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ABSTRACT OF THE DISSERTATION

Dimensionality Reduction Algorithms With Applications @ollaborative Data and Images

by

Guobiao Mei

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2008
Dr. Christian R. Shelton, Chairperson

General dimensionality reduction techniques play impuntales in various fields in ma-
chine learning. As a well studied problem, many existingpathms have achieved wide
success in specific fields. In this work, we view this probleomf a different viewpoint.

We first focuses on collaborative data, which consist ohgtirelating two distinct sets
of objects: users and items. Much of the work with such datages on filtering: predicting
unknown ratings for pairs of users and items. In this work, wepose a well-structured
Bayesian network to model the collaborative data, and eynlplopy belief propogation to
estimate parameters of the network and perform filteringgtalh addition, we are interested
in the problem of visualizing the information in the collabtve data. Given all of the
ratings, our task is to embed all of the users and items aggioithe same Euclidean space.

We would like to place users near items that they have rataddold rate) high, and far away

Vi



from those they would give low ratings. We pose this problenaaeal-valued non-linear
Bayesian network and employ Markov chain Monte Carlo andketgiion maximization to
find an embedding. We present a metric by which to judge thétgud a visualization.

We then extend the visualization framework to images, $igadly to embed images.
Embedding images into a low dimensional space has a wide mfrgpplications: visualiza-
tion, clustering, and preprocessing for supervised legniraditional dimension reduction
algorithms assume that the examples densely populate thiéahla Image databases tend
to break this assumption, having isolated islands of smnieges instead. Here we extend
our framework to achieve the embedding goal of preservingllmage similarities based on
their scale invariant feature transform (SIFT) vectors. Mé&ke no neighborhood assump-
tions in our embedding. Our algorithm can also embed the @naga discrete grid, useful

for many visualization tasks.
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Chapter 1

Introduction

When shopping online, would it not be great if the websitedoecommend the right items
for us? Or if we have rated some moﬂewould it not be helpful if they could give us a
graphical display of both movies and people, so that we caigate easily for more movies
we may be interested in, and see what our friends like? Alsosider the situation that we
have a collection of personal photographs which are aburatahdisordered, would it not
be nice if we had an automatic tool to generate a layout ofrtieges so that similar ones
lie close to each other, allowing us to navigate through tietgs more easily and with more
fun?

This dissertation works to provide solutions to the abowkda We first introduce the

problem of collaborative filtering in Sectidn1.1, then threldem of visualization of collab-

orative data in Sectidn 1.2, and finally give a brief introtime to image embedding problem

IFor examplenttp://www.imdb.com



in SectionLB. In our work, all the three problems are soltti similar frameworks and

techniques. They all fall into the more general class of disni@nality reduction techniques.

1.1 Collaborative Filtering

Our work starts with looking into a special kind of data, n&neollaborative data. Col-
laborative data, which are composed of correlatedrsand items are abundant: movie
recommendations, music rankings, and book reviews, famgka They can be very useful
to make accurate recommendations to users about which tteyisnight favor. This prob-
lem is generally recognized as collaborative filtering, amdtry to tackle the problem with
a novel graphical model based approach.

Collaborative data can be found in many places involvingsused items. Here we
give a more detailed introduction to them with the exampl&oardGameGe#k(BGG),
a well-known board game rating and recommendation web3$ite. first major component
of collaborative data are users. In BGG, users refers to ¢lgestered accounts with the
website. The other component of collaborative data arestdmpard games in the case of
BGG. Without loss of generality, users and items are idetifiy single integers IDs. They
are correlated by the ratings between them. Each user caa mtbset of the items (games)
that he or she has played or is familiar with. BGG has integéngs with10 the highest
score. Figur€Il1 shows sample rating breakdown for the gaieeMacher” as of the date

of this dissertation.

http:/lwww.boardgamegeek.com



Rating Breakdown for "Die Macher"
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Figure 1.1: Sample rating breakdown for the game “Die Matfiem BGG

Typical collaborative data contain a small set of “populiéins with lots of ratings, and
a large subset of items with only a few ratings. Similar treatbo happen to the users. In
general, the overall rating density (average percentagmwies each user has rated) is less
than 0.5% in BGG. FigurE_1.2 shows the available ratings dpr500 users and toB00
games.

Collaborative filtering is the task of providing useful imfioation of what items people
might like or dislike, based on items they have previoustgda Collaborative filtering can
help us suggest new items a user might be interested in, Belg navigate items according
to their preferences, or reconstruct data by predictiomdlaBorative filtering is equivalently

the task of predicting missing ratings for any user basedisrhher existing ratings and
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Figure 1.2: Top rated users and games for BGG. Black dotsatelihe existence of a rating
of the corresponding user and game.



other users’ ratings. It is call “collaborative” because poediction, we not only take into
account the users own ratings, but also other users’ prefese

In this work, we try to model collaborative data with Bayesigetworks. In the collab-
orative data, we have: usersU = {U;,U,, ..., U, } andn itemsG = {G;,Gs,...,G,}.
We set);; = 1 if there is a rating-;; from U, to G, otherwise sef;; = 0. We assume that
ratings are discrete.

We assume that there is some hidden characteristic vanaplesenting the personal
preferences of each user, and similarly some hidden pippariable representing the prop-
erties of each item. Let,; be the corresponding variable for udér and likewiseg; is the
property variable for itentG,. We further assume that the rating is solely dependent on
the latent variables; andg,: onceu; andg; are giveny;; is independent of other ratings in
the data. FigurE_Il3 shows a sample problem of collaborfiliggng with three users, three
items, and binary ratings.

We explain in detail of our approach to employ Bayesian netwearning and infer-
ence algorithms to perform collaborative filtering in Crexfl}, with some essential Bayesian

network knowledge introduced in Appendix A.

1.2 Visualization of Collaborative Data

In addition to predicting missing ratings, we might like tiswalize the data. Spatial layouts

may potentially increase interest in exploration and tamithding information. The visual-



Figure 1.3: Sample collaborative filtering problem with iy ratings.



ization problem of collaborative data is new to the reseétetature. We extensively explore
the approach and analysis for this problem in this work.

Using all the ratings, the visualization problem is to etrdne intrinsic similarities or
dissimilarities between all the users and items involved, r@present them graphically. This
has a wide range of applications, for example guided ondimgpping. Traditional stores
allow for easy browsing by physically walking up and down #igles and visually inspect-
ing the store’s contents. Such browsing is not easy on-Wmazon.comfor instance, has
thousands of items in many categories. While collabordtitexing allows an on-line seller
to recommend a list of objects that the buyer might also liképes not supply a good way
of browsing an on-line collection in a more free-form faghidVe propose building an em-
bedded graph of all the items using the collaborative radiaig, and allowing the shopper to
zoom in on a portion of the graph and scroll around as he oreatieles for items of interest.
If constructed well, nearby items will also be of interesthie shopper and local directions
in the space will have “meaning” to the user. Spatial laydatge been shown in the past to
increase interest in exploration and to aid in finding infation [Chennawasin et al., 1999].

We assume @-dimensional Euclidean space, which we call émbedded spadgor
most computer interface$) = 2). Each user or item is represented by a point in this space.
Intuitively, if two user (or item) points are near each othethe embedded space, the two
users (items) are likely to have similar preferences (prig®. In the same manner, the
closer a user point is to an item point in the embedded sphedjigher the rating the user

has given (or would give) the item.



No previous algorithms have approached the problem of ligng collaborative infor-
mation. Here we initiate this problem and propose an aprdsi@ny visualization problems
are “soft” in nature and it is difficult to compare alternaimethods. For this task, we in-
troduce a simple evaluation criterion which is natural alholrs for numeric comparisons of

possible visualizations. We explain the details of our mdtim ChaptefX.

1.2.1 Connection with Dimensionality Reduction

Our proposed visualization of collaborative data problemposes a new perspective view
for the data. It is essentially a dimensionality reductioolppem for the specially organized
collaborative data, with possibly missing feature valuasirigs), and usually with high di-
mensionality (total number of users or items).

This also suggests that our framework may well be applicab@general dimensionality
reduction tasks. If we convert the raw input data into sonpe tgf collaborative data, we
can apply our algorithm to perform the embedding. More intguatty, our approach not only

embeds the input data, it also co-embeds features in the esaripedded space.

1.3 Embedding Images

The collaborative visualization framework can be appliedther seemingly unrelated do-
mains, image embedding for an example. By representingesagth sets of features,

images can be embedded into a Euclidean space with a sinelduoch



Such image embeddings can have a wide range of applicatlorege search engines
are one obvious example. Often a good portion of the proposades for a query are not
related to the desired goal of the user. By embedding theesiabe user can more quickly
find the set of interest. As a consequence, searching regillltee much improved. With the
abundance of digital photography, many households hawes#mals of images stored on their
home computers without a suitable method for searching tt&mphic visualization of the
entire database can be a great aid in allowing quick and etisgval of desired photographs.
More generally, embedding images into a low dimensionatses a wide range of other
applications: visualization, clustering, and pre-praoeg for supervised learning.

Traditional dimension reduction algorithms assume thatekamples densely populate
the manifold. Image databases tend to break this assumtaming isolated islands of
similar images instead. In this work, we propose a novel @gghn that embeds images into
a low dimensional Euclidean space, while preserving latage similarities based on their
scale invariant feature transform (SIFT) vectors, whiah finst introduced in[[Lowe, 2003].
We make no neighborhood assumptions in our embedding. Qaritim can also embed the
images in a discrete grid, useful for many visualizatiok$asVe demonstrate the algorithm
on images with known categories and compare our accuraoydbly to those of competing
algorithms.

We modify the framework proposed for visualization of cbtb@ative data to suite for the
need of image embedding. The goal is similar to the visutdingoroblem: to put images

into some Euclidean space so that each image lies close tlarsother images, while far



apart from those with large distinctions. It is essentiallgimension reduction problem for

images. We give the details of our algorithm in Chafpter 5.

1.4 Summary

We propose an approach to solve the collaborative filteuisgialization, and image embed-
ding problems listed above. We give detailed formulationhaf problems and present our

algorithms in the following chapters.

10



Chapter 2

Background

In this chapter, we introduce the background of our work, istdsome of the related work.
We first introduce the problem of dimensionality reductionSectiol’Zll. We then show
some of the most popular existing algorithms for the problemSectiolZR we introduce the
problem of collaborative filtering. We show how this problenessentially a dimensionality

reduction problem with missing data components.

2.1 Dimensionality Reduction Algorithms

Dimensionality reduction (DR) is one of the most widely uggdblems in the machine
learning field. In short, it is the problem of finding low dirreonal structure of given high
dimensional data.

Formally, assume the input data consists gbints{z1, z,, .. ., x,, }, each point;; isaD
dimensional vectoi,e. z; € RP. The problem of dimension reduction is to find a mapping

11



¢ such thaty; = ¢(z;), wherey; € R?is ad (usually much smaller tha®) dimensional
vector andy; best “representst;. We hereafter usX, a D x n matrix consisting of all the
data points as columns to denote the entire input data. lideswe uséy’, ad x n matrix to
denote the corresponding output.

We also use the term “embedding” to represent the problenmeésionality reduction,
especially for the case of small Intuitively, it is the problem of embedding the high di-
mensional raw data; into a low dimensional space where the results are easilyab&e.
We refer to the targeR“ space as thembedded spacéNote that it is difficult to present a
universal view of what a good embedding is. Different apgimns will have different ways
of interpreting what is a good representation of the oribdza.

Dimensionality reduction is useful in many domains in thechiae learning literature.
In supervised learning, for examp|e [Fukumizu et al., 20@4jere training data; are given
along with a labely; indicating their categories, the task is to train a classifisuch that
when a previously unseen testing data paimg given, f(x) predicts the class label. When
the data points have many dimensions, it is both time consgrand often inaccurate to
train the classifier directly on the raw data. Pre-procegsliata points with dimensionality
reduction algorithms is not only suitable, but also necgssamany cases.

