 31,123 words (3,825 distinct), respectively.

Next, we used MALLET [103] for LDA computation. We ran for 10,000 sampling iterations,

the first 1,000 of which were used for parameter optimization. We modeled bug reports with

K = 100 topics for high and medium severity classes on desktop, 60 for low severity class on

desktop, 50 for high and medium classes on Android and 40 for low severity bugs on Android;

we choose K based on the number of distinct words for each platform; in Section 5.4 we

discuss caveats on choosing K.

5.3.2 Bug Nature and Evolution

We now set out to answer RQ8 and RQ9.

How Do Bug Topics Differ Across Severity Classes?

Tables 5.7 and 5.8 show the highest-weight topics extracted from the proportional

data set. We found that for both desktop and Android, bug topics with highest weight

differ across severity classes.

On desktop, build- and compilation-related bugs are the most common bug type in

the high-severity class; for medium severity, application logic bugs (failure to meet require-

ments) are the most popular, followed by installation errors; for low severity, configuration

bugs and feature requests are most prevalent. It was interesting to see that bug severity is

somewhat more developer-centric than user-centric: note how build/compile errors which

mostly affect developers or highly-advanced users appear in the high-severity class, whereas

install errors, which mostly affect end-users, are in the medium-severity class.
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Label Most representative words Weight

High

build build gener log option link config select resolv du-
plic depend level

12%

compile server sourc compil output local project info path
search util tag expect tool

11%

crash crash load relat size caus broken good current in-
stanc paramet trace stop properli valid trigger af-
fect unabl assum condition

9%

GUI swt widget ui editor dialog jface gnome content
enabl handler mod send kei

6%

concurrency thread lwp pthread event wait process mutex cond
thread oper qeventdispatch qeventloop

5%

Medium

application logic window call page displai log connect start add data
output check support current appli enabl apach

17%

install instal select item control option move linux direc-
tori core debug icon start correct server thing info
save statu place edit account

15%

crash warn good crash layout limit buffer affect lock con-
firm miss screenshot trigger quick

8%

widget widget descript action select plugin workbench di-
alog swt progress jdt wizard max

6%

communication ssh debug local kei ssl protocol sshd authent mes-
sag password cgi login client channel launch exec

3%

Low

config configur support sourc instal size exist url inform
util cach document info load custom src path move

22%

feature request add option suggest gener find updat good local ap-
plic miss content address point data correct bit
save duplic

20%

I/O output space mous index block invalid separ net
oper workaround stop foo wait timeout delet key-
board

9%

install instal makefil icon dialog home build edit helper
select normal page leav progress site bugzilla verifi

8%

database db queri method menu php filter map sql jdbc ex-
ecut databas count gecko init

8%

Table 5.7: Top words and topic weights for desktop.
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Label Most representative words Weight

High

concurrency handler init handl dispatch looper event htc sam-
sung galaxi loop sm mobil enabl post option
launch miss

22%

runtime error runtim error fail code press screen happen doesn
exit queri finish notic process edit didn wait lock
delet trace

16%

runtime crash crash thread patch doesn repli state code updat
stack good resourc beta hit verifi unknown win-
dow

13%

Medium

runtime crash runtim doesn result fail item remov wrong happen
input action file app system data

27%

runtime error output error messag correct forc due requir com-
plet specif debug occur count

19%

phone call call devic task sip galaxi samsung servic hardwar
motorola

12%

Low

feature request suggest client find guess support messag phone
output account system log option applic check
format displai send screen result user market lat-
est

23%

application logic android app file error correct wrong bit page li-
brari nofollow map correctli didn fail full data
launch logcat screenshot

21%

GUI report menu screen button gener ad user link
browser load press item url mode action context
keyboard previou widget

12%

Table 5.8: Top words and topic weights for Android.

For Android, in the high-severity class, bugs associated with the Android concur-

rency model (event/handler) are the most prevalent, followed by runtime errors (the app

displays an error) and then runtime crashes (the app silently crashes without an error or

restarts); in the medium-severity class, runtime crashes and runtime errors are also popular,

followed by problems due to phone calls. In the low-severity class, feature requests are the

most popular, followed by problems due to application logic and GUI.
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While some commonalities exist between desktop and Android (runtime errors,

crashes, and feature requests are well-represented in the high-weight topics on both plat-

forms), there are also some notable differences: build/compile/install errors do not pose a

problem on Android, which might suggest that the Android build process is less error-prone.

Second, owing to the smartphone platform, phone call issues appear more frequently among

high-weight topics on Android. Third, concurrency is still posing problems: it appears as a

high-weight topic on both desktop on Android.

RQ8: Topics differ across severity classes and across platforms, e.g., for high-

severity bugs, build/install/compile-related issues are the most prevalent on desktop, while

concurrency and runtime error/crash-related bugs are the most prevalent on Android.

How Do Bug Topics Evolve?

To study macro-trends in how the nature of bugs changes over time, we analyzed

topic evolution in each severity class on each platform. We found that high-severity bugs

on desktop are the only class where topics change substantially over time; in other classes,

high-frequency topics tend to be stable across years. We limit our discussion to high-severity

topics; Table 5.9 shows the top-3 topics and their corresponding weight for each year.

We make several observations. On desktop, concurrency started to be a big issue

in 2009, and has remained so. This is unsurprising, since multi-core computers have started

to become the norm around that time, and multi-threading programming has been seeing

increased adoption. Furthermore, we found that cloud computing-related bugs have started

to appear in 2012, again understandably as cloud computing has been getting more traction.
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Year Top 3 topics (topic weight)

Desktop

1999 make (58%) install (12%) layout (10%)
2000 widget (27%) layout (24%) install (16%)
2001 layout (38%) install (10%) compile (7%)
2002 GUI (17%) compile (14%) build (10%)
2003 compile (20%) GUI (13%) build (10%)
2004 crash (19%) build (12%) compile (9%)
2005 plugin (17%) build (10%) compile (10%)
2006 GUI (14%) build (10%) compile (8%)
2007 build (14%) GUI (11%) compile (9%)
2008 debug (16%) compile (11%) widget (9%)
2009 concurrency (33%) GUI (11%) compile (11%)
2010 concurrency (15%) compile (11%) debug (7%)
2011 concurrency (16%) compile (12%) plugin (11%)
2012 cloud (14%) compile (12%) build (11%)
2013 concurrency (22%) build (11%) cloud (11%)

Android

2008 email (39%) runtime error (24%) concurrency (11%)
2009 connection (23%) runtime error (22%) concurrency (14%)
2010 concurrency (18%) database (17%) call (13%)
2011 map (27%) concurrency (26%) database (12%)
2012 concurrency (21%) runtime crash (17%) runtime error (17%)
2013 browser (18%) runtime crash (16%) concurrency (15%)

Table 5.9: Top-3 bug topics per year for high-severity class on desktop and Android.

