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How can we efficiently decompose a tensor into sparse factors, when the data does not fit in memory? Tensor decompositions
have gained a steadily increasing popularity in data mining applications, however the current state-of-art decomposition al-
gorithms operate on main memory and do not scale to truly large datasets. In this work, we propose PARCUBE, a new and
highly parallelizable method for speeding up tensor decompositions that is well-suited to producing sparse approximations.
Experiments with even moderately large data indicate over 90% sparser outputs and 14 times faster execution, with ap-
proximation error close to the current state of the art irrespective of computation and memory requirements. We provide
theoretical guarantees for the algorithm’s correctness and we experimentally validate our claims through extensive experi-
ments, including four different real world datasets (ENRON, LBNL, FACEBOOK and NELL), demonstrating its effectiveness
for data mining practitioners. In particular, we are the first to analyze the very large NELL dataset using a sparse tensor
decomposition, demonstrating that PARCUBE enables us to handle effectively and efficiently very large datasets. Finally, we
make our highly scalable parallel implementation publicly available, enabling reproducibility of our work.

Additional Key Words and Phrases: Tensors, PARAFAC decomposition, sparsity, sampling, randomized algorithms, parallel
algorithms

1. INTRODUCTION
Tensors and tensor decompositions have recently attracted considerable attention in the data mining
community. With the constantly increasing volume of today’s multi-dimensional datasets, tensors
are often the ‘native’ format in which data is stored, and tensor decompositions the natural modeling
toolset - albeit still suffering from major scalability issues. The state of the art toolboxes for ten-
sors [Bader and Kolda 2007a; Andersson and Bro 2000] still operate on main memory and cannot
possibly handle disk-resident tensor datasets, in the orders of millions or billions of non-zeros.

Motivated by the success of random sampling - based matrix algorithms such as [Drineas et al.
2006], it is natural to ask whether we can we use similar tools in the case of tensors. Is it possi-
ble to randomly under-sample a tensor multiple times, process the different samples in parallel and
cleverly combine the results at the end to obtain high approximation accuracy at low complexity
and main memory costs? There exists important work on how to use sampling in order to achieve
a sparse matrix decomposition, the CUR decomposition [Drineas et al. 2006]; this method has also
been extended in order to handle tensors [Mahoney et al. 2006]. However, both these methods are
tied to a specific decomposition, while we desire to disconnect sampling from the specific decom-
position that follows.

This paper introduces PARCUBE, a fast and parallelizable method for speeding up tensor de-
compositions by leveraging random sampling techniques. A nice side-benefit of our algorithm is its
natural tendency to produce sparse outer-product approximations, i.e., the model-synthesized ap-
proximation of the given tensor data is naturally very sparse, which is a desirable property in many
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applications. For instance, PARCUBE produces over 90% sparser results than regular PARAFAC,
while maintaining the same approximation error.

Our core contribution is in terms of the merging algorithm that collects the different ‘punctured’
decompositions and combines them into one overall decomposition in an efficient way. We provide
theoretical guarantees for the correctness of our approach.

Furthermore, we apply PARCUBE on four different, real datasets, reporting our discoveries and
demonstrating the remarkable flexibility and versatility of Tensor Analysis as a Data Mining tool.

An earlier version of the present work has appeared in the proceedings of ECML-PKDD 2012
[Papalexakis et al. 2012]. In this extended version, in addition to the contributions of [Papalexakis
et al. 2012], we provide a thorough experimental analysis of the algorithm, investigating scalability
of PARCUBE in a variety of scenarios; additionally, we complement our description of PARCUBE
with an intuitive explanation behind the main idea, and finally, we provide a very efficient par-
allel implementation which we make publicly available at http://www.cs.cmu.edu/∼epapalex/src/
parCube.zip, enabling reproducibility of PARCUBE.

The rest of this paper is structured as follows. Section 2 provides some useful background; section
3 describes the proposed method, and section 4 contains experiments. We review related work in
section 5, and conclusions are drawn in section 6.