In general, the dimensionality reduction problem only feesion the relative positioning
of the input data. Without loss of generality, in this seatise assume that the data points
have zero empirical mean.e. ). x; = 0. This can be easily achieved by computing the

empirical mean of given input data points and subtractirfgoitn the original data points:

12



T; <= T; — %ijj'
Dimensionality reduction algorithms fall into two categgs:. linear and non-linear. We

briefly discuss both in the remainder of this section.

2.1.1 Linear Algorithms

Linear dimensionality reduction algorithms seek to findreedr transformation for the input
data such that some criterion is met. In particular, theytdr§ind aD x d matrix W such

thaty; = ¢(x;) = W 'z; is the embedding. Or in other words = W' X.

Principal Component Analysis

Principal component analysis (PCA) is one of the most widedgd linear dimensionality
reduction algorithm. In 1901 Karl Pearson presented tlgerithm. The goal of PCA is to
project the data while preserving the greatest variance.

More formally, letw; be a unit vector along which to project the original data t€AP
seeks for

wy = arg max Y (w'x;)?.
w1 4

Recursively, once we have obtained the first1 such projection vectors, theth projection
vector is

k—1
wy = arg max »_(w' (s = Y wyw )"
wl||=
i Jj=1

In [Pearson, 1901], the author also showed that the solditioPCA is just an eigen-

13



value decomposition problem for the covariance matrix giuindataX. Let C = XXT
be theD x D empirical covariance matrix oK. Let wy,w»,...,w, be thed eigenvec-
tors of C with largest eigenvalues. Then the solution of PCA for theada is given by

W = [wy, ws, . .., wy]. The embedding is given by

Y=W'X.

Multi-Dimensional Scaling

Multidimensional scaling (MDS) is another well known limeimensionality reduction al-
gorithm. It is first introduced in[Torgerson, 1952]. L&t = ||x; — x;|| be the Euclidean
distance between the pointsandz; in the originalR” space, and’;; = ||y;—y;|| be the dis-
tance in the embedddRl? space between the two points. A good embedding should peeser
the distance well: close points in the original space shoeidain close in the embedded
space, and vice versa.

MDS seeks to minimize the objective function

> w(Si; —Ty) -

2

Most of the time the function is set to be the square of the argument. In this case, the
objective function of MDS becomes . (Si; — T;;)*.

There is a closed form solution for MDS whenis the square function, as shown in

14



[Cox and Cox, 2001]. LeP;; = ||z; — z;||*, and definéB = —%, whereH;; = ¢;; — %
Hered;; = 0 unlessi = j, in which case&);; = 1. The objective function is minimized if the
embeddingY is set to the topl eigenvectors of the matril8.

Further research [Williams, 2001] showed that PCA and MD&usth produce identical
embedding given the same input data if MDS uses the squat&duarfor). So we can view

MDS as a generalization of PCA.

2.1.2 Nonlinear Algorithms

Linear dimensionality reduction algorithms work well fawgut data lying in a regular hyper-
plane. However, in many cases the data points lie in a stedtwmanifold. Applying linear
transformations for dimensionality reduction produce®arpepresentation of the data. We

introduce some of the most popular nonlinear embeddingiégos in the following text.

Locally Linear Embedding

In [Roweis and Saul, 2000], the authors present locally linedrezlding (LLE). As a non-
linear embedding algorithm, LLE assumes that the nearbgitpdlocal neighbors) in the
original space should remain neighbors in the embeddedspagparticular, the embedding
of a point should be able to be linearly reconstructed frasriatal neighbors (points with
smallest Euclidean distances) in the original space.

The LLE algorithm has two phases. The first step is to compugeréconstructing

weights for each of the data points by its neighbors. Thensiraction cost to be mini-

15



mized is defined as
i j

They only consider reconstructing from its neighbors, so they enfor&’;; = 0 whenz;

is not in the neighbor set of;. To get rid of the scaling freedom, they further require that

Zj Wij == 1
The second phase of the algorithm is to use the local welghte generate the embed-

dingY such that the following cost function is minimized:

OY) =) lyi— > Wiyl
i j

To remove the rotational freedom in the final embedding, theyer require

Minimizing both cost functions results in an eigenvectocaaposition problem of a
gram matrix defined in [Saul and Roweis, 2D03]. The componafi cost of LLE is similar

to that of MDS.

16



Isomap

In [Tenenbaum et al., 2000] the authors predsntmap another nonlinear embedding al-
gorithm. The idea of Isomap is that the distance between wwot in the original space
should not just be computed as the Euclidean distance .akhsteshould be the shortest sum
of distances along a path consisting of points near each.othe

They first construct a connectivity gragh, with nodesX = {x1, zs,...,z,}. An edge
betweenr; andz; exists ifz; is one of the/ nearest neighbors af,. Then they compute
the distance between any two pointsandz; to be the shortest distance of the nodegand

x; in the graphG. Finally they run MDS on the distance defined above.

Semi-Definite Embedding

Semi-definite embedding (SDE), or maximum variance unfiggdMVU) is another popular
nonlinear dimensionality reduction technique. It was frstsented in
[Weinberger and Saul, 2006].

Similar to Isomap, the idea of SDE is to build a connectivitgah G, with nodesX =
{z1, %2, ...,2,}. They connect each node with its K nearest neighbors. The constraints
imposed by SDE preserve the lengths and angles of these edigeg embedding. To reduce
the complexity of having to dealing with the angles, theyttiar add an edge between any
two neighbors of a point;, if it did not already exist.

Similar to LLE, to produce a unique embedding, they furtleguire the embedding result

to be centered at originy _, y;, = 0. The constraint-preserving embedding leads to a semi-

17



definite programming (SDP) problem and can be solved withyneaisting SDP solvers.

2.1.3 Other Dimensionality Reduction Algorithms

Dimensionality reduction has been researched and dewtlopea long time, and there are
many other algorithms available.

In [Scholkopf et al., 1998], the authors introduced Kern@®AR which uses a Kernel
function (matrix) to implicitly map raw data vectors intorae feature space and then per-
form PCA there. The resulting embedding is thus a non-lingajection of the data. In
[Donoho and Grimes, 2003], the authors propose Hessian HLEHK). hLLE adapts the
LLE method but adjust the reconstruction weidNtto minimize the Hessian operator. This

method is designed for some non-convex data sets.

2.2 Collaborative Filtering Algorithms

There are many existing collaborative filtering algorithimsusing on the task of prediction.
[Breese et al., 1998] classifies the approaches into twomsajegoriesmemory basednd
model based Memory based collaborative filtering algorithms make j#dns according
to all the existing preferences stored beforehand, whildehbased algorithms first try to
learn the parameters of a particular model for the existiegr preferences, and then make
predictions according to the learned model. [Sarwar eP8D]1] has an exploration of many

item-based algorithms.
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2.2.1 Eigentaste

[Goldberg et al., 2001] propose Eigentaste (ET). It has tivasps: offline and online. It
treats the entire rating matrix as a high dimensional spadesanploys principal component
analysis for dimensionality reduction during the offlineagh. It projects the users into a
low dimensional space and then partitions the embedded sptax sets of users and uses
the maximally rated items in a given set as predictions dutiie online phase. While this
algorithm does place the users in a geometric space, it dugdace the items in the same
space, and it requires that there be a set of itemsgduge setwhich every user has rated.

This is a severe restriction because not all collaboratata diill have this property.

2.2.2 Co-occurrence Data Embedding

Co-occurrence data have been used to produce embeddinge ofasses of objects in the
same space. CODE |[Globerson et al., 2005] is one such regantpde. It tries to embed
objects of two types into the same Euclidean space basedeorctiroccurrence statistics.
Unfortunately, collaborative filtering data are usuallyej as ratings and not co-occurrence
statistics. Even if we take the ratings to be proportiondahtcorresponding co-occurrences
(an unjustified assumption), we still have missing stass{which cannot be taken to be

zero). Co-occurrence algorithms do not currently deal withh missing values.
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2.2.3 Other Collaborative Filtering Algorithms

Collaborative filtering has attracted a good amount of netem the past years. Many other
algorithms exist in the literature.

In [Hofmann and Puzicha, 1999], the authors use a probtbiletent space model to
model users’ preferences as convex combinations of preferfactors, and employ approx-
imate EM algorithm to learn the model.

Some of the filtering methods have a “geometric” flavpr. [Rekret al., 2000] propose
a collaborative filter based on personality diagnosis. Tdmsociate each user with a vector
R'"“¢ indicating the true rating of this user for every item in thestem. The actual rating
is assumed to be a random variable drawn from a Gaussiaibdigdbn with mean equals to
the corresponding element of that item in the us&$¢ vector. If there is a missing rating,
the corresponding:’“¢ element is a uniform random variable.

In [Paviov and Pennock, 2002] the authors developed a marientropy approach for
collaborative filtering. The algorithm is especially sbi@for dynamic stream collaborative
data. They view the items as clusters based on the user guaitss1s, and make predictions
that minimizes the probability of crossing cluster bounekar

[Melville et al., 2002] presented content-based collabeeafiltering that incorporates
components from both content-based methods for recommiendsystems and collabora-
tive filtering algorithms. They introduce an effective frawork for performing high quality
recommendations. They first use a content-based predacémttance the user data, and then

provide recommendations through other collaborativerfiigealgorithms.
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[Hofmann, 2004] introduced a model-based algorithm whadies on a statistical mix-
ture model involving latent class variables. They gave astamt time prediction approach
once the model for discovering user communities and prpto#y interest profiles is learned.

In [Miller et al., 2004], the authors presented PocketLendistributed collaborative fil-
tering algorithm that overcomes the limitation of traditéd algorithms such as non-portable
and user privacy issues. PocketLens is designed to run ieratpgeer environment.

One major problem for collaborative filtering is the sparsit the data. Often the rat-
ings in the collaborative data are insufficient to identifgngarities in users and items.
[Huang et al., 2004] proposed an algorithm that makes usa akaociative retrieval frame-
work to overcome the sparsity limitation. The basic ideassaiative retrieval is to build a
graph or network model of users and items for the collabegatata, by exploring the transi-
tive associations among the users and items, informationmfoved quality can be retrieved
through this graph model.

Similar to principal component analysis (PCA) we discussethe previous section,
maximum margin matrix factorization (MMMF) algorithms akso widely used as a dimen-
sionality reduction algorithm, and it can be extended fdtatmrative filtering problems.
Traditional MMMF algorithms use a semi-definite programgi$DP) solvers to handle
problems on matrices of dimensionality up to a few hundredRlennie and Srebro, 2005]
the authors investigated a gradient-based optimizatioodefor MMMF and applied the
algorithm on large (sparse) collaborative data and achige®d empirical accuracy.

[Leung et al., 2006] presented a collaborative filteringrfeavork based on fuzzy associ-

21



ation rules and multiple-level similarity (FARAMS). FARASItakes advantages of product
similarities in taxonomies to handle the sparsity of thdadmrative data, and use fuzzy as-
sociation rule mining to improve competitive predictioradjty. In [Leung et al., 2007] they
presented cross-level association rules (CLARE) to addtresscold-start problem (new user
has to make many ratings before filtering is effective) inatwbrative filtering.

In [Banerjee et al., 2007], the authors presented a partdidnclusterinﬂ formulation for
matrix approximation./|George and Merugu, 2005] appliegigame framework to the prob-
lem of collaborative filtering. They designed incrementadl arallel versions of the co-
clustering algorithm and applied on users and items in thlalmorative data. The algorithm
they presented is efficient and suitable for real-time dyicawolving data, with comparable
accuracy but lower computational cost.

In summary, as a problem with wide applications, collabeediltering has been studied
for long. However, none of the listed algorithm directly ube same Bayesian network
structure to model the entire data. We propose our framewattk experiments to show

empirical results in Chaptét 3.

1Co-clustering is the technique of clustering both rows asidmins of two-dimensional data matrices.
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Chapter 3

Collaborative Filtering

In this chapter, we present an approach to the well studibabmrative filtering problem.