For Android, concurrency bugs rank high every year, suggesting that developers

are still grappling to use the Android’s event-based concurrency model correctly.

RQ9: Bug topics tend to be stable in low- and medium-severity classes. In the

high-severity class, on desktop, there have been more concurrency and cloud-related bugs

since 2009 and 2012, respectively; on Android, concurrency bugs have been and continue to

be prevalent.

129



5.4 Threats to Validity

5.4.1 Selection Bias

We only chose open source applications for our study, so the findings might not

generalize to closed-source projects. Our chosen projects use one of five trackers (Bugzilla,

Trac, JIRA, MantisBT and Google Code); we did not choose projects hosted on GitHub

since severity levels are not available on GitHub, hence our findings might not generalize to

GitHub-hosted projects.

Furthermore, we did not control for source code size—differences in source code

size might influence features such as FixTime.

5.4.2 Severity Distribution on Android

According to Table 5.1 and Table 5.2, many Android projects have skewed severity

distributions (for 17 out of 38 Android projects, more than 90% of the bugs have medium

severity). We believe this to be due to medium being the default value for the severity field

on Google Code and most Android reporters or developers on Android not considering the

severity level as important as on desktop.

5.4.3 Priority on Google Code and JIRA

We could not quantify the effect of priority on those projects hosted on Google

Code and JIRA, as Google Code and JIRA do not have a priority field.
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5.4.4 Data Processing

For the topic number parameter K, finding an optimal value is an open research

question. If K is too small, different topics are clustered together, if K is too large, related

topics will appear as disjoint. In our case, we manually read the topics, evaluated whether

the topics are distinct enough, and chose an appropriateK to yield disjoint yet self-contained

topics.

Google Code does not have support for marking bugs as reopened (they show up

as new bugs), whereas the other trackers do have support for it. About 5% of bugs have

been reopened on desktop, and the FixTime for reopened bugs is usually high [130]. This

can result in FixTime values being lower for Google Code-based projects than they would

be if bug reopening tracking was supported.

5.5 Summary

We presented the results of a study on desktop and Android projects that shows

bugs of different severity have to be treated differently, as they differ in terms of charac-

teristics and topics. We defined three severity classes, high, medium and low. We showed

that across classes, bugs differ quantitatively e.g., in terms of bug fixing time, bug descrip-

tion length, bug reporters/owners. A topic analysis of bug topics and bug topic evolution

has revealed that the topics of high-severity bugs on desktop have shifted over time from

GUI and compilation toward concurrency and cloud, whereas on Android concurrency is

a perennial topic. Our approach can guide severity assignment, e.g., compile/make bugs

should have higher severity, and configuration errors should have lower severity.
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Chapter 6

Minimizing Bug Reproduction

Steps on Android

We have shown that Android apps have become rich featured and are increasing in

popularity. Mobile apps enable user interaction via a touchscreen and a diverse set of sensors

(e.g., accelerometer, ambient temperature, gyroscope, and light) which also present new

challenges for software development, testing, debugging, and maintenance. Unfortunately,

existing trace size minimization techniques are not adequate on Android due to the difference

between Android apps and traditional desktop applications.

In this chapter, we present an approach to collect execution data automatically and

extract minimized reproduction steps from captured data by using a record/replay scheme.

We capture the event sequence while running the app and generate an event dependency

graph (EDG). Then we use the EDG with event sequence to guide the delta debugging

algorithm by eliminating irrelevant events.
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6.1 Background

As mentioned in Chapter 1, bug reproducing is the first and crucial step in debug-

ging process since without reproducing the bug, the developer will have trouble diagnosing

and verifying the problem and figure out the correct fixing strategy. To reproduce a par-

ticular bug, developers need information about reproduction steps, i.e., the sequence of

program statement, system events or user steps to trigger the bug, and information about

the failure environment, i.e., the setting in which the bug occurs [156].

Developers can obtain reproduction steps and failure environment information

mainly in two ways: bug report and collection of field data. Bug reports submitted by

users often do not contain reproduction steps or the information provided by users is wrong

or incomplete [85, 167]. Alternatively, developers can execute the application and collect

field data, i.e., data about the runtime behavior and runtime environment of deployed pro-

grams [115]. Such approaches usually generate enormous amounts of tracing data which

not only makes the debugging process difficulty but also risky, as the developer cannot

predict when a particular bug will be found. Although execution traces are usually very

long, very few of them are critical to exposing the behavior that causes the bug. There-

fore, simplification of the bug-revealing trace is an important and essential step towards

debugging.

Delta Debugging [157,159] has been introduced as an effective and efficient proce-

dure for simplification of the failing test-case. Given a program input on which the execution

of a program fails, delta debugging automatically simplifies the input such that the resulting

simplified input causes the same failure. In particular, it finds a 1-minimal input, i.e., an
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input from which removal of any entity causes the failure to disappear. This is achieved by

carrying out a search in which: new simpler inputs are generated; the program is executed

to determine if same failure is caused by the simpler input; and the above steps are repeat-

edly applied until the input cannot be simplified any further. Overall, Delta Debugging

behaves very much like a binary search. Delta Debugging is an extremely useful algorithm

and widely used in practice [123, 135, 136] to automatically simplify or isolate a failure in-

ducing input [157, 159], produce cause effect chains [158] and to link cause transitions to

the faulty code [34].

6.2 Problem Overview

Android apps differ from traditional desktop application since they have the rich

capabilities for user interaction via touchscreens, as well as the diverse set of sensors (e.g.,

accelerometer, compass, GPS) that can be leveraged to drive app behavior. Users interact

with apps through their Graphical User Interface (GUI). The app developers evolve the

GUI overtime to improve the user experience. The GUI of Android apps consist of a set of

separate screens names as activities. An activity defines a set of tasks that can be grouped

together in terms of their behavior and corresponds to a window in a conventional GUI [16].

Each activity corresponds to a top-level view of the user interface (UI). Furthermore, each

app has only one main activity, which is the initial state when the app is executed. When

interacting with GUI of an application, the user commonly transitions between different

activities, as actions in one activity trigger another activity, by triggering the corresponding

event.
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Figure 6.1: Overview of our approach.

Android app are event-driven: an app responds to an event by executing a piece

of code (the event handler for that event). A GUI event trace is a sequence of user interface

events such as screen taps, physical keyboard key presses and complete multi-touch gestures.

One way to obtain such a trace is to record the actions of a user or extracting from the bug

report. Another option uses a random or programmatic input generation tool to generate the

trace automatically (e.g., Monkey [6], an official random input generation tool for Android).

In our study, we us both ways.

6.3 Approach

Figure 6.1 gives the overview of the approach. We first collect the event execution

sequence by using record&replay. In the next step, we build the event dependency graph
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(EDG) of the app. Then we use the information extracted from EDG to guide the delta

debugging process. We repeat the delta debugging process until we trigger the crash again

with the simplified trace.