2. TENSOR DECOMPOSITIONS
Notation preliminaries

A scalar is denoted by a lowercase, italic letter, e.g. x. A column vector is denoted by a lower-
case, boldface letter, e.g. x. A matrix is denoted by an uppercase, boldface letter, e.g. X. A three-
way tensor is denoted by X. Let I be a set of indices, e.g. I = {1, 4, 7}; then, a(I) denotes
{a(1),a(4),a(7)}; a(:) spans all the elements of a. This notation naturally extends to matrices and
tensors, i.e., A(I, :) comprises all columns of A restricted to rows in I. By NNZ( ) we denote the
number of non-zeros. Table I shows the symbols used, in compact form.
Tensors A tensor of n modes (or n-way/n-mode tensor) is a structure indexed by n variables. For
example, a matrix is a two-way tensor. In this work, we focus on three-way tensors, because they
are most common; however, all results can be readily extended to higher-way tensors. A three-
way tensor X is a structure that resembles a data cube. A detailed survey for tensors and tensor
decompositions may be found in [Kolda and Bader 2009].

Table I. Table of symbols

Symbol Definition
X three-way tensor
A matrix
x column vector
a scalar
I index
NNZ( ) number of non-zeros

2.1. The PARAFAC decomposition
The PARAFAC decomposition [Harshman 1970] of X into F components is

X ≈
F∑

f=1

af ◦ bf ◦ cf

where a ◦ b ◦ c(i, j, k) = a(i)b(j)c(k). A pictorial exaple of PARAFAC is shown on Fig. 1
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Fig. 1. The F -component PARAFAC decomposition of X.

Essentially, in order to obtain the PARAFAC decomposition, we need to solve the following opti-
mization problem:

min
A,B,C

‖X−
F∑

f=1

af ◦ bf ◦ cf‖2F (1)

The most popular algorithm for fitting the PARAFAC decomposition is the Alternating Least
Squares (ALS) [Bro 1997; Kolda and Bader 2009]. The computational complexity of the ALS Al-
gorithm for a I × J ×K tensor, and for F components is O(IJKF ) per iteration.

2.2. Tensor compression & TUCKER3
Consider the I × J × K tensor X. Then, its {Q,R, P} TUCKER3 decomposition consists of a
P × Q × R core tensor, say, G and three assorted, unitary, matrices U,V,W with sizes I × P ,
J ×Q and K ×R respectively. The decomposition can be compactly written as

X ≈
P∑

p=1

Q∑
q=1

R∑
r=1

G(p, q, r)up ◦ vq ◦wr
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Fig. 2. The TUCKER3 decomposition of X.

A pictorial representation of TUCKER3 is shown in Fig. 2. TUCKER3 is very useful for compres-
sion purposes: if we choose P � I , Q � J , and R � K, then, we get a core tensor G which
is a compressed version of X. This approach is used in practice [Bro et al. 1999] in order to speed
up further operations in a tensor, since one is able to roll-back from the compressed tensor to the
original X using the factor matrices U,V,W .
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3. THE PARCUBE METHOD
In this section we introduce PARCUBE, a new method for PARAFAC decomposition designed with
three main goals in mind: G1: Relative simplicity, speed, and parallelizable execution; G2: Ability
to yield sparse latent factors and a sparse tensor approximation; and G3: provable correctness in
merging partial results, under appropriate conditions.

3.1. Sampling for PARCUBE

The first step of PARCUBE is to sample a very high dimensional tensor and use the sampled tensor in
lieu of the original one, bearing three important requirements in mind: R1 The need to significantly
reduce dimensionality; R2 The desire that sampling should be decomposition-independent - we
should be able to apply any decomposition we desire after sampling, and be able to extrapolate
from that; and R3: Sampling should maintain linear complexity on the number of non-zero entries.