We use a large scale Bayesian network [Pearl, 1988], a pogrdahical model frame-
work, to model the collaborative data. In our framework,rasend items in the collaborative
data are represented by latent characteristic valueshvdoizespond to two sets of nodes in
the graphical model. Ratings are viewed as observed evedenc

This chapter is organized as following. We first show how tadelaollaborative data
as a complex Bayesian network in Section 3.1. We then demadediow to estimate the
parameters using approximate inference algorithms ini@e&3. In Sectiofi-3]12 we show
how to perform collaborative filtering once we have the graphmodel and the learned
parameters. We show how this model can be further extendidadditional information in

Sectio 3.b.
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3.1 Modeling Collaborative Data

A Bayesian network is one of the most popular graphical motietescribe a joint distribu-
tion over a set of random variables. The conditional indéjeecies between the variables
are compactly encoded by the structure of the network, amgbiht distribution can be fac-
tored, most of the time, compactly into the product of theaddtctors associated with the
variables. We give more introduction on Bayesian netwank&ppendixXA.

We havemn usersU = {U;,U,,...,U,} andn itemsG = {G,Gs,...,G,}. We set
9;; = 1if there is a rating-;; from U; to G, otherwise set,;; = 0. We assume that ratings
are discrete. We further assume that there is a hidden dkasiic variable representing the
personal preferences of each user, and similarly a hiddgmepty variable representing the
properties of each item. Lei; be the corresponding variable for ugér and likewisey; is
the property variable for itend/;. We further assume that the rating is solely dependent
on the latent variableg; andg,: onceu,; andg; are giveny;; is independent of other ratings
in the data.

It is natural to model the collaborative data as a Bayesianwar&. For each usel;, we
add it as a node in the Bayesian network structir@nd similarly for each itend-;. For
each existing rating;;, i.e. J;; = 1, we add a nodé?;; into G, and makd/; andG; be the
parents ofR;;. A sample Bayesian network structure fousers an@ items with5 ratings is
shown in Figuré311.

Eventually we get a very large Bayesian network structurté ail the users, items and
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Figure 3.1: Sample Bayesian network structure for collabee filtering.
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ratings as nodes, where each rating node has exactly twotpameicating the corresponding

user and item for this rating.

3.1.1 Model Explanations

The proposed model structure assumes the users and itermxlapendent before the ob-
serving the ratings. We also assume that the posterior gigttibution of users and items
given all the ratings can be factored into production of nratposteriors of users and items.
We explain this in detail in Sectidn3.3. The distributionaofating should only depend on
the latent properties of the corresponding item and theepeete of the user. The entire
structure correlates the distribution of these latent ns@em properties via the set of rating
observations.

To take a concrete example, [et be a set of game players, atd be a set of games.
Assume that the latent variableandg are both binary. Assume that = 0 means the user
U; likes two-player games and = 1 means the user likes multi-player games. Similarly,
assume thay; = 0 means the gamé&'; is a two-player game, angi, = 1 means it's a
multi-player game. Assume that the ratings are also binanables: 0 means “dislike”,
and 1 means “like”. It is often the case thatwill tend to rateg; higher if they “match”.
Hence one reasonable conditional probability distribu{iéPD) for this family is shown in

Table[31.
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0O O 0.1 0.9
0 1 0.9 0.1
1 O 0.8 0.2
1 1 0.05 0.95

Table 3.1: Sample CPD for collaborative filtering problem.

3.1.2 Parameter Tying

It is reasonable to make the assumption that the CPD for théyfaf R;; is the same for
all i andj. In another words, all the CPDs faét(R;; | U;, G;) share the same parameters
throughout the entire Bayesian network. For example, ag &snsomeone likes multi-player
games, and some game is a two-player one, then he will prpbablike the game. There is
no need to distinguish who someone is, or which game it is layogry. Similarly, we make
the assumptions that the priafgU;) for all users are also shared with the same parameters,
and the same faP(G)).

The characteristics of parameter tying is essential fameging in this type of models,
with complex but well formed structures. The entire datassemtially one instance for all
the rating variables for this huge Bayesian network. Theraad way to learn each indi-
vidual CPDs of ratings or prior distribution of user (itenteferences. Once we tie all the
corresponding parameters, we have a more compact way ofrtgsufficient statistics of
individual user-rating-itenfamilies and estimate the global CPD as an averaged condlitio
probability of all the rating families. We give more explaioa on this in Sectio 3]3.

Given the Bayesian network structure constructed in thig, Wae only parameters we
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Parametet Meaning
0, Prior for all u;
b, Prior for all g;
Orjug Conditional probability of rating;; givenu; andg;

Table 3.2: Parameters for the Bayesian network structure.

need consist of parameters in Tablg 3.2. We denote the®.by

3.2 Collaborative Filtering

One of the key problems in collaborative filtering is pretigtmissing ratings. We denote
R = {R;; | 0;; = 1} to be the set of all existing ratings. The filtering problemour

framework is essentially the query problem:

P(’I“ij | R),Whereéij =0. (31)

Once we have the paramet&s we can use inference algorithms to obtain the posteriors
P(u; | R)andP(g; | R) for all users and items. Additionally, from the structuretoé
Bayesian network modet;; is conditionally independent of all other variables givgrand

g;. Equatior31L can thus be rewritten as

P(ri | R) = ZP rij | wi, g;)P(ui, gj | R) Zer\uz o P(ui | R)P(g; | R) .

Ui,gj Ui 9;

The joint posteriorP(u;, g; | R) is very difficult to compute, and we use loopy belief
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propagation (LBP)[[Murphy et al., 1909] to compute its apgmmation represented by the
last approximation in Equatidn—3.2. Detailed explanatiénhds is in Sectiof“3.312. Any
prediction task becomes simply a look-up in the posteribrssers and items, and a multi-

plication with the CPDY, |, ,.

3.3 Parameter Estimation

The structure of the Bayesian network is given by our probsstting, and the parameter

estimation problem is to find
0" = argmgxP(@ |R).

In the case that the parameters have uniform priors, thisiagon is the same as maxi-

mum likelihood. The maximum likelihood estimation is givas
O" = arg max PR |0O). (3.2)

The likelihood function in the above equation can furthetda into the product of indi-
viduald,, , parameters and the posteridt$u; | R; ©) andP(g; | R;©). We will omit ©

in the future equations.

P(R) :ZZHP(W | R)HP(QJ‘ |R) H P(rij | ui, g5)- (3.3)

J i,5:6;5=1
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ESS | meaning
M, ] expected number of times that = «

My[y] expected number of times that = y
Mgz, 2, y] | expected number of times th&t; = z whenu, = z andg; =y

Table 3.3: Expected sufficient statistics for collaboratiata.

3.3.1 Expectation Maximization for Collaborative Data

In the case of collaborative data, we only observe ratingsnbver the latent user or item
properties. As a standard way of learning parameters fratmglig observed data, we use the
expectation maximization (EM) algorithin [Dempster et 487 7] to estimate the parameters.

In our problem, we will use loopy belief propagation as thfeiiance method to be used in
the “E step”. We will discuss more about this in the next sectiTo estimate the parameters
0., 0, andd,, 4, the expected sufficient statistics (ESS) we need are list€able[3.3.

M, is a vector of components/, [z] of all latent user characteristic M, [] is the total
expected number of times in all users whose charactersstic $imilar definitions hold for

M,ly] and M,y 4(2, , y].

M,[a] = ZP i=z|R)
Mly] = ZP =y |R)

Mr\u,g[zaxay] = ZZP(T:Z,UZI,g:y | R)
i

The overall learning algorithm is shown in AlgoritHth 1.
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Algorithm 1 © <EM(R,, EMiter, L B Piter)

Inputs: R: collaborative datall Miter: EM iterations,L B Piter: LBP iterations
Outputs O: learned parameters

/I Set initial parameters.
For allu;, g; andi, j s.t.0;; = 1:
Set6,, = Dirichlet(1,1,...)
Setf, = Dirichlet(1,1,...)
for z € { all possible ratingg do
Set,y4lr = 2| ~ Dirichlet(1,1,...)
end for
for k = 1to EMiter do
Il E step
U, G| < LBP(R, ©, LBPiter)
M, [x] < 3, wifa]
M,lyl <= > 9;1y]
/I This depends on the loopy assumption tRét, g | R) ~ P(u | R)P(g | R)
Mr\u,g[z7 Z, y] ~ Zi7j:7‘ijzz Uq ['T] " gj [y]
/I M step
Updated, [z] < M,[z]/ >, M,[k] for all z
Updated,[y] < M,yl/ > , M,[k] for all y
Updated,, , < M,y q(2,u, 9]/ > p Myjuglk,u, g forall z,u, g
end for
Return® = {6,, 6y, 0uq}-
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3.3.2 Loopy Belief Propagation

The core algorithm in the expectation step is inference. A&drto compute the posterior
P(u; | R)andP(g; | R) for all v; andg;.

Exact inference algorithms are intractable here due to ¢imeptex structure. We choose
loopy belief propagation (LBP) [Murphy et al., 1999] hereperform the inference for sev-
eral reasons: first, when LBP has converged, we can get porstiéstribution for all users
and items together. Second, LBP is faster in comparison gathpling methods for our
problem. Detailed information on LBP and related factor ipalation algorithms is shown
in Appendix(A.

We construct the cluster graph as following: keep the odagBayesian network struc-
ture, and turn the directed arcs into undirected, and them@h theR;; nodes intoU;, G
compound clusters. The initial potentials for thigandG; clusters are all set t6, andé,,,
respectively. The potential fdv;, G; compound cluster is set t8(u;, g; | ri;) o P(rs; |
P(u;, 9;)P(u;)P(g;). Message passing follows the directions of either “conveytor “dis-

patching”. The detailed algorithm is shown in Algoritifun 2.

3.4 Experiments

We test our algorithm on some real world collaborative datad compare the prediction

accuracy and regression errors with other popular methods.
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Algorithm 2 [U, G] <= LBP(R, ©, LB Piter)
Inputs: R: collaborative dataP: model parameters, B Piter: maximum number of
iterations
Outputs U, G: the posterior of?(u; | R) andP(g; | R) for all w; andg;

/I Construct the cluster graph.
For allu;, g; andi, j s.t.0;; = 1:
Set factorr,, = 0, pt,, =1
Set factorr,, = 0, jy, =1
Setfactorr,, g, = %0 g[r = 14j10u0y, WhereZ =37 3= 0, 4[r = 41106,
// Belief propagation.
for k = 1to LBPiter do
For all u;, g; andi, j s.t.0;; = 1:
/l Converging direction.
CompUtelpui = ﬂ-Ui/luUi
Compute,, = 7, /g,
Update,uui = T, » :ugj = 7T9j
Updatewuzygj = Tug,g; (P ng
// Dispatching direction.
CompUtelpui = Eg ﬂ-uiygj //’LU'L
Computeyy; = >_, Tui g,/ Hg,
Update,uui = Zg Tuigir Mgy = Zu Mu,g;
Updater,, = m, - ¢,
Updater,, = 7, - 9y,
end for
ReturnU = {n,, } forall u;, G = {n,, } for all g;.
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3.4.1 Experiments Setup

To test the performance of our graphical model represemtatn collaborative data, we use
the real world data set BGG frointtp://BoardGameGeek.com/The BGG data contains
10538 users and 14333 board games. Ratings are sparse4@8ybexist (0.45%). All the
ratings are integers from 0 to 10.

We use cross validation to test the prediction accuracy.cBtaborative filtering, it is
not a trivial problem to split the data for training and testi Unlike traditional tasks, for
collaborative filtering, predicting a missing rating foryamser inevitably involves retrieving
other users’ ratings as well as his or her own ratings. Simaplitting entire data into training
and testing parts based on user and item IDs will not work feerfng: we will have no
information to predict ratings for new items in the testimg. s

Instead, we use the testing structure as shown in Figura&Zeed a subset of the data
for learning the parameters for the model. In our settingschoose a subset of uséfsaand
gamed to hide from trainingi(e. we train on all the ratings except those fréfrand toG).
For testing, we need further information from some of theedidatings. In Figur€32, we
learn® from C'. We then construct a new Bayesian network over the ratinds with the
parameters learned. Note that the ratingsliare always hidden. After running LBP on the
newly constructed Bayesian network, we have the margirsatidution of all the users and
items. We then use these quantities along with the leafipggd parameters learned froni
to perform filtering tasks for the ratings .