Next, we use a simple Android app, WikiNotes, to illustrate how our approach

works. There are 3 activities in WikiNotes: WikiNotes, WikiNoteEditor and WikiNotesList and one

dialog DeleteNote. Figure 6.2 shows the screenshot. As a matter of fact, it use the class

WikiActivityHelper to jump between activities.

According to the bug report, there is a crash bug in WikiNotes. Based on the

stack trace in the bug report (Figure 6.3), the crash happens when the method onResume()

in activity WikiNotes is called. However, after analyzing the source code, we found that

the real cause of crash is the deletion of a note that was created in activity WikiNotesList.

More specifically, in WikiNotesList when the user clicks the “Delete Note” button, the event

handler onMenuItemSelected is invoked. Next we call the function deleteNote in class WikiActivityHelper.

Following note deletion, we update the cursor; however, since we have deleted the note, the

number of elements in the cursor is 0, and a CursorIndexOutOfBoundsException is raised. Figure 6.4

shows the patch for this bug. We can fix the crash by checking the number of notes that

exist.

6.3.1 Creating Event Traces

The ability to record and replay the execution of a smartphone app is useful to bug

reproduction step in debugging process. Reproducing bugs in the development environment
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(a) Main Activity: WikiNoteEditor (b) Activity WikiNotesList

(c) Activity WikiNoteEditor (d) Dialog DeleteNote

Figure 6.2: UI elements in app WikiNotes
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1 Caused by:

2 android.database.CursorIndexOutOfBoundsException:

3 Index 0 requested, with a size of 0

4 at android.database.AbstractCursor.checkPosition (AbstractCursor.java:426)

5 at android.database.AbstractWindowedCursor.checkPosition

6 (AbstractWindowedCursor.java:136)

7 at android.database.AbstractWindowedCursor.getString(AbstractWindowedCursor.java:50)

8 at android.database.CursorWrapper.getString (CursorWrapper.java:114)

9 at com.google.android.wikinotes.WikiNotes.getString_aroundBody76(WikiNotes.java:159)

10 at com.google.android.wikinotes.WikiNotes.getString_aroundBody77

11 $advice(WikiNotes.java:122)

12 at com.google.android.wikinotes.WikiNotes.onResume_aroundBody78(WikiNotes.java:159)

13 at com.google.android.wikinotes.WikiNotes.onResume_aroundBody79

14 $advice(WikiNotes.java:68)

15 at com.google.android.wikinotes.WikiNotes.onResume(WikiNotes.java:1)

16 at android.app.Instrumentation.callActivityOnResume(Instrumentation.java:1184)

17 at android.app.Activity.performResume(Activity.java:5132)

18 at android.app.ActivityThread.performResumeActivity(ActivityThread.java:2669)

19 ... 10 more

Figure 6.3: Stack trace of the crash of WikiNotes.

1 protected void onResume() {

2 super.onResume();

3 Cursor c = mCursor;

4 // Patch start

5 if (c.getCount() < 1) {

6 // if the note can’t be found, don’t try to load it -- bail out

7 // (probably means it got deleted while we were frozen;

8 finish();

9 return;

10 }

11 //Patch end

12 c.requery();

13 c.moveToFirst();

14 showWikiNote(c.getString(

15 c.getColumnIndexOrThrow(

16 WikiNote.Notes.BODY)));

17 }

Figure 6.4: Crash of WikiNotes in activity WikiNotes. Lines 4–11 are the patch for this

bug.
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can be difficult, especially in the case of software that behaves non-deterministically, relies

on remote resources, or has complex reproduction steps (the users may not even know what

led up to triggering the flaw, particularly in the case of software interacting with external

devices, databases, etc. in addition to human users). We use a record&replay approach

to capture the state of the system just before a bug is encountered, so the steps leading

up to this state can be replayed later. In our study, we use VALERA [61], a lightweight

record-and-replay tool for Android.

As discussed in Section 6.1, we have three possible ways to get the crash event

traces by using the record/replay scheme:

1. Directly extract reproduction steps from the bug report. When the crash reproduction

steps are available, we can record the event trace following these steps and run our

step minimization algorithm. However, the quality of bug reports (and user reviews)

for Android apps in the wild varies considerably as they are often incomplete or

noninformative [31].

2. Use the Monkey tool to randomly generate events to trigger the crash. The downside

is for many apps, we need to login with account and password (e.g., WordPress and

K-9 Mail). But Monkey cannot automatically login and record the following events.

3. Recruit volunteer testers. We can invite our lab colleagues to manually run the app

as normal users and try to trigger the crash. We ask them to write their each action

and record the event traces they used to find the crash.

As mentioned in the bug report description, we can reproduce the crash in WikiNotes

in 6 steps:
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Type Listener Callback

View

OnClickListener onClick
OnLongClickListener onLongClick
OnFocusChangeListener onFocusChange
OnTouchListener onTouch
OnDragListener onDrag

OnItemClickListener onItemClick
Adapter OnItemLongClickListener onItemLongClick

View
OnItemSelectedListener

onItemSelectedClick
onNothingSelected

ListView onListItemClick onItemClick

MenuItem OnMenuItemClickListener onMenuItemClick

AbsListView OnScrollListener
onScroll
onScrollStateChanged

Table 6.1: Event and their call backs we consider.

1. Open the app and create one note (either empty or not);

2. Click the “List All Notes” button; the app will go to activity WikiNotesList;

3. Select the note and will go back to WikiNotes;

4. Delete the note by clicking the “Delete Note” button;

5. When the confirmation dialog appears, click “Yes”;

6. Click the “Back” button; then the crash happens.

In our study, we only focus on user events the app evolved with, which represent a

human users interaction with the app. Other events like internet, database connections are

not our concerns. Also we do not consider the inputs, i.e. exact strings we type. Table 6.1

shows the event listeners and their corresponding call back methods we consider in our

study.
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6.3.2 Generating the Event Dependency Graph

Android apps use event-driven model. There are dependence relations between

events in the program. To use the dependency information to guide our approach, we need

to build the event dependency graph (EDG) first. There are many works that focus on this

process [162,165].

In our study, we first apply static analysis on the app. There are two steps to

generating an EDG for the app:

1. The EDG could be specified manually or generated automatically through one of the

model generation techniques. We use GATOR [154] to generate sub-EDGs for each

activity in the app;

2. Based on the event traces we collect in the previous step, we link the activities and

events executed together and get the whole EDG for the app.

There are 12 events in WikiNotes in total. Figure 6.5 gives the EDG of WikiNotes.