The first thing that comes to mind in order to satisfy requirement R1 is to take a uniform random
sample of the indices of each mode, i.e., take a uniform random sample of the index sets {1 · · · I},
{1 · · · J}, and {1 · · ·K}. However, this naive approach may not adequately preserve the data dis-
tribution, since the random index samples may correspond to entirely arbitrary rows/columns/fibers
of the tensor. We performed initial tests using this naive method, and the results were consistently
worse than the proposed method’s. We thus propose to do biased sampling: If we, somehow, deter-
mine a measure of importance for each index of each mode, then we may sample the indices using
this measure as a sampling weight/probability. For the purposes of this work, let us assume that our
tensor X has non-negative entries (which is the case in huge variety of data mining applications); if
we were to deal with tensors containing real values, we should consider the element-wise absolute
value of the tensor for the notions that we introduce in the sequel.

A reasonable measure of importance is the marginal sum of the tensor for each mode 1.
Namely, the measure of importance for the indices of the first mode is defined as: xa(i) =
J∑

j=1

K∑
k=1

X(i, j, k) for i = 1 · · · I.

Similarly, we define the following importance measures for modes 2 and 3:

xb(j) =

I∑
i=1

K∑
k=1

X(i, j, k),xc(k) =

I∑
i=1

J∑
j=1

X(i, j, k)

for j = 1 · · · J and k = 1 · · ·K.
Intuitively, if xa(i) is high for some i, then we would desire to select this specific index i for our

sample with higher probability than others (which may have lower xa value). This is the very idea
behind PARCUBE: We sample the indices of each mode of X without replacement, using xa, xb

and xc to bias the sampling probabilities.
We define s to be the sampling factor, i.e. if X is of size I×J×K, then Xs derived by PARCUBE

will be of size I
s ×

J
s ×

K
s . We may also use different sampling factors for each mode of the tensor,

without loss of generality.
In order to obtain the sample we 1) Compute set of indices I as random sample without re-

placement of {1 · · · I} of size I/s with probability pI(i) = xa(i)/

I∑
i=1

xa(i). 2) Compute set

of indices J as random sample without replacement of {1 · · · J} of size J/s with probability

1Another, reasonable alternative is the sum-of-squares of the elements of rows, columns and fibers, which is a measure of
energy. We leave this for future work.
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pJ (j) = xb(j)/

J∑
j=1

xb(j). 3) Compute set of indices K as random sample without replacement

of {1 · · ·K} of size K/s with probability pK(k) = xc(k)/

K∑
k=1

xc(k).

The PARCUBE method defines a means of sampling the tensor across all three modes, without
relying on a specific decomposition or a model. Therefore, it satisfies requirement R3. Algorithm 1
provides an outline of the sampling forPARCUBE.

LEMMA 3.1. The computational complexity of Algorithm 1 is linear in the number of non zero
elements of X.

PROOF. Suppose we have a representation of X in quadruplets of the form (i, j, k, v) where
X(i, j, k) = v, for v 6= 0 and v ∈ NNZ(X). For each of these quadruplets, we may compute the
density vectors as:

xa(i) = xa(i) + v,xb(j) = xb(j) + v,xc(k) = xc(k) + v

This procedure requires 3 O(1) additions per element v, therefore the total running time is
O(NNZ(X)).

By making use of the above Lemma, and noticing that sampling of the elements, after having com-
puted the densities of each mode is a linear operation on the number of non-zeros, we conclude
that requirement R3 is met, i.e. our computation of the biases and biased sampling are linear on the
number of non-zeros. Furthermore, sampling pertains to Goal G1 which calls for a fast algorithm.

Algorithm 1: BIASEDSAMPLE

Input: Original tensor X of size I × J ×K, sampling factor s.
Output: Sampled tensor Xs, index sets I,J ,N .

1: Compute

xa(i) =

J∑
j=1

K∑
k=1

X(i, j, k), xb(j) =

I∑
i=1

K∑
k=1

X(i, j, k), xc(k) =

I∑
i=1

J∑
j=1

X(i, j, k).

2: Compute set of indices I as random sample without replacement of {1 · · · I} of size I/s with

probability pI(i) = xa(i)/

I∑
i=1

xa(i). Likewise for J ,K.

3: Return Xs = X(I,J ,K).

3.2. Non-negative