We first test with binary predictions. All ratings are coreel to either O or 1, based on
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uscers

games

Figure 3.2: Learning and testing structure.

the average rating of each user. For each user, we computade of all his ratings, and
convert any rating above or equal to that value to 1, and sttee®. Prediction accuracy is
used to evaluate the performance.

Root Mean Square Error

We use root mean square error (RMSE) as the metric to evatumaerediction quality.

RMSE:\/Zz,].u“gJEPartAZk (] | B )( J) (34)

Zi,j:ui,ngPaFtA 1

Experimental Data Sets

For part C, where we learn parameté&<grom, we construct a subset of data wiib users

and 500 games with highest rating densities. We randomly pick 50Gsuaad 50 items to
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form part B for the testing phase. Among which we further @ndéy pick 20 users and 20

items to form part C, the ratings of which are used for the fanaks validation accuracy.

3.4.2 Results

Figure[3.B shows the prediction accuracy of part B and A togyeds a function of the number
of EM iterations. The accuracy tends to converge after adatenation 12, so we do not show
the entire figure.

Figure[3:# shows the testing accuracy against linear reignesesults and a constant
prediction base line. The results are averaged across Bp@émdlent experiments with the
same settin

The constant predicting base line for each experiment istjupredict all 0 or all 1
whichever is more frequent in the data. The linear regressiethod is shown in detail in

the next section.

Linear Regression

We first fill each missing rating;; with average rating of;. This results in full rating
matrix. To predict the missing rating; using linear regression, for each item letx; =

[P1ks - oy P> TG4 1)k - - - 5 rmi] ', 1.€.%; is the vector containing all the ratings fgrexcept

lwith different randomly chosen users and items in part B and C
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Figure 3.3: Binary prediction accuracy of B+A against EMat#éons.

from u;. We then use linear regression to find
X7 A. — 1 T J— . 2
[WZ, bl] arg min ;(W Xp +b—rig)
The predicted rating is then given by

~ T
T’Z'j:Win—Fbi.

37



0.9 T T T T

T
=g= BN Model
r =g= | inear Regression
i =@= Best Constant Frediction

0.8

0.75

Test Accuracy
o
~

0.65

06 -

0.5 L L 1 1 1 1
200 400 600 800 1000 1200 1400 1600

Problem Size

Figure 3.4: Testing accuracy of Bayesian network, linegrassion, and constant prediction.

38



3.452

RMSE against fUl for data Iél —

3.45

3.448

3.446

RMSE

3.444 |

3.442

3.44

3.438

Cardinality of U/G
Figure 3.5: RMSE of testing Part A against cardinalityodndG.

Cardinality of the Latent Vectors

For binary prediction tasks, it turns out that the cardiyadif « andg is not very important
in terms of the final prediction results. Here we set both efithio 2.

We use the parameters learned from part C at EM iteration Y@ randomly pick 20
user IDs and 20 game IDs within the covered part B region tmfpart A. We then predict
all the ratings for part A using the learned parameters ahdratatings given in part B. For
each of the experiments, we ran 10 independent experimadtgseport the average errors.
We set the cardinality of bothh andg from 2 to 10.

We then tested the RMSE as we change the cardinality ahd G from 2 to 10. Fig-
ure[35 shows the result. Itis clear from the results thabag ks the cardinality df andG

exceeds 2, it does not affect much to the final testing RMSE.
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3.5 Model Extension

It is often the case that additional information, such asdescription of the items, is avail-
able along with the ratings. The BGG data set comes with gaseriptions for most of the
games. It will be helpful if we can make use of the informatioboost the filtering accuracy.
With the Bayesian network model, we can easily extend thidehtw incorporate additional

information. We make this idea concrete through the examfiext usage.

3.5.1 Model Setup

To incorporate text information into our Bayesian networkdeal, we use the standard “bag-
of-words” model [Lewis, 1998] from text retrieval.

We choose thé<{ most useful words to use in the modél/;, W5, ..., Wi. We will
discuss how to choose these words later. We then define himadpm variables;;, for all
G andW), such thatw;;,, = 1 iff 1, appears in the description 6f;. These are sub-units of
the Bayesian network shown as following in Figlre 3.6. Thiremayesian network looks
like Figure[3.Y.

We add additional parametefls. Denoted,[g] = [P(w; | g), P(ws | g),..., P(wk |
g)]. All existing learning and inference algorithms still warka similar way. For example,
during loopy belief propagation, we need to additional pidies messages between word
indicators and the game nodes. In comparison to the LBP rdealiszussed in previous

section, we just add an additional message passing proebeétween they nodes and their
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Figure 3.6: Bayesian network with text nodes.

Figure 3.7: Bayesian network with text nodes.
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corresponding nodes in the Bayesian network structure.

3.5.2 Word Selections

There are too many distinct words in the whole text corpugherBayesian network model.
In the BGG data, the number of different words is around 208@h after applying the Porter
stemming algorithm [Porter, 1980]. It is not only computatlly expensive to incorporate
all of them into the Bayesian network model, but may also teaaler-fitting.

Neither the most frequent words nor the least frequent wardsepresentative enough
to be chosen as key words. We chose the words with the highgstahinformation (/1)

[Shannon, 1948] with the game type

MI(wy, g) = —Ellog P(wy)] — Eflog P(g)] + Ellog P(wx, g)].

The mutual information between two distributioRsand( indicates how much we know
about(@ once we observe a sample frofh Here in this problem, intuitively we want to
choose the words that give us maximal information about trees.

Once we have the belief propagation results without the texthave access to an initial
posterior distribution of the game3(¢g | R). Because the word indicators are also given
as evidence, it is straightforward to compute the expectepy between”(¢g | R) and
P(wy). Figure[38 shows the most frequent words (left) and words wie largest mu-

tual information (right). It is clear that the words with higr mutual information are more
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meaningful for distinguishing game types.

3.5.3 Results

We ran the same binary prediction experiments as describ#tkiprevious section, except
that now we added in the game description and extended thesiaynetwork model ac-
cordingly. The results are shown in Figlirel3.9.

The result shows that with the text information incorpodaiteto the Bayesian network

model, we achieve higher prediction accuracy.
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Chapter 4

Visualization of Collaborative Data

The filtering problem, as discussed in Chajbfer 3, obvioukygan important roll in ma-
nipulating collaborative data. Much of the prior work hagben the area of collaborative
filtering. However, no previous algorithms have approadedproblem of visualizing col-

laborative information. Here we initiate this problem andgmse an approach.

4.1 Problem Formulation

We follow some of the notation conventions of the previowsathar. Let) = {uy, us, ..., Up}
andG = {g1, g9, - - ., gn } be the sets of all users and items, respectively. Withoutguitly,
we will usew; to refer both to the-th user and to the corresponding point in the embedded

space for that user. We use the same notatior fokVe definej to indicate whether a user
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has rated an item.

1 if u; ratedg;

0 the rating ofu; of g; is not available

Letr;; be the rating of; of g; if ;; = 1. Here we normalize all the ratings to the range
[0,1] (i.e. 1 is the highest rating, and O is the lowest). let= {r;; | §;; = 1}. We further
denoteG’ = {g; | 0;; = 1} andU? = {u; | §;; = 1}. G"is the set of all the items tha;
rated, and/’ is the set of all the users that rated

The visualization problem is to find an embedding of all thm{sd/ and in a Euclidean
space we call thembedded spaceThe embedding should be one in which the distance
between a user and an item is related to the corresponding rat

We construct a Bayesian network for the collaborative with same structure as we
used in Chaptdrl3: all the users, items and existing ratingsepresented as nodes in the
network, and each rating node has the corresponding uséteandodes as its parents in the
structure of the Bayesian network. The difference is thattlie task of visualization, each
user or item node corresponds to the embedded position gidimt, and hence is a real-
value multivariate random variable. Also, the conditioprdbability distribution, in analogy
to 0,4 in the filtering tasks, is no longer just a simple table. Itdmaes a function mapping
the position of user and item nodes into the distributioraagét rating. We will give detailed

introduction to our framework and solution in the followitext.
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In the embedded space, we assume eaendg; are random variables drawn indepen-
dently from prior distributions®, (u;) and P,(g,). We introduce a rating functiofi : ®; —
0, 1], which maps the distance between two points (a user and i) itethe embedded
space to a real value d, 1]: the expected rating for the two points(x) is a monotonically
non-increasing functionf(0) = 1, and f(co) = 0. Intuitively, two points with a smaller
mutual distance should have a higher expected rating. Atabint, we will assume that the
rating functionf(z) is given. Later, we will show how this function can be learrigzin
data. The actual rating; between two points,; andg; in the embedded space is a random
variable drawn from a distributiof?s (r;; | w;, g;) with meanf(|ju; — g;||).

Given all the ratingsR, as evidence and the rating functigf,our task is to put all the
user pointd/ and item points~ into the embedded space so that the likelihood of observed
ratings R is maximized. That is, we want to find tHé and G' points that maximize the

posterior:

U*,G*] = argrgaGXP(U,G | R) 4.1)

= argn(}%x H Pf(rij \ uiagj) HPu(uZ) HPg(gj) :
J

1,5]0i;=1 i

P(U,G, R) is a real-valued Bayesian network in which each user and vi@nable has
no parents and each rating variable has two parents (onendarne item). The ratings are
given as evidence and the task is to determine the most peojmatit assignment to the user

and item variables given the ratings.
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4.1.1 Gaussian Assumptions

We assume that all the distributions are from the GaussmaiyfaTo be specific,

P, =N(0,%,)
P!] :N(O,Eg)

Pr(rij | ui, g5) = N(f([Jlus = g51), o) -

Here (i, X) is a Gaussian distribution with meanand covariance matrix. Note that
while these distributions are all normal, the functipis non-linear and therefore the result-

ing joint distribution is not a Gaussian.

4.2 Parameter Estimation

It is intractable to compute the posterior in Equation 4.declly. We use Markov chain

Monte Carlo sampling.

4.2.1 Metropolis-Hastings Algorithm

In particular, we use the Metropolis-Hastings (MH) algomit|Metropolis et al., 1953], which
was extended to graphical modéels [Jordan and Weiss, 2002¢n@ graphical model over
the random variableX” = {x, zo, ..., zx}, assume a target distributianover X'. For each

variablez;, there is an associated proposal distributipn: the distribution of new samples
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for that variable.
Given a current assignment f6, MH randomly picks a variable; and tries to replace
its value with a new sample drawn from the proposd),,,. LetY = X — {x;}.

Thetransition gain ratiofor changing the sample; to z; is defined as

Q:p’.(xi T r, )
Q - / —= L ¢
T%(xi—xy) 0, @)Yz, (4.2)
The probability of accepting this new sampleis
A(zi~2}) = min {1, 79(z;-2})} . (4.3)

Using the local independencies of the graph, this can bendeosed into a set of local

probabilities, shown in the following text.

MH Algorithm for Embedding

In our visualization problems is the posterior distribution of/ and G given R (Equa-
tion[4.1). Initially, we sample fronP, for everyu; and sample fronP, for everyg;. This
jointly form a single starting sample (a joint assignment'tand() for our MCMC method.

We use a a special form of sampler for the proposal procediaeh time we only sample
a change for one existing node. The proposal distributi@gan set to Gaussian to ease the
computation.