Based on the reproduction steps mentioned in Section 6.3.1 and the EDG we have, there

are two ways to trigger the crash in WikiNotes. The event sequence to trigger the crash is

{e4, e7 or e8, e1, e2, e9} or {e4, e7 or e8, e3, e11 or e5, e2, e9, e12}. Here e4 can be committed

if we install the app and run it for the first time. When we enter the main activity WikiNotes,

it first checks the database; if there is no note in the database, it will automatically jump

to the activity WikiNoteEditor.
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6.3.3 Our Approach for Delta Debugging

Traditional Delta Debugging (DD) performs a binary search on the inputs. It

splits the inputs into two sub groups and test each of them individually. If any of the two

sub groups trigger the fault, DD marks it as minimal group and recursively searching in it

until no single input can be removed from the group [159].

In our case, since on Android events are not independent, we cannot apply the

traditional DD, and need to find another way to reduce the event trace size. We propose

two approaches for adapting the idea of delta debugging to the problem of reducing the size

of an event trace.

EDG based Delta Debugging Approach

Algorithm 1 shows the EDG-based DD approach. For each trace, we first intialize

trace list T ′ to the shortest path from starting point to crash point. Then we expand the

T ′ by adding possible events into it based on the EDG.

In the first step, we exclude irrelevent events based on the EDG generated in

Section 6.3.2. Since we know the crash causing event and activities, we can mark those

events that cannot be reached in the EDG as irrelevant.

In the next step, we use the replay tool to rerun the app to check whether it crashes

or not until all the events in the traces are marked as “relevant”. During this step, we might

mark some trace as “important” and others as “unimportant” based on their relation with

the crash point.

We use the crash bug of WikiNotes as example. We get the event trace T =
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Algorithm 1 EDG based Delta Debugging algorithm

Input: Event trace T ← {E0, E1, ..., En}

Output: Candidate traces T ′ ⊆ T of minimum events trigger the crash

1: procedure deltaDebuggingAlgorithm(T )

2: T ′ ← null

3: for each trace T do

4: T ′ ← {E0, En}

5: T ′ ← shortestPath(E0, En, EDG)

6: Replay T ′

7: if No crash triggered then

8: T ′ ← expansion(level, T ′)

9: level← level + 1

10: end if

11: end for

12: end procedure

13: procedure shortestPath(Ei, Ej , EDG)

14: Find parent activity Ai of Ei

15: Find child activity Aj of Ej

16: Find shortest path from Ai to Aj

17: end procedure

18: procedure expansion(level, T ′)

19: level ← 1

20: for activities Ai,j,...,k at the same level of An which is the parent of En do

21: Find all event combinations from parent of Ai,j,...,k to each of them with Breadth First

Search (BFS)

22: Add event into T ′

23: end for

24: end procedure
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{e7, e1, e3, e11, e4, e8, e4, e7, e3, e5, e2, e10, e1, e4, e7, e2, e9}. In the first step, we put the start

and end event into the candidate set T ′ = {e7, e9}, since e7 pointed to a1 and e9 came

from d1; next we use the generateShortestFirst function to get the shortest path from a1

to d1, we will get T ′ = {e7, e2, e9}. When we replay with this trace, we do not trigger the

crash; thus, we take one step back, and consider all the event combinations that came from

a1. There are 3 possible events, e1, e3, and e4. Also we need to consider all possible ways

coming back from one activity to another, for example, from a3 to a1, we can have e7, e8 or

e12. Finally, from one step back, combined with trace T , we can get reduced candidate T ′ =

{e7, e1, e2, e9}, {e7, e3, e5, e2, e9}, {e7, e3, e11, e2, e9}, {e7, e4, e7, e2, e9}, {e7, e4, e8, e2, e9}. Then,

by replaying with these 5 candidate traces, we can trigger the crash by using {e7, e1, e2, e9}.

After the analysis, it appears that we only need 4 steps to trigger the crash:

1. Open the app and create one note (either empty or not);

2. Click “Go To Start Note”; the app will go to activity WikiNotes;

3. Delete the note by clicking “Delete Note”;

4. When the confirmation dialog appears, click “Yes”; the crash happens.

Improved Delta Debugging Approach

During our study, we found that in the EDGs of many apps, there are many

activities at the same level, hence we have to execute the app too many times to validate

all the possible candidate traces. To reduce the replay times and improve efficiency, we

propose an improved delta debugging approach. We use static information that may be
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Algorithm 2 Improved Delta Debugging algorithm

1: procedure expansion(level, T ′)

2: level ← 1

3: for activities Ai,j,...,k at the same level of An which is the parent of En do

4: Find all event combinations from parent of Ai,j,...,k to them with Breadth First Search

5: Sort Ai,j,...,k ← relevance(Ai,j,...,k,An)

6: Add sorted events into T ′

7: end for

8: end procedure

9: procedure relevance(Ai,j,...,k,An)

10: for each method (m)/variable (v) used in An do

11: if m/v defined in Ai then

12: Put Ai in the top

13: end if

14: end for

15: end procedure

readily available because the developers, who are familiar with their own code, are often

the ones who debug and fix their apps [163].

In this approach, we consider the dependencies of the activities, for example, if

the crash happened in activity A, and in A the method defined in activity B was called,

then we first consider adding events involved in activity B. The only difference of updated

algorithm comparing with the previous one is Expansion function, the updated algorithm is

given by Algorithm 2.

We use AnkiDroid app to illustrate this approach. The EDG of AnkiDroid is shown

in Figure 6.6. The crash happens when we enter activity Reviewer (a6) after enabling the
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1 Caused by:

2 android.database.CursorIndexOutOfBoundsException:

3 Index 0 requested, with a size of 0

4 at android.database.AbstractCursor.checkPosition(AbstractCursor.java:424)

5 at android.database.AbstractWindowedCursor.checkPosition

6 (AbstractWindowedCursor.java:136)

7 at android.database.AbstractWindowedCursor.getString(AbstractWindowedCursor.java:50)

8 at com.ichi2.anki.Field.fieldValuefromDb(Field.java:24)

9 at com.ichi2.anki.Card.getComparedFieldAnswer(Card.java:1037)

10 at com.ichi2.anki.Reviewer$8.onProgressUpdate(Reviewer.java:549)

11 ...

12 at dalvik.system.NativeStart.main(Native Method)

Figure 6.7: Stack trace of the crash of AnkiDroid.

setting “Write answers” in Preference (a8). By applying the algorithm in Section 6.3.3, we

first get the shortest path from a1 to a6, that is T ′ = {e7}. Then we replay T ′ but this does

not trigger the crash. In the next step, we find all the activities at the same level as a6.

We have 6 activities at the same level as a6 which include a2, a3, a7, a8, a12, and a16. For

each of these 6 activities, we find all possible events that go out from them. This gives us

11 candidate events. We find that, since there are too many possibilities to validate from

activity StudyOptions (a1), we would spend too much time and effort to validate all possible

combinations. Therefore we need a better solution to speed up the candidate selection

process.