We use proposal distributior@,, for the nodeu; and(@,, for the nodeg;. We set the
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proposal distributions to be Gaussians with means at theque embedded position:

Qui = N(““ E;)

ng :N(gjazlg) :

If we choose the node; to be sampled, we draw/ from @,,,;, and then compute the ac-
cept ratio for this change according to Equafion 4.3. Debote= {uq, ..., w1, Uit1,-- -, Un}
Using the local independence properties, the transition gdio with respect to the rating

function f is given by

TP () = ==

- jedt 4.4
Qo () Pu(u) 11 Pyl [nr9)) (44)

JEG?

Similarly, the transition gain ratio for an item nodg,is

Q Qua)P5) TT Prlry 5
T9g.5d") = S . .
59579) = B B g T Prry Tungy) (4-5)

ieUJ

We repeat the above resampling phase until the process lad .nihe stationary distri-

bution of this procedure is the true posteriofU, G | R).
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4.2.2 Simulated Annealing

Recall that we want therg maxy ¢ P(U,G | R). The Metropolis-Hastings algorithm will
give us joint samples df andG, drawn from that posterioP (U, G | R). To get the samples
that maximize the posterior, we modify the standard MH atbar along the lines of the
simulated annealing (SA) algorithin [Kirkpatrick et al.,83).

In particular, we modify Equatidn4.2 to add an annealinggerature 3:

The transition gain ratios of equatidnsl4.4 4.5 are then

. ~ 8
Qui(wi) | Pu(ui) TT Pr(riy | i, g5)

, i eGl
TP (u) = " ~
Qu;(u;) | Pu(ws) TT Pr(rij | wi, g5)

jEG?

B
Qo) |Pa) TT Py | ui,g;a}
/ L =k
%Q(gj_)gj) = - <

3
Qq,(95) | Polgs) 11 Pr(rij | Uiagj)}

€yd

The added temperature factérgrows gradually fronl to co. Initially 5 = 1, and this
method is the same as the standard Metropolis-Hastingsthlgo As 5 grows, the simulated
annealing algorithm penalizes changes resulting in loikelihoods; the algorithm tends to

only climb uphill in the posterior distribution.
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4.2.3 Learn the Rating Function

Until now, we have assumed that the rating functfowas known. However, we would like
this function to adapt to the collaborative data.

It would be straight-forward to selegt from a family (for example the exponential,
f(x) = e~*). However, the actual rating function may have a very défgrshape. In-
stead we note that all collaborative datasets of which weaawee have a finite number of
values for the ratings. Many are binary (“like” or “do noté® and others are based on a
five- or ten-point scale. Continuous, real-valued ratingsseldom used. We therefore It
be a step function with discrete quantizations. A samplega of such a rating function is
shown in Figur¢Z]1.

We discretizef into K quantizations. Leb = {0, | i« = 1,..., K} be the set ofk’
splitting points in sorted order, withy, = co. Given the set of splitting point®, the rating
function igl:

f(x;@)zl—%, if 0, <o <601 .

From Equatioi4]1 and our Gaussian assumptions, we have

PWU,G|R) o [ Prrij | ui gy) o eXp(—% > (rig = fllui = g;1))

i,j|5ij:1 i,j‘(sij:l

The proportionality is satisfied because during the estonatf the rating function, we fix

all the user and item points.

1Assumedy = 0.
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Figure 4.1: Discretization of rating function.
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To maximize the above posterior distributiéiiU, G | R) with respect tof (represented

by ©, the problem is not transformed to:

©" = argmin > Bl(fllw = g5ll:©) —ri5)*] (4.6)

1,7]0:5=1

where the expectation is with respect to the posterioridigtion overU andG. This for-
mulation is equivalent to maximizing the probability of tfagings; the squared error in the
above equation comes directly from the Gaussian assumigtiiamding the distributior;.

We use the expectation maximization (EM) algorithm [Derapst al., 197/7] to learn the
rating function. We initially se® = ©°, a random starting point that meets our requirements
for f.

The E-step employs MH to sample from the expectations in &@pid.8 using the rating
function f* = f(-; ©F) at thek-th iteration.

The M-step update®“*! based on the generated sample configurations of the embedded
space (which approximate the expectations of Equafldn 4I§)ng all theu; andg; points,
the optimal rating function is updated according to Equaidd. Let N be the number of
terms in the summation of Equatibn4.6 (one for each ratinggéwh sample). The M-step
optimization can be done efficiently (and exactlyYMN K) time using dynamic program-
ming.

Before updating the rating function in the M-step, we renalize all the points in the

embedding space. Due to our assumptions ihaand P, are fixed Gaussian distributions
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with zero mean and that we have the freedom to chahgkthe above procedure were run
without modification, all the points would collapse togettoavard the origin. Consequently,
the learned rating function would have splitting pointshngtmaller and smaller values. We
fix this by a simple normalization step that scales and tedaslthe points to reset the mean
of all of the points to the origin and the variance of theirifioas to one. Note that this is

not a general “whitening” step in that we only multiply theipts by a scalar, not a matrix.

4.2.4 The Algorithm

To put everything together, the overall algorithm in our eggeh is listed in AlgorithnfI3.
The parameters of this algorithm ale(the number of samples used for estimating the ex-
pectation)/, (the number of samples necessary for the MCMC process toecga)e (the

amount by which to increas#), and the variances of the Gaussian distributions.

4.3 Experiments and Results

We discuss our three datasets, our methodology for congrar@d then compare our algo-

rithm to three others.

4.3.1 Algorithm Initialization

Because we are learning the rating functigrihe absolute positions of the embedded points

will not affect our approach directly. Rather, the relafpasitions of the points matter. There-
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Algorithm 3 [U, G] <Embed-GraphR,D)

Inputs: R: rating matrix,D: embedding dimensionality
Outputs: U andG: embedded points

g<=1
P, <= N(0,%,), P, = N(0,%,)
Sample{u; ~ P, }™,
Sample{g; ~ Py}ti,
Qu, = N(u;, X,), @, = N(gj, X)
Pr(rij | wi, g5) <= N(f([lwi — g511), o)
=150
repeat
Il E-Step:
S<0
for k=1tol, +1[,do
Randomly pick a point; from samples inU, G|
if x; is a user point;; then
Sampleu; ~ Q.
u; <= w;, with probability A (u;—u})
else ifz; is an item poingy; then
Sampleg; ~ Qy,
g; < g with probability A (g;—~g})
end if
if &> [, then /I burn in for{, iterations
Add (U,G)toS [/l Save last; iterations
end if
[U, G] <=normalize(U, G)
end for
B=(1+e)p
/Il M-Step:
f(+; ©) «<learned rating function usin§
until The current sampl@/, G] is stable
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fore, the overall scale at,, and3l, do not affect the result.

In particular, for all the three datasets, we Xgt 3., 32, and3l, each to be the identity
matrix. We setr, = 0.25 for SAT, o, = 0.1 for MovieLens, andr, = 0.05 for BGG. These
values directly reflect the discretization of the ratingreso Our informal tests show that
the algorithm is not sensitive to these particular numbedsvae have made no effort to tune
them.

For the rating functiory, we choose to sé&° directly using an M-step from the samples
drawn from their priors. For our experiments, we et 2000, [, = 1000, ande = 0.02 for

all three datasets.

4.3.2 Experiment Datasets

We test our visualization algorithm on the following datésse

The SAT dataset contains SAT Il subject examination scavegl® questions chosen
from a study guide of historic questions and 296 users. SA3 & standard exam taken by
high school seniors applying to colleges in the United Statdl the scores are eithéror
1 (indicating whether the student got the question correet)l there are no missing values.
The 40 questions are from the subjects French, Mathem#atis®ry and Biology. The exam
was administered on-line over the course of one week.

The BGG dataset is the same as the one used in Chiadpter 3.

Finally, the MovieLens dataset contains ratings from ueara variety of movies. All the

ratings are integers fromto 5. We picked400 users and0 movies, maximizing the rating
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density. The rating matrix density #d.0% on this subset. This dataset is publicly available

from movielens.umn.edu

4.3.3 Implementation Issues

We compare our results with locally linear embedding (LLEAUI and Rowels, 2003], Eigen-
taste (ET)||Goldberg et al., 2001], and co-occurrence dataeelding (CODE)

[Globerson et al., 2005]. None of the algorithms is exactlitezl to our problem, so we
discuss our adaptations in this section.

If we consider the rating matrix as a set of points in the highehsional space, we can
use LLE to embed them into a lower dimensional space. The Ug&righm requires a full
rating matrix R. This is not available for the MovieLens and BGG datasets.ugéelinear
regression to fill the missing ratings. This method is disedlsn Sectiof 3.4.2 in the previous
chapter.

Both LLE and ET can embed either users or items into an Eumfidgpace. Yet, neither
of them can embed both in the same space. We tried severaltwaydend them and to
make them comparable. One straight-forward way is to embd¢teauser points first into
the space. Then for every item, find all the users who gave litighest rating, and place this
item at the mean of those users points.

For our results, we used an alternative method, which pexdr better than the one
above. LetR be the full rating matrix filled in using linear regression. eWitroduce a

correlation matrixC' among alln items. The diagonal’;; is set tol. Let R; be thei-th
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column of R,

R/ R;
| R:]| - [| Ry

Cy =
We then letX = [C' RT] and use LLE or ET to embed into the target Euclidean space.
The firstn points correspond to the items and the lagpoints to the users.

ET only works if there is agauge sebf items which all users have rated. However,
in the MovieLens and BGG datasets, no such gauge set exisisg the above regression
technique to fill in a gauge set results in bad (and mislegdiesults, so we omitted them
and have only included ET results for the SAT dataset.

The CODE algorithm requires co-occurrence statistics betwusers and items. The
relationship between co-occurrences and ratings is nat.dowever, it is natural to assume
r;; 1S proportional to the probability of the co-occurrenceupfandg;. Intuitively, a higher
rating indicates it is more likely that the user and item ‘wccat the same time. We set
the empirical distribution ofu, g) to be proportional to the rating matrix (filled by linear
regression if there are missing ratings). We initialize tiegppings uniformly and randomly
from the sef—0.5,0.5]” as the starting point for the optimization.

Our linear regression method for filling in missing values Ipaoven reasonable on the
prediction task, but admittedly it is not the most sophatd algorithm possible. There-
fore, to distinguish embedding factors from data comptetfaxtors, we also ran our MCMC
algorithm on the completed rating matrix from linear regies.

Both our method and CODE have variable running times (nurobEM iterations in our
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case, number of random restarts for CODE). For the resybisrted here, we gave each 30

seconds of CPU time on a 2.8 GHz processor.

4.3.4 Sample Results

The SAT data was selected because of our ability to extragt@uhd truth.” In particular,
we expect that when embedded, the questions from the sanecsubhould be grouped
together. Figuré_4l2 shows the embedding for dimen8iosing the simulated annealing
approach (along with the three other approaches).

There are ten questions in each category. We can clearhhaeeur method clusters all
the French questions tightly together. The same happerikddviath questions. (There are
eight Math questions that overlap in a small area.) The atteghods do not produce as tight
clusters.

The History and Biology questions do not cluster as well tik@rrdata analysis has shown
that there is very little predictability in the History anddBbgy questions, so this result is
perhaps not surprising. The French and Math questions tetodiest a body of knowledge
that is often retained as a coherent block, where as the iiatw Biology questions on this
exam tended to test more isolated blocks of knowledge.

Figure[4.2 also shows that the user points and the item pioiteisnix more evenly with
our approach. This meets our expectation that for any usecam always find things they
like or dislike (questions on which they perform well or plyor In the embedding results

of LLE, ET, and CODE, a large number of user points lie in paftthe graph outside the
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Figure 4.2: 2-Dimensional embeddings for the SAT questigiag a simulated annealing
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(bottom left), and CODE (bottom right).
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convex hull of the the question points. This makes it impcatto make recommendations

to those users based on the visualizations.

4.3.5 Evaluation Criteria

There are no prior standard metrics for evaluating the tyali the embedded graph. We
introduceKendall’s tau[Kendall, 1955] as a suitable evaluation criterion. Kefiglahu is
used to compute the correlation in ordering between twoesecesX andY'. It is especially
useful for evaluating the correlation between two sequetitat may have many ties.

Given two sequence¥ andY of the same length, a pdit, j), i # j is calledconcordant
if the ordering of X; and X is the same as the ordering bf andY;. By contrast, if the
relative ordering is different, this pait, j) is calleddiscordant If X; = X, orY; =Y,
then (i, j) is neither concordant or discordant, and it is callecegina xpair orextra ypair,
respectively.

Kendall's tau is defined as

C—-D
T =
VC+D+ENC+D+E,

4.7)

where(' is the number of all concordant pairs, afdis the number of all discordant pairs.
E, andE, are the numbers of extrapairs and extrg pairs.
It is easy to verify that is always betweenr-1 and1. 7 = 1 indicates the two sequences

have perfect positive correlation, amd= —1 indicates perfect negative correlation.= 0
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indicates their orderings are independent.

To evaluate the quality of the graph in the embedded spacegath experiment we
randomly selected a set of usets,and items(, as testing users and items. All the ratings
between users ifi and items in; were held out for testing and were not used in generating
the embedding.

The embedding algorithms will produce the embedded poortshose nodes iV and
G. In order to evaluate the embedding quality, we generatesgauences and compute
Kendall’'s tau between them: sequentecontains the actual ratings between all the pairs
w € U andg; € G such thaty;; = 1, and sequenck contains the distances between the
corresponding; andg; in the embedded graph.

A good embedding will place; far from g; if r;; is small, and close if;; is large.
Kendall’s tau for the above two sequences exactly evallgecorrelation. Denote to be
the Kendall’s tau for the sequenc&sandY . Negative values of indicate good embeddings,
and we expect the values from embedding algorithms to belsnmban0 (that of a random

embedding).

4.3.6 Experimental Results

We ran our MCMC algorithm both with and without simulated aaling, along with LLE,
ET and CODE. We randomly selected one quarter of the users@aduarter of the items
for testing ¢/ andG from above). We randomly selected other users and itemsrto o

training set  andG). All ratings between members 6fandU, G andU, andG andU are
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used for training. As stated previously, the ratings betweembers of; andU are used for
testing. It is necessary to include the ratings betw@emdU (and likewise betweef’ and
U) in order to connect the test users and items with the trginsers and items.

Because the existence of the test set, there are alwaysinissings in the rating matri-
ces used. We use linear regression to fill those ratings. ¥¢erah the MCMC algorithm on
the same filled data as LLE, ET and CODE used (MCMC-REG in thplg).

For each dataset size (number of itemsil)) we ran25 independent experiments and
recorded the means and standard deviations across theregpées for all algorithms. Every
algorithm was run on the same set of training and testing sets

For each of these datasets, Figlird 4.3 shows the comparisour onethods to LLE,
ET, CODE, and a random embedding, as a function of the sizeeadtraining set. We also
computed an “ideal embedding” value for Because of ties, Kendall's tau cannot always
reach—1, so we calculate the lowest possible valuefan the random dataset drawn. This
takes nothing into account except ties and highly optimistic and probably not obtainable
at such low dimensions. The optimal values for SAT, BGG, amviglLens datasets are
approximately—0.63, —0.87 and —0.90 respectively. We ran LLE algorithm with training
size starting a2 for SAT and24 for MovieLens because of matrix inversion problems for
smaller training sizes.

Figure[4.4 shows another experiment with the same evahluatiteria. In this experi-
ment, we fix the testing data as usual, and use all the rengaddta for training. The plot

shows Kendall’s tau as a function of the number of dimensoditise embedding space.

65



o
N

““““ Random
=== Eigentaste

_ | @ CODE

--- LLE

...| == MCMC

=4~ MCMC-SA
L | =— MCMC-REG

ﬁiﬁﬁiﬁ

o
[
:

N

o
ST
'
[ e —

Testing Kendall's tau
& &
N =
AY
1
——
——
y Al .

|
©
w

|
o
iy

I
o
o1

20 25 30 35 40
Training size

=
o
=
4]

0.05¢

|

o

o

A o
=

|
o
N

-0.15r

1
o
)

—025

Testing Kendall's tau

-0.31

-0.35r

20 30 40 50 60 70 80
0.1r
0.05- Tl

-0.05r

|
o
=

-0.15r

Testing Kendall's tau

10 15 20 25 30 35 40 45 50
Training size

Figure 4.3: Performance of embedding algorithms on theetli&asets as a function of
training set size. Results are for the data sets SAT, BGG amdeéVlens from top to bottom.

66



““““ Random
0.1r ‘- Eigentaste
~a CODE

-+ LLE

|| =&= MCMC
-4~ MCMC-SA
—— MCMC-REG
‘I‘L

|
©
[

|
o
N

Testing Kendall's tau

_0.3,

2 3 4 5 6 7 8

0.1

0.05f

-0.05r
-0.11
-0.15r

-0.2F

Testing Kendall's tau

-0.25¢

_0.3,

-0.351

-0.4

0.1

0.05f

-0.05} p '
-01f - v

-0.15r . A

Testing Kendall's tau

-0.4 I I L I I I I
2 3 4 5 6 7 8

Embedding dimension

Figure 4.4: Performance of embedding algorithms on theetli&asets as a function of
embedding dimensions. Results are for the data sets SAT, &@&®/1ovieLens from top to
bottom.

67



4.3.7 Analysis of the Results

From the experiments above, we can see that when the ratitrixnsadenser, the embed-
ding algorithm achieve better results. Our sampling metkaoth (MCMC-SA) and without
(MCMC) simulated annealing, outperformed LLE, ET and CODEne of them were de-
signed with this type of data in mind, so we do not presentahesults to disparage those
methods, but there were no other methods available to teststg Note that our MCMC
algorithm on linear regression filled data (MCMC-REG) hasikir performance to directly
applying our MCMC method on data with missing ratings. Thglies that it is not our
regression that is causing the poor results from the otlgarithms, but rather their misfit to
this problem. We would also note that our method also seenns stable (smaller variance)
than the other algorithms compared.

On the SAT dataset, which contains full density of ratings, @gorithms show strong
negative Kendall's- which indicates good visualization results. In most cagss)g simu-
lated annealing helps improve the quality of embedding fzam@d to “normal” MCMC). As
the training size grows, we have more information on theti@mta between all the user and
item points, and that leads to better performance for albtijerithms.

The BGG and MovielLens datasets have many missing ratingthan@atings values are
more subjective and therefore noisier. Our algorithm isa®tompetitive with the “ideal”
value for Kendall’s tau, but we feel that this ideal value ity optimistic in these settings.

Our algorithm does perform better than random embeddings, and CODE.
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Chapter 5

Embedding Images

In extension to the visualization of collaborative data, sa® also view this problem as a
dimensionality reduction problem. The rating matrix candmgy raw input data matriX
and our framework discussed in the previous chapter can ée tasefficiently embed the
columns ofX into some low dimensional space. It is natural to think abmatges. They,
too, are high dimensional data. If we can come up with a resfslerprocessing to transform
the images into collaborative data, we can also embed images

As is previously discussed in Chaplér 1, image embeddinglemo is to place images
into a Euclidean space or other layout so that similar imdigeslose to each other in the
embedding. Most of the time there is additional informatidrout the images also available.
In the case of search engines, historic user click countbearsed for collaborative filtering.
The search engine can record the number of clicks by usersy atith their query words. For

personal image collections, time stamps are often usefuldoelating similar photographs.
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We listed some dimensionality reduction algorithms in Gke@. In general, they work
for image embedding tasks. However, they treat each dirmensdependently and do not
preserve the image structure. Thus, they produce the sasoét iethe pixels’ locations
were permuted (the same way in each image). We would like pio&xour knowledge of
image structure to boost the embedding quality. There atedegeloped algorithms for
image feature extraction, in particular the scale invarieature transform (SIFT) introduced
in [Lowe, 20038]. The SIFT features extracted from imaged wedserve the image’s “key
points.” Our similarity metric is directly based on the SIf€atures.

In Section[5.]l we formulate the image embedding problem d&lymand then in Sec-
tion[5.2 we give a detailed explanation of our solution. Aubdfially, as we show in Sec-
tion[5.2.3, our method can be adapted to non-Euclidean spatearticular, we can embed
the images into a grid or table, suitable for visualizatidn.Section[5.B we compare the

results of our algorithm with other competing ones with p@pimage data sets.

5.1 Image Embedding Problem

In previous Chaptedr4, we proposed an algorithm that caraliicollaborative data. We
used a real-valued Bayesian network to model the embeddstilons of the users and items,
along with the ratings that relating them. In addition, wepgmsed to use the nonparametric
statistic Kendall'sr [Kendall, 1955] as a criterion to evaluate the embeddindityua

In this chapter, we adopt the overall structure of the vigadibn of collaborative data.
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We do not have “users” that have rated the images, but we gn§ifer features in a sim-
ilar role (see Sectioi d.2). We also simplify the optimiaatmethod. Instead of trying to
maximize the posterior distribution of a complex graphicaddel, we propose to directly

minimize Kendall'sr.

Scale Invariant Feature Transforms

Scale Invariant Feature Transforms (SIFT) [Lowe, 2003hs¢farm raw images into scale-
invariant local features. Many existing algorithms on sued and unsupervised image
processing use the SIFT feature sets as their representationages, for example

[Se et al., 2001] and [Scovanner et al., 2007].

Each image can have a possibly different number of SIFT featudepending on the
number of “points of interest” in the image. Each feature fxed-length vector describing
the local image patch at a location in the image. SIFT feathave their advantages in terms
of describing characteristics of an image. They are robustaling and in-plane rotation,
and relative easy to compute and manipulate. Similar imagielave a significant number

of similar SIFT features, which makes it a suitable représtgon for image comparison.

Notation

Table[5.1 lists the notation we use in this chapter. Notewatise/ and K to denote both

images and clusters or their positions in the embeddingesihéltere is no ambiguity.
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I1={L,1,...,1,} set ofn images

St={5i 5 ...,5 } setofl;'s SIFT features

K={K, K, ...,K,} setofm feature clusters (explained
below)

N(S%, 7) number of features %" that belong
to Kj

ri = % portion of features ins® that belong
to K

d; = ||I; — Kj| Distance in the embedding between
I; andK;

Table 5.1: Notation for image embedding problem.

5.2 Approach

Given a set of imagek, our task is to embed them intodadimensional space. Distances
in this embedded space should capture the image simildkigywant to put similar images
near each other, and dissimilar ones far apart.

We first extract the SIFT features for all the images, and thester all features from all
images together intow groups, K. We have found that the end results are fairly stable with
respect to the number of clusters and the clustering alguaritWe uset-means to do this
clustering.

For any imagd;, we then counfV(S?, 5), the number of features ifi’ that belong to the
clusterk;. If we divide N(S*, j) by the size of5?, we have a distribution of “membership”
to the clusters; for imagel;. So we can considet;l = % as the fractional “vote” of;
for K.

We view each SIFT cluster as representing a more generairéeaf an image. In this

way, it is similar to a user from collaborative filtering datBach image is an item anq’
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represents how well SIFT clustés; “describes” imagel;,. So, following Chaptefl4, we
embed both the images (items) and SIFT clusters (users)kirsdme space so that SIFT
clusters are near images that they like (have many examptas éeature) and are far away
from those they do not like (do not have the correspondind@ $¢fatures).

Consider the case where we already have a potential emlzg@dintaining image points
and cluster points. Let the images have po{it$ in that space, and the SIFT feature clusters
have pointg K }. For any particular imagé;, we can compute its distance to all the cluster
points, which we denoté; = ||I; — ;||. From the SIFT feature clustering, we also have the
membership distributiOﬂ;i. Let 7 be Kendall'st between these two sequences for image
as computed through Equatibnk4.7.

Intuitively, the more features from clustéf; contained in the imagé.¢.the larger-) the
smaller the image’s distance 16; should be in the embedding. So we would like a negative
correlation between the two sequences, or, equivalentiggative value of. The smaller
7 is, the better embedding results are. We propose directiymizing the average Kendall’s

T for all the images.