Based upon the stack trace given in Figure 6.7, and the source code of AnkiDroid in

Figure 6.8, we find that the crash actually happened in method getComparedFieldAnswer which is

called by function onProgressUpdate of activity Reviewer (a6) (line 39 in Figure 6.8). The method

call uses the variable mPrefWriteAnswers (line 30 in Figure 6.8), which is defined in the activity

Preference (a8). Therefore we first add events in a8 and validate them first.
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1 Card.java

2 public String[] getComparedFieldAnswer() {

3 String[] returnArray = new String[2];

4 CardModel myCardModel = this.getCardModel();

5 String typeAnswer = myCardModel.getTypeAnswer();

6 // fix: Check if we have a valid field to use as the answer to type.

7 if (null == typeAnswer || 0 == typeAnswer.trim().length()) {

8 returnArray[0] = null;

9 // fix:

10 // return returnArray;

11 }

12 Model myModel = Model.getModel(mDeck, myCardModel.getModelId(), true);

13 ...

14 /* fix:

15 // Just in case we do not find the matching field model.

16 if (myFieldModelId == 0) {

17 Log.e(AnkiDroidApp.TAG, "could not find field model for type answer: " +

typeAnswer);

18 returnArray[0] = null;

19 return null;

20 }

21 */

22 returnArray[0] = com.ichi2.anki.Field.fieldValuefromDb(this.mDeck, this.mFactId,

myFieldModelId);

23 returnArray[1] = "fm" + Long.toHexString(myFieldModelId);

24 return returnArray;

25 }

26

27 Reviewer.java

28 private SharedPreferences restorePreferences() {

29 ...

30 mPrefWriteAnswers = preferences.getBoolean("writeAnswers", false);

31 ...

32 }

33 ...

34 public void onProgressUpdate(DeckTask.TaskData... values) {

35 ...

36 // Start reviewing next card

37 mCurrentCard = newCard;

38 if (mPrefWriteAnswers) { //only bother query deck if needed

39 String[] answer = mCurrentCard.getComparedFieldAnswer();

40 comparedFieldAnswer = answer[0];

41 comparedFieldClass = answer[1];

42 } else {

43 comparedFieldAnswer = null;

44 }

45 ...

46 }

Figure 6.8: Fix strategy for the crash of AnkiDroid.
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6.4 Summary

We prototyped the approach described in Section 6.3. Our approach is useful for

bug reproduction and bug localization. However, currently it can only handle clickable GUI

events. We plan to evaluate our algorithm using more real world apps.
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Chapter 7

Related Work

This chapter summarizes various research in software engineering community and

problems addressed by this thesis. We first summarize previous research on empirical soft-

ware engineering including bug characteristic studies, using bug reports, e.g., bug location

prediction, bug triaging, duplicate bug report detection. Next we review various studies on

specific types of bugs, e.g., smartphone related bugs, concurrency bugs. Finally, we sum-

marize work on existing software testing and debugging techniques on Android platform.

7.1 Empirical Software Engineering

7.1.1 Bug Characteristic Studies

Bug characteristic studies have been performed on other large software systems [138],

though the objectives of those studies were different, e.g., understanding OS [32] errors. In

contrast, our study focuses specifically on understanding and predicting concurrency bugs.

Many other efforts [15,78,83,90,117] have mined bug and source code repositories to study
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and analyze the behavior and contributions of developers and their effects on software qual-

ity. Some of the efforts used machine learning for analysis and prediction. In contrast, we

do in-depth analysis and prediction for bugs on different platforms.

7.1.2 Bug Severity Studies

All the existing bug severity studies are focused on predicting severity levels from

a newly-filed bug report. Menzies et al. [105] proposed a classification algorithm named

RIPPER and applied it to bug reports in NASA to output fine-grained severity levels.

Lamkanfi et al. [84] apply various classification algorithms to compare their performance

on severity predicting. They grouped bug reports into two classes, severe and non-severe.

Tian et al. [141] have applied the Nearest Neighbor algorithm to predict the severity of bug

reports in a fine-grained way.

All these works are using information retrieval techniques to predict severity level

of bug reports, but they did not consider the question whether there are differences in bug

characteristics across severity classes. Our findings validate the importance and necessity

of these previous works, and show that severity is an important factor not only for bug

reporters but also for project managers.

7.1.3 Predicting Bug Location

Ostrand et al. [116] used multivariate negative binomial regression model and re-

vealed that variables such as file size, the number of prior faults, newly-introduced and

changed files can be used to predict faults in upcoming releases. Based on the model they

predict the number of faults in each file, and fault density. They found that their Top-20%
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files predicted to be buggy contained 71%–92% of the detected bugs. Their study, like

ours, has revealed that bug numbers are autocorrelated. However, we use different vari-

ables to construct the predictor model, and instead of predicting the number of bugs per

file and bug density per file, we predict the number of concurrency bugs in the system, and

type/location for newly-filed concurrency bug reports. Kim et al. [78] proposed bug cache

algorithms to predict future bugs at the function/method and file level by observing that

bugs exhibit locality (temporal, spatial) and the fact the entities that have been introduced

or changed recently tend to introduce bugs. Their study was performed on 7 large open

source projects (including Apache). Their accuracy was 73%–95% for files and 46%–72%

for functions/methods. Their study, like ours, has revealed that bug numbers are autocorre-

lated. We do not investigate localities beyond temporal; however, they might help improve

our prediction accuracy.

Wu et al. [151] used time series for bug prediction but did not consider the impact

of independent variables on the time series, as we do. Rao et al. [122] compared five

information retrieval models for the purpose of locating bugs. Their work mainly focused on

comparing models (concluding that Unigram and Vector Space work best) and calculating

the likelihood that one file would be buggy based on its similarity with known buggy files.

We use a different model; we focused on finding the exact location one concurrency bug

would affect; and we had to solve the multi-label classification problem. Moin et al. [107]

used commit logs and bug reports to locate bugs in the source file hierarchy. However, their

method is coarser-grained than ours, e.g., if two bugs are in mozilla/security/nss/lib/certdb

and mozilla/security/nss/lib/pki respectively, they considered the bugs to be in the same
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location, mozilla/security/nss/lib/, but our prediction model can distinguish the difference

between these two locations.

7.1.4 Topic Modeling

Topic models have been used widely in software engineering research. Prior efforts

have used topic model for bug localization [113], source code evolution [140], duplicate

bug detection [114, 127] and bug triaging [152]. Han et al. [57] studied how fragmentation

manifests across the Android platform and found that labeled-LDA performed better than

LDA for finding feature-relevant topics. Their work focused on two vendors, HTC and

Motorola; we compare bug topics between desktop, Android and iOS. Martie et al. [102]

studied topic trends on Android Platform bugs. They revealed that features of Android are

more problematic in a certain period. They only analyzed bug trends in the Android Platform

project; in our study, we examined 87 additional projects on Android, desktop and iOS.

Our work applies a similar process with previous work [140], but we use topic modeling

technique for a different purpose: finding differences in bug topics across severity classes,

and how bug topics evolve over time.

7.2 Specific Type of Bugs

7.2.1 Studies on Smartphone Bugs

Maji et al. [99] compared defects and their effect on Android and Symbian OS.

They found that development tools, web browsers and multimedia apps are the most defect-

prone; and most bugs require only minor code changes. Their study was focused on the
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relation between source code and defects, e.g., bug density, types of code changes required

for fixes. We also analyze bugs in Android Platform, but we mainly focus on bug-fixing process

features. Besides Android Platform, we also consider 87 other projects on Android, desktop

and iOS.

Syer et al. [137] compared 15 Android apps with 2 large desktop/server applica-

tions and 3 small Unix utilities on source code metrics and bug fixing time. We examined

38 Android projects, 34 desktop projects and 16 iOS projects. Besides fixing time, we

also consider other features, e.g., severity, description length; we also analyze topics and

reporter/owner trends for each platform.

Zhang et al. [160] tested three of Lehman’s laws on VLC and ownCloud for desktop

and Android. Their work was based on source code metrics, e.g., code churn, total commits.

Our work focuses on bug reports/nature/fixing process.

Our own prior work [21] studied bug reports on Android platform and apps. The

study found that for Android app bugs (especially security bugs), bug report quality is high

while bug triaging is still a problem on Google Code. While there we compared bug report

features across Android apps, in this work we compare bug-fixing process features across

three platforms, study topics, and study feature evolution.

7.2.2 Studies on Concurrent Programs

Lu et al. [93] analyzed 105 concurrency bugs collected from four open source

projects (Mozilla, Apache, OpenOffice, MySQL). Their study focused on understanding

concurrency bug causes and fixing strategies. Fonseca et al. [46] studied internal and exter-

nal effects of concurrency bugs in MySQL. They provide a complementary angle by studying
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the effects of concurrency bugs (e.g., whether concurrency bugs are latent or not, or what

type of failures they cause). We use a similar methodology for deciding which bugs to ana-

lyze, but with different objectives and methods: characterizing bug features, a quantitative

analysis of the bug-fixing process and constructing prediction models for bug number, type

and location.

7.3 Software Testing & Debugging on Android

7.3.1 Mobile App Testing

Yang et al. [155] implement Orbit tool based on grey-box approach for automatic

exploration. Their approach uses static analysis on the apps source code to detect actions

associated with GUI states and then use a dynamic crawler (built on top of Robotium)

to fire the actions. Anand et al. [11] developed an approach named ACTEVE based on

concolic testing. It can generate sequences of events automatically and systematically.

Their focus is on covering branches while avoiding the path explosion problem. Similarly,

Jensen et al. [67] apply symbolic execution technique to derive event sequences that can

lead to a specific target state in an Android app. Their approach can reach states that

could not be reached using Monkey tool. Mahmood et al. [96] presented EvoDroid, an

evolutionary approach for system testing of Android apps. It extracts interface and call

graph models automatically, and then generates test cases using search-based techniques.

White et al. [149] presents CRASHDROID, an approach for automating the process of

reproducing a bug by translating the call stack from a crash report into expressive steps to

reproduce the bug and a kernel event trace that can be replayed on-demand.
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7.3.2 Delta Debugging

Delta debugging is a family of algorithms for sequence minimization and fault iso-

lation, described originally by Zeller et al. [159] . Burger el al. [29] presented JINSI which

used delta debugging to record and minimize the interaction between objects to the set of

calls relevant for the failure. Roehm et al. [125] presented an approach to automatically

extract failure reproduction steps from user interaction traces by applying both delta de-

bugging and sequential pattern mining. It is used for desktop applications. Elyasov et

al. [37, 38] proposed a two stage approach for reduction of the failing event sequence, that

consists of 1) mining rewriting rules from the set of collected logs, and 2) applying these

rules to the failing sequence with the purpose of sequence length reduction. Hammoudi

et al. [56] presented an approach for recording reduction based on delta debugging that

operates on recordings of web applications. Clapp et al. [33] propose a variant of delta

debugging algorithm to handle non-determinism which is a pervasive issue in app behavior

and solve the problem of trace minimization.
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Chapter 8

Conclusions and Future Work

8.1 Contributions

The main contribution of this dissertation was to extract actionable information

from bug reports, e.g., for evaluating product quality, reducing the time and human effort

for bug fixing process and speeding up the debugging process. To this end, this dissertation

makes the following fundamental contributions to the field of software engineering.

8.1.1 A Cross-platform Analysis of Bugs

Bug-fixing process features (e.g., fix time, number of comments) differ between

desktop and the two smartphone platforms, but are similar for Android and iOS. We also

found that the most frequent issues differ across platforms. Furthermore, concurrency bugs

are much more prevalent on Android than on iOS. Despite the attention they have received

in the research community, we found that issues commonly associated with smartphone

apps such as energy, security and performance, are not very prevalent.
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8.1.2 Empirical Study of Concurrency Bugs

For each bug type, we analyzed multiple facets (e.g., patches, files, comments, and

developers involved) to characterize the process involved in, and differences between, fixing

concurrency and non-concurrency bugs. We found that compared to non-concurrency bugs,

concurrency bugs take twice as long to fix, require patches that are 4 times larger. Within

concurrency bugs, we found that atomicity violations are the most complicated bugs, taking

highest amounts of time, developers and patches to fix, while deadlocks are the easiest and

fastest to fix.

Using the historic values of these bug characteristics, we construct two models to

predict the number of extant concurrency bugs that will have to be fixed in future releases:

a model based on generalized linear regression and one based on time series forecasting.

Our predicted number of concurrency bugs differed very little from the actual number:

depending on the bug type, our prediction was off by just 0.17–0.54 bugs.

While these quantitative predictors provide managers an estimate of the number

of upcoming concurrency bugs, to help developers we constructed two additional, qualitative

predictors. First, a bug type predictor that can predict the likely type of a newly-filed bug

concurrency bug, e.g., atomicity violation or deadlock with at least 63% accuracy. Second,

a bug location predictor that predicts the likely bug location from a new bug report with

at least 22% Top-1 accuracy and 55% Top-20% accuracy.
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8.1.3 Bug Analysis Across Severity Classes

Severity changes are more frequent on Android, where some projects have change

rates in excess of 20%, than on desktop. Bug-fix time is affected by not only severity

but also priority. Interestingly, there are marked quantitative difference between the three

severity classes on desktop, but the differences are more muted on Android. Fixing medium-

severity bugs imposes a greater workload than fixing high-severity bugs. Medium-severity

bug reporters/owners are more experienced than high-severity bug reporters/owners. There

have been more concurrency and cloud-related high-severity bugs on desktop since 2009,

while on Android concurrency bugs have been and continue to be prevalent. Since our study

reveals that bug-fixing process attributes and developer traits differ across severity levels,

our work confirms the importance of prior work that has focused on accurately predicting

bug severity [84,105,141].

8.1.4 Minimizing Bug Reproduction Steps on Android

We proposed an approach to collect execution data automatically and extract

minimized reproduction steps from captured data by using a record/replay scheme. We

generate an event dependency graph (EDG) based on app execution. Then we use the

EDG with event sequences to guide the delta debugging algorithm by eliminating irrelevant

events.
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8.2 Future Directions

8.2.1 Mixture Use of Data Sources

In our quantitative studies in Sections 3.2, 4.3, and 5.2, we only extract bug fixing

features from the bug tracking system, without looking at source code. Therefore, future

work can extract metrics from source code repository, e.g., McCabe cyclomatic complexity,

lines of code, number of classes, number of methods, number of parameters [166,168], etc.,

and build quantitative studies using these metrics. Furthermore, we can build combined

prediction models by applying both features extracted from source code repository and bug

tracking system.

8.2.2 Study of General Applications

Our study focused on open source applications; thus the findings might not general-

ize to closed source applications. Therefore, future work can analyze the bug characteristics

and topics on the specific domains.

Additionally, in Section 3.4 we introduced our finding on projects migrating to

GitHub. We can investigate how we can extract actionable information from bug reports

hosted on GitHub.

8.2.3 Minimizing Event Trace on Android

Our study in the dissertation only focused on click events on Android. There

are other event types (e.g., input numbers/characters, system related) that we have not

handled. To support these additional types of events, we can apply symbolic execution
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techniques. However, the existing symbolic execution tools [23] supporting Android cannot

be used in our study since they can only cover part of the system calls. We can develop a

new symbolic execution tool and continue our study in the future.
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[126] Mikko Rönkkö and Juhana Peltonen. Software industry survey 2013, 2013. http:

//www.softwareindustrysurvey.org/.

[127] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate de-
fect reports using natural language processing. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages 499–510, 2007.

[128] Robert C. seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy Systems:
Software Technologies, Engineering Process and Business Practices. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[129] J. Shalf, K. Asanovic, D. Patterson, K. Keutzer, T. Mattson, and K. Yelick. The
manycore revolution: Will the hpc community lead or follow? SciDAC Review, 2009.

[130] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira,
Bram Adams, Ahmed E. Hassan, and Ken-ichi Matsumoto. Studying re-opened bugs
in open source software. Empirical Software Engineering, 18(5):1005–1042, 2013.

[131] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley, 2004.

[132] SWM Staff. 2015 software 500, 2015. http://www.softwaremag.com/

2015-software-500/.

173

http://www.gartner.com/newsroom/id/2696317
http://grodola.blogspot.com/2014/05/goodbye-google-code-im-moving-to-github.html
http://grodola.blogspot.com/2014/05/goodbye-google-code-im-moving-to-github.html
http://www.softwareindustrysurvey.org/
http://www.softwareindustrysurvey.org/
http://www.softwaremag.com/2015-software-500/
http://www.softwaremag.com/2015-software-500/


[133] Jiang Su, Harry Zhang, Charles X. Ling, and Stan Matwin. Discriminative parameter
learning for bayesian networks. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pages 1016–1023, 2008.

[134] M. Sullivan and R. Chillarege. A comparison of software defects in database manage-
ment systems and operating systems. In Fault-Tolerant Computing, 1992. FTCS-22.
Digest of Papers., Twenty-Second International Symposium on, pages 475–484, July
1992.

[135] William N. Sumner and Xiangyu Zhang. Memory indexing: Canonicalizing addresses
across executions. In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’10, pages 217–226, 2010.

[136] William N. Sumner and Xiangyu Zhang. Comparative causality: Explaining the
differences between executions. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 272–281, 2013.

[137] Mark D. Syer, Meiyappan Nagappan, Ahmed E. Hassan, and Bram Adams. Revisiting
prior empirical findings for mobile apps: An empirical case study on the 15 most
popular open-source android apps. In Proceedings of the 2013 Conference of the
Center for Advanced Studies on Collaborative Research, CASCON ’13, pages 283–
297, 2013.

[138] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. Bug characteristics in open source software. Empirical Softw. Engg., 19(6):1665–
1705, December 2014.

[139] Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein. Vali-
dating the use of topic models for software evolution. In Proceedings of the 2010 10th
IEEE Working Conference on Source Code Analysis and Manipulation, SCAM ’10,
pages 55–64, 2010.

[140] Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein. Mod-
eling the evolution of topics in source code histories. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11, pages 173–182, 2011.

[141] Yuan Tian, David Lo, and Chengnian Sun. Information retrieval based nearest neigh-
bor classification for fine-grained bug severity prediction. In Proceedings of the 2012
19th Working Conference on Reverse Engineering, WCRE ’12, pages 215–224, 2012.

[142] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis Vla-
havas. Mulan: A java library for multi-label learning. J. Mach. Learn. Res., 12:2411–
2414, July 2011.

[143] PRWEB UK. Mobile internet usage to overtake desktop as early as 2014 says new mar-
keting report, 2012. http://www.prweb.com/releases/2012/11/prweb10143010.

htm.

174

http://www.prweb.com/releases/2012/11/prweb10143010.htm
http://www.prweb.com/releases/2012/11/prweb10143010.htm


[144] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: Static race detection on
millions of lines of code. In Proceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07, pages 205–214, 2007.

[145] W3Techs. Usage of content management systems for websites, 2013. http://

w3techs.com/technologies/overview/content_management/all/.

[146] Tim Walters. Understanding the “mobile shift”: Obsession with the mo-
bile channel obscures the shift to ubiquitous computing, 2012. http:

//digitalclaritygroup.com/wordpress/wp-content/uploads/2012/12/

DCG-Insight-Understanding-the-Mobile-Shift-Nov-2012.pdf.

[147] Joanne Webb. 6 third party tools for automatic bug creation and
more. http://www.pivotaltracker.com/community/tracker-blog/

6-third-party-tools-for-automatic-bug-creation-and-more.

[148] Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner, and Suresh Jagannathan.
Analyzing concurrency bugs using dual slicing. In Proceedings of the 19th Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’10, pages 253–264, 2010.

[149] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas, and
Denys Poshyvanyk. Generating reproducible and replayable bug reports from android
application crashes. In Proceedings of the 2015 IEEE 23rd International Conference
on Program Comprehension, ICPC ’15, pages 48–59, 2015.

[150] Chadd C. Williams and Jeffrey K. Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Trans. Softw. Eng., 31(6):466–
480, June 2005.

[151] W. Wu, W. Zhang, Y. Yang, and Q. Wang. Time series analysis for bug number pre-
diction. In Software Engineering and Data Mining (SEDM), 2010 2nd International
Conference on, pages 589–596, June 2010.

[152] Xihao Xie, Wen Zhang, Ye Yang, and Qing Wang. Dretom: Developer recommenda-
tion based on topic models for bug resolution. In Proceedings of the 8th International
Conference on Predictive Models in Software Engineering, PROMISE ’12, pages 19–
28, 2012.

[153] Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou. Developer prioritization in
bug repositories. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 25–35, 2012.

[154] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static
control-flow analysis of user-driven callbacks in android applications. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15,
pages 89–99, 2015.

175

http://w3techs.com/technologies/overview/content_management/all/
http://w3techs.com/technologies/overview/content_management/all/
http://digitalclaritygroup.com/wordpress/wp-content/uploads/2012/12/DCG-Insight-Understanding-the-Mobile-Shift-Nov-2012.pdf
http://digitalclaritygroup.com/wordpress/wp-content/uploads/2012/12/DCG-Insight-Understanding-the-Mobile-Shift-Nov-2012.pdf
http://digitalclaritygroup.com/wordpress/wp-content/uploads/2012/12/DCG-Insight-Understanding-the-Mobile-Shift-Nov-2012.pdf
http://www.pivotaltracker.com/community/tracker-blog/6-third-party-tools-for-automatic-bug-creation-and-more
http://www.pivotaltracker.com/community/tracker-blog/6-third-party-tools-for-automatic-bug-creation-and-more


[155] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for automated gui-
model generation of mobile applications. In Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering, FASE’13, pages
250–265, 2013.

[156] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2009.

[157] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In Proceed-
ings of the 7th European Software Engineering Conference Held Jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-7, pages 253–267, 1999.

[158] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceedings
of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering,
SIGSOFT ’02/FSE-10, pages 1–10, 2002.

[159] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Trans. Softw. Eng., 28(2):183–200, February 2002.

[160] Jack Zhang, Shikhar Sagar, and Emad Shihab. The evolution of mobile apps: An
exploratory study. In Proceedings of the 2013 International Workshop on Software
Development Lifecycle for Mobile, DeMobile 2013, pages 1–8, 2013.

[161] Wei Zhang, Chong Sun, and Shan Lu. Conmem: Detecting severe concurrency bugs
through an effect-oriented approach. In Proceedings of the Fifteenth Edition of AS-
PLOS on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XV, pages 179–192, 2010.

[162] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and
Wei Zou. Smartdroid: An automatic system for revealing ui-based trigger conditions
in android applications. In Proceedings of the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’12, pages 93–104, 2012.

[163] Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. A cross-platform analysis of bugs and
bug-fixing in open source projects: Desktop vs. android vs. ios. In Proceedings of the
19th International Conference on Evaluation and Assessment in Software Engineer-
ing, EASE ’15, pages 7:1–7:10, 2015.

[164] Minghui Zhou and Audris Mockus. What make long term contributors: Willingness
and opportunity in oss community. In Proceedings of the 34th International Confer-
ence on Software Engineering, ICSE ’12, pages 518–528, 2012.

[165] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Appink: Watermarking android apps
for repackaging deterrence. In Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security, ASIA CCS ’13, pages 1–12,
2013.

176



[166] Yuming Zhou and Hareton Leung. Empirical analysis of object-oriented design metrics
for predicting high and low severity faults. IEEE Trans. Softw. Eng., 32(10):771–789,
October 2006.

[167] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss. What
makes a good bug report? IEEE Transactions on Software Engineering, 36(5):618–
643, Sept 2010.

[168] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Pre-
dictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007.
International Workshop on, pages 9–9, May 2007.

177


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Dissertation Overview
	Cross-platform Analysis
	Empirical Study on Concurrency Bugs
	Bug Analysis on Severity Classes
	Delta Debugging on Android

	Thesis Organization

	Framework Overview
	Applications
	Collecting Data From Bug Reports
	Quantitative Analysis
	Topic Modeling

	A Cross-platform Analysis of Bugs
	Methodology
	Examined Projects
	Quantitative Analysis
	Qualitative Analysis

	Quantitative Analysis
	Bug-fix Process Attributes
	Management of Bug-fixing
	Bug Fix Rate Comparison
	Case Study: Cross-platform Projects

	Qualitative Analysis
	Topic Extraction
	Bug Nature and Evolution
	Case Study: WordPress
	Smartphone-specific Bugs

	Actionable Findings
	Addressing Android's Concurrency Issues
	Improving Android's Bug Trackers
	Improving the Bug-fixing Process on All Platforms
	Challenges for Projects Migrating to GitHub

	Threats to Validity
	Selection Bias
	Data Processing
	IDs vs. Individuals

	Summary

	Empirical Study of Concurrency Bugs
	Concurrency Bug Types
	Methodology
	Projects Examined
	Identifying Concurrency Bugs
	Collecting Bug-fix Process Data

	Quantitative Analysis of Bug-fixing Features
	Feature Distributions
	Differences Among Concurrency Bugs
	Discussion

	Predicting the Number of Concurrency Bugs
	Generalized Linear Regression
	Times Series-based Prediction

	Predicting the Type of Concurrency Bugs
	Approach
	Results

	Predicting Concurrency Bugs' Location
	Approach
	Results

	Threats to Validity
	Selection Bias
	Data Processing
	Unfixed and Unreported Bugs
	Short Histories
	Bug Classification

	Summary

	Bug Analysis Across Severity Classes
	Methodology
	Examined Projects
	Severity Classes
	Quantitative Analysis
	Topic Analysis

	Quantitative Analysis
	Severity Change
	Bug-fix Process Attributes
	Management of Bug-fixing

	Topic Analysis
	Topic Extraction
	Bug Nature and Evolution

	Threats to Validity
	Selection Bias
	Severity Distribution on Android
	Priority on Google Code and JIRA
	Data Processing

	Summary

	Minimizing Bug Reproduction Steps on Android
	Background
	Problem Overview
	Approach
	Creating Event Traces
	Generating the Event Dependency Graph
	Our Approach for Delta Debugging

	Summary

	Related Work
	Empirical Software Engineering
	Bug Characteristic Studies
	Bug Severity Studies
	Predicting Bug Location
	Topic Modeling

	Specific Type of Bugs
	Studies on Smartphone Bugs
	Studies on Concurrent Programs

	Software Testing & Debugging on Android
	Mobile App Testing
	Delta Debugging


	Conclusions and Future Work
	Contributions
	A Cross-platform Analysis of Bugs
	Empirical Study of Concurrency Bugs
	Bug Analysis Across Severity Classes
	Minimizing Bug Reproduction Steps on Android

	Future Directions
	Mixture Use of Data Sources
	Study of General Applications
	Minimizing Event Trace on Android


	Bibliography