5.2.1 Problem Formulation

Denote the average Kendaltsof an embedding to be

3

T(I,K) = T({riy e, Ad ) (5.1)

i=1

S|
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The image embedding problem can now be formulated as

", K] = argmin T'(L K) . (5.2)

5.2.2 Simulated Annealing

Exact algorithms to minimize the functiadhare not possible due to its combinatorial nature.
Instead, we use simulated annealing [Kirkpatrick et al§3]19 Minimizing 7" is equivalent

to maximizing the energy function

fILK) =exp(—T(I,K)) . (5.3)

Simulated annealing is already discussed in Chdpter 4. terériefly explain how
we use this technique for this problem. We begin with a randonibedding ofl and K.
Samples from a multi-variate Gaussian distribution work fim practice. At each time step,
we randomly choose a point, either an image or a cluster, dam@le. For example, if the
point J; is picked, we then propose a new poiit For this, we also use a multi-variate
Gaussian proposal distribution centered at the old pasitio To calculate the change of
the functionT, it is not necessary to recompute the Kendall®r all images; it suffices to

calculate the change for just imagd_et J;ﬂ be the distance between the proposed new point
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I, and any cluster poink;, then

S|

(F{ryAd) = r({riy @) - (5.4)

Hence we accept this new point with probability

A(l; = I;) = min{exp(—AT(I; — I,)),1} . (5.5)

The calculations are similar for moving a cluster paiat Although all the Kendall's-
values may change, we can still update thealues efficiently. Recall from Equatién 4.7,
for each imagd;, only d§- changes, so the values©f(concordance) ob (discordance) can
change by at modt If we store the previou§’ and D values along with the Kendall’s for
all the images, we can perform this update efficiently.

We keep iterating this resampling procedure until convecge Remember that our prob-
lem in Equatior 512 is to find therg min of the T" function. As is standard in simulated
annealing, we add a temperature paramgtén the system.s is initially 1, and we let it
grow towardoc.

We only need to change the Equation 5.5 to be
A(l; = L) = min{exp(—BAT(I; — I;)),1} . (5.6)

After each resampling, we increageby a small amount. Intuitively, a8 grows larger,
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Figure 5.2: Euclidean embedding results for a subset of th@lAlata set.

the system is more reluctant to accept resamples leadirayderll’ values (worse embed-

dings).

5.2.3 Grid-based Image Embedding

The final embedding of the images will inevitably involve mwwyerlap if we plot the images
in their embedded space. If the embedding is simply for dsrm@mreduction as an initial
step of machine learning, this is not a problem. Howeves & problem if visualization is
the desired goal.

Unlike many other dimension reduction algorithms, our feavork can be easily adapted

to a “grid-based” approach. We do this by setting the targgbexlding space to be a grid,
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i.e. each image can be only placed into one of the embedding glisl c€he proposal
distribution for changing an image can be a uniform distidou over all cells, or, more
efficiently, a uniform distribution over the neighbors oktimage’s current cell. If there is
already another image that takes the proposed grid posttiem the proposed move is to
swapthe two images; otherwise the proposal isrtovethe image position to the new cell.
Everything else in the above algorithm remains the same.|¥dgestrict the SIFT cluster
locations to the grid cells. However, we do not require thietge at most one per cell. Rather,
the SIFT clusters may coexist on the same cell as we will nalig@aying them.
Grid-based image embedding is especially suitable for ppdi@ations that are targeted

at users instead of machines, for example organizing anclzng personal photo galleries.

5.3 Experiments and Results

We discuss the data sets we used, show sample embeddirtg,rasdicompare our algorithm

with other related ones.

5.3.1 Data Sets and Accuracy Metric

We tested the embedding algorithms on two real-world data $&e Amsterdam Library of
Object Images (ALOI) [Geusebroek et al., 2D05] containggeseof a set of small objects. It
has images for 1000 objects, each has 72 images taken fréenedif viewing angles. This

data set is noise-free and is relatively easy for unsupetvitmage embeddings. Caltech101
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[Fei-Fel et al., 2004] is another well-known data set comagiri01 categories of (possibly
very different) images. It is a harder data set for image disn@n reduction algorithms.

It is usually difficult to numerically evaluate the embedglnesults. Fortunately we know
the ground-truth category for each image in both data setssee. We use thg-nearest
neighbors accuracy (KNNA) to evaluate the embedding:

_ Xpen,) Category(;)=Category(;)

ENNA(I) . ,

(5.7)

whereN,(I;) is the set of thé nearest neighbors of imadgin the embedding. The average

> kNNA(L)

KNNA for the embedding is jJust NN A = =

It is clear that KNNA is always between 0 and 1. Larger aveldddA values indicate
better embedding quality. Intuitively, a good embeddinguti place images from the same
category close to each other, and hence boost the kNNA viduab the images. Perfect em-
beddings will have NN accuradyfor smallk, while random embeddings will have accuracy
around the inverse of the number of categories.

Using kNNA, we compared our simulated annealing embedd8#ge) algorithm with
Isomap, LLE, and SDE. In addition to using the raw pixels gatrvectors for Isomap, LLE
and SDE, we also ran those embedding algorithms using theds$ibutions as the images’
vector representation. This gave the other embedding ithges the same information as
our embedding algorithm and helps to distinguish the acged of our algorithm from the

advantages of our representation. The results for therdélgns on SIFT features are shown
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Figure 5.3: Euclidean embedding results for a subset of #Hiee€h101 data set.

with the label “(SIFT)".

5.3.2 Sample SAE Embeddings

Figure[5.1 shows a sample embedding of shoe images from tid data set, viewed from
different angles using SAE. We picked 12 evenly spaced ismagéhe derived embedding

from all of the 72 embedded shoe images. Itis clear that S&Eqves the pairwise similar-
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ity well in terms of the shoe’s rotation.

Figure[52 shows a sample two-dimensional Euclidean embgddr the ALOI data
set. We randomly chose a subset of 6 objects (categoried), eith 36 different images.
Figure[5.B shows similar results for the Caltech101 data Ber this case, we randomly
picked 6 categories, and 20 images for each of the categdlete that we also show in
the same embedding the positions of the SIFT clusters imesircThe cluster images are
generated directly from the gradient intensities specifigtle vector. To be specific, tHes-
dimensional vector contairtsgradient values foit 6 subwindows of the window of interest.
We have plotted these values in roughly correspondingipasiin a small image.

Figure[5.4 and Figure 3.5 show the results of using a grigébasnbedding on the same
data sets. These grid-based SAE embeddings provide ariesay image grid. Unlike
the unconstrained Euclidean embeddings of Fifurk 5.2 aguarél5.B, there is no overlap
obscuring some of the images. Yet, the images categoriéslsster well into different

areas of the space.

5.3.3 KkNNA Results

For more quantitative results, we ran SAE, Isomap, LLE an& @hbedding algorithms on
10 randomly chosen objects from the ALOI data set, using 3@es for each object. We set
m = 50 cluster centers for grouping the SIFT features. We stoppe@&AE algorithm when
the change il” was below10=¢. The embedding dimensiab was set t@. The simula-

tion annealing temperature parametegrows with exponent.001. We then calculated the
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Figure 5.5: Grid embedding for a subset of Caltech101.
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Figure 5.6: KNNA results for ALOI and Caltech101.

kNNA accuracy of the derived embedding for each value of timalmer of neighborg. We
ran 10 independent experiments (each run randomly dreerdiit objects), and reported the
average kNNA values for all the algorithms. The results & in Figurd 5.16.

With the same settings, we ran similar experiments on thée€al01 data set with 10
randomly chosen categories, each with 30 images. The kNBlltseare shown in Figufe.6.
The images in the Caltech101 data set are of differing siklbis was not a problem for our
algorithm (SAE), but the other algorithms require the immatgebe of the same size. For the
other algorithms, we rescaled all images to a canonicall®@@00 pixel size.

Our algorithm outperform all the listed competing dimemsility reduction algorithms
in terms of KNNA accuracy. Noticeably, although performedtbe same SIFT represented
data set as our method, the other algorithms still do noopereis well as ours in either data

sets.
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5.4 Additional Information Sources

Sometimes, there is additional image information avaélalfor example, an image search
engine may have the records of user click counts of imagegafidous user queries. Better
embeddings can be expected if our algorithm can take intowatahis information.

Queries are composed of words, so if we treat words in a simiknner as the SIFT-
feature clusters in the previous section, we can use thegmonding click counts between
images and query words. We get similar “rating” statistiosWword-image pairs. We can
employ similar embedding algorithm on this rating inforioatinstead of using feature-

image pairs.

5.4.1 Model Extensions

Our true goal is to use both word-image click counts and feaitmage pairs to improve the
embedding. In fact, we may have more than two sources ofrimdiion and more than three
types of objects. We thus extend the previous model to altmwnrfore groups of entities
beyond the original images and clusters. We use the terrm{fato denote a (possibly
incomplete) source of information relating two groups ofealbs. We allow these ratings
to have weights denoting the strength of our belief in thenmiation. More formally, we

introduce the following notation.
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I={I(1),1(2),...,I(n)} set ofn groups

I(i) = {11(4), (i), ..., I,,(i)} all entities in group

(i, 7) weight for the ratings betweek{:) and ()
ri(i, ) rating betweer, (i) and/,(j)
T;;(I) average Kendall's for I(i) and/(j)

We then define the global Kendalt'sas the weighted average of all possib)gs:

M= > wi.)T;) .

J>ilR(i.1)=1

Note that whem = 2, there are two groups of objects, and this is exactly the made
previously presented.
The task if to minimizel’(I) with respect to all the image positiofisSimilar simulated

annealing algorithms can be used to solve this problem.

5.4.2 Click Counts Incorporation

We also tested the value of our model extensions on the cliaklg(CG) data set. The
CG data set is collected from the image search engine of Mdtolt contains six groups
of images: books, mouse, panda, Saturn, shoes, and tefiimre are also click counts
available. The click counts record the number of times uselscted an image after they
issued any particular query to the search engine. We randohnase72 images for each of

the image groups with80 queries.
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To incorporate the click counts, we make an additional ietal group for words. For
any click counts between and imageand a query),, we add the number of clicks to the
image-word count;; wherew, is a word in@),.

Raw click counts are to some extent ill-formed for directgesaSome image-word pairs
may have click counts as large as hundreds, while most ofahe pbave small click counts.
We use a straight-forward normalization. For each imageve simply normalize all the

click countse;; to bec;;/ Zj c;; for all the words. This turns out to be effective and useful.

Random Walk Smoothing

In [Craswell and Szummer, 2007], the authors introduced arrittigo that uses a random
walk on a Markov chain to model the click counts. We followithreethod to smooth the
click information.

Let there ben images, and query words. We form two stochastic matricés:andY

such thatX;; = -, andYj; = ='-. Let the matrixA be an + ¢ by n + ¢ transition
7 i 1 t]

matrix over both entities (images and query words) such that

5 if i =7,
(1—-s)X;;—n ifi<nandj>n,

(1-9)Y;;,—n ifi>nandj <n,

0 otherwise.
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Heres is the weight for the Markov chain state’s self-transitisalpability. The smoothed
click information for any imagd; is computed using a backward random walk steps of
this chain,

(~3i = Atei s (58)

wheree; is a vector of all zeros except for a one at thieposition. The resulting; is vector

of sizen + ¢, and the last component of this vector is the smoothed click information f
the imagel; toward all theq query words. We can then use the smoothed click information
with the simulated annealing algorithm for the extended eho&or our results, we chose

t =300 ands = 0.9.

Average Accuracy ink Nearest Neighbors

Given an embedding, for any imagg since we know the group of the image, we can simply
count the number of imagés from the same group in it nearest neighbors. The em-

bedding accuracy fof; is defined aé%. The average accuracy éfnearest neighbors (NN

accuracy) of the entire system is defined};a\E?:1 % wheren is the total number of images.
Perfect embeddings will have NN accuralcfor smallk, while random embeddings will

have accuracy around the inverse of the number of groups.

Spectral Clustering Accuracy

Another way of evaluating the embeddings is to derive clusgeresults from them. Let,;

be the total number of image pairs that are from the same gootiglustered in different
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groups, and let; be the number of image pairs that are from different grougslustered

2(61+82)

together. The clustering accuracy is defined as— SV

We use spectral clustering [Ng et al., 2001] as the basisfonme this task. To be spe-
cific, for any embedding, we run spectral clustering baséelyson the resulting embedded
locations. We tried different possible spectral clustgqrarameters, and chose the average
results for that embedding. Graphs plotting the best ptespirformance for each run were

similar, but more noisy.

Results with Click Counts Information

We set the relative weight between the image-word relatr@hthe image-cluster relation to
be 0.2, which means we still concentrate on minimizing the averafm the image-cluster
relationships. Nevertheless, we need to minimize the geer&or image-word relationships
as well, since it also contribute a certain weight to the gl@verage Kendall's value for
the entire system.

Figure[5.Y shows a sample embedding with images from thedgacategory and the
related search keywords.

We compare the NN accuracy and spectral clustering for thel&@ set: without click
information, with smoothed click information, and with smoothed click information. The
results are shown in Figufe.8.

Our algorithm achieves higher accuracy results than anyhefather three competing

algorithms. We believe this is for two reasons.
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Figure 5.7: Sample embedding for panda images in CG.
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Figure 5.8: NN accuracy (left) and spectral clustering aacy (right) of the SA results with
and without the click information.

First, we exploit the nature of images (by using SIFT feaestead of treating all of the
pixels as independent dimensions. When we supply the salfiefSature representation to
the other embedding algorithms, their performance ineae&s the ALOI data set. However,
we still have better performance, so the use of SIFT featdoes not entirely explain the
results.

Second, our algorithm is designed to cluster images withlairmproperties (as opposed
to find parameters of continuous variation). We feel thishis inore important difference.
Although our method works for continuous parameter vasiatisee Figuré 5l1) and the
dimensionality reduction algorithms have some succedsigtaring images (see Figureb.6),
our algorithm'’s strength is in embedding heterogeneous geimages in which there may
not be any continuous path of images leading from one memttealata set to another.
For example, there is no “axis of variation” that one can vargenerate a natural smooth
set of images from a butterfly image to a cellphone image irGh@ech101 data set. The

butterflies and cellphones occupy disconnected regionkeokpace of images of interest.
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For many applications on data sets like CalTech101, we tthiskstrength is particularly
important.

Finally, our method has the advantage of being able to gengral-based embeddings.
For some applications, like user interfaces, this is ciuoighe utility of the embedding.

It is clear that by incorporating additional click countdarmation with images, our

framework can make use of the information and somewhat libegesting accuracy.
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Chapter 6

Conclusion

We proposed an approach using Bayesian network to perfollabooative filtering. Empir-
ical results show that our filtering algorithm achieve cotagiee accuracy. Our framework
can be easily adapted to incorporate additional infornmatitner than the ratings (for exam-
ple game description in the BGG data).

We also formulated a new problem of visualizing collabamatiata. This is a potentially
very useful problem. Not only are on-line databases of usngs growing, but personal
databases are also becoming more common. We expect thearali@e visualization prob-
lem to be useful in organizing personal music or photogragilections as well as on-line
shopping. We also extended our framework to the domain of@re@mbedding. We gave a
complete solution for automatic image embedding problem.

We have not addressed the computational issues nor thétgtabthe resulting embed-

ding in this work. Both are important problems for on-lingptieyment in changing databases.
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Because of the anytime nature of sampling methods and tleeod@stroducing constraints,
we are hopeful that the solution presented here can be atiappeovide stable and adaptive
solutions.

In summary, we presented our solutions to the related pnablE collaborative filtering,
visualization, and image embedding. They share similané&ork of viewing the prob-
lems, but each with their own focuses. The methods presamédutomatic, without many
parameters to tune up with different inputs. Also they angegefficient in practice, which is

essential in some time sensitive application domains.
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Appendix A

Bayesian Networks

Bayesian networks are the most widely used graphical madetspresent factorized prob-
ability distribution over multiple random variables. Wermduce the basic components of a
Bayesian network in Sectidn‘A.1, and then introduce the teypgroblems associated with

Bayesian networks: inference (SectlonlA.2) and learnireg(8n[A3).

A.1 Introduction to Bayesian Networks

A Bayesian network3 is composed of its graphical structugeand its parameter sé. ¢
is always a directed acyclic graph (DAG) over the set of \ddéaX = {X;, Xo,..., X,,}.
The variableX; and all its parent®a(X;) in G form the scope of familyy,. A conditional

probability distribution (CPD)P(X; | Pa(X;)) is associated with familyx,. The joint
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A B|C=0 C=1
4—0 A-1 |B—0 p—1 0O 0| 01 083
02 08 o6 o4 O r| 09 01
' ' ' ' 1 0| 08 02

1 1| 005 095

Table A.1: A simple Bayesian network.

distribution P(X) defined by the Bayesian network factors by each individualilfa

n

P(X1, Xs,.... X,) = [[ P(X: | Pa(X))) (A1)

i=1

where if X; has no parentig, P(X; | Pa(X;)) = P(X,).
Consider a simple Bayesian network with three random v, B, andC' in Ta-
ble[Ad. The structure of the network and sample conditipnaibability distributions (CPDs)

are shown in the table. The joint distribution can be thusoiad as
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A.1.1 Independence Assumptions

The structure of a Bayesian network encodes a set of conditindependence assumptions
for the random variables. Analyzing the independence ptigsecan help factorize the joint
distribution into much simpler marginal distributions, mhis the key benefit of using graph-
ical models.

Conditional independence assumptions can be determintebldyseparatiorproperties
of the graph. Two sets of nodés andY are conditionally independent given a third set of
nodesZ if they ared-separated in the graph structur@separation is further defined with
active trails A trail p from nodeA to nodeB in the graph is a path from the undirected
version of the Bayesian network structure that connect®nbdnd B. The trail is active
givenZ if A and B are directly connected, or all triplds — VV — W alongp meet the

following relevant conditions:
o ifU—V —WthenV ¢ Z
o ifU—V —WthenV ¢ Z
o if U » V «— W thenV or any descendant 6f is inZ

X is d-separated from¥ givenZ if there exists no active trails from any nodeXto any
node inY whenZ is given. d-separation can be computed in linear time using a depth-firs
algorithm [Geiger et al., 1990].

We next discuss two key problems for Bayesian networksrémige and learning.
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A.2 Inference for Bayesian Networks

Inference for Bayesian networks is the problem of findingrtreginal probability of some
variablesY C X given some evidence P(Y | e). Evidence is the assignment of particular
values to a subset of the variablesXf

In general, the inference problem is NP-hard. The complexitthe problem is deter-
mined by the Bayesian network structure, and it is expoaéimtithe tree width of the gragh
[Dagum and Luby, 1993]. Nevertheless, in practice, exderé@mce algorithms such as vari-
able elimination and clique tree algorithms [Huang and Delne, 1996] are still very useful
and efficient for smaller networks or Bayesian networks withple structures.

Approximate inference algorithms are used when exact eniieg is intractable or too
costly to use. Sampling algorithms such as importance saghphd Markov chain Monte
Carlo methods such as Metropolis Hastir{gs [Gilks et al. 6] 88d Gibbs sampling
[Geman and Geman, 1984] are often used. Direct samplingadésHirst used in
[Henrion, 1988] for Bayesian networks. In [Fung and Chari§9, likelihood weighting
is used to ensure that no sample is rejected.| In [ShachtdPeoid 1989] the authors first
presented importance sampling for Bayesian networks.

Loopy belief propagation (LBP] [Murphy et al., 1999] is anet widely applicable ap-
proximate inference algorithm. In LBP, it first constructisiers of the Bayesian network
similar to the clique tree algorithm. One major differensehat the resulting cluster graph

need not to be restricted to a tree structure, moreover,rdqghgcan be arbitary and can even

lUnlessP = NP.
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have loops. This relaxation on the cluster graph can leaduchrsimler clusters. The LBP
algorithm also use similar message passing schemes asdhbe tilee algorithm, with the
difference in that it may take more than two passes to makeritiee graph to converge. In
[Ihler et al., 2005], the details about LBP’s convergenseiés and approximation errors are

discussed.

A.3 Learning of Bayesian Networks

Another key problem related with Bayesian networks is leaynMore specifically, given a
collection of variable instantiations, the learning pehlis to find the most suitable Bayesian
network structure and corresponding parameters that kpkdias the evidence.

It is often the case that the structure of the Bayesian nétvgoalready given. Only the
parameters (CPDs of all the families in the network) neednegion. For fully observed data
(data with instantiations of all the variables), maximukelihood estimation simply reduces
to counting the number of co-occurrences (calleddiniicient statistigsof X; andPa(X;),
and then setting the CPD parameters to be the correspondipgieal ratios. For partially
observed data, the expectation maximization (EM) algorijpempster et al., 1977] is usu-
ally used to estimate parameters.

For the case when the structure of the Bayesian network aded to be learned, the
problem becomes very complicated. First, a score functioistrbe used to evaluate the

goodness of a given structure. Second, since there are-eypenential number of possible
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structures, some structural search algorithms should h@oyed to search over the possi-
ble structures. In [Friedman, 1998], structural expeotathaximization (SEM) is proposed
to learn both structure and parameters of a Bayesian netwbén where is missing data.
[Pernkopf and O’Leary, 2003] presents a floating searchaaar for learning the network
structure. In[|[Larraaga et al., 1996], the authors give go@gch for structural learning using

genetic algorithms.

A.3.1 Sufficient Statistics

Sufficient statistics (SS) are one of the most important eptecin parameter estimation. SS
are derived directly from observed data, and are sufficiemtstimate the model parameters
without the need to refer to the data again.

For example, to estimate the probability of a head whenngsaiparticular coin, the SS
are the number of times that the coin landed head, and totabauof times it has been
tossed. Once we have these numbers, they are sufficientitaésthe required parameters.

When it comes to a problem with partially observed data, veerarlonger able to com-
pute the sufficient statistics directly. Instead, we corapghe expected sufficient statistics
(ESS) of the partially observed data: the expectation uadearticular distribution of SS

among all possible data completions.
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A.3.2 Expectation Maximization

The expectation maximization (EM) algorithm works by rejeeldy iterating the following

two phases:

e E step: using current estimation of the modéF, compute the expected sufficient

statistics (ESS),
e M step: update the parameter estimatior@6™' by using the ESS derived.

By iteratively repeating the EM steps, the likelihood of thea given the current model
parameters is guaranteed to be non-decreasing. EachatecdtEM will result in a better
model until convergencé [Neal and Hinton, 1999]. Althoulgé EM algorithm does not nec-
essarily fall into global maximum of likelihood, in practicit is quite stable. We usually start

the EM procedure with some randomly chosen initial pararsete

A.3.3 Parameter Estimation for Bayesian networks

For Bayesian networks, the sufficient statistics (SS) neéaleestimating its parameters are
described as following. In the case of complete data, we Bawgples (instantiations) of
all the variablesX = {Xj,..., X, } in the network. For each variablg;, to estimate its
parametety, pq(x,), the SS needed &/ X; = z, Pa(X;) = u]: total number of times that

X, isz and its parent takes the value$n the entire data. The estimation of the parameter is

. MI[X; =z, Pa(X;) = u]
eXi\PCL (.T ‘ u) Z M[ _ y,Pa(X) ] (AZ)
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For data with missing values, EM algorithm is used. In thiseceve can no longer de-
rive the SS directly. In the expectation step, we use theeatiBayesian network parame-
ters and use inference algorithm to derive the expecteccaaiffi statistics (ESS)/[X; =
x, Pa(X;) = u]. This step can be costly. In the maximization step, the updatile is the

same as in Equatidna.2.
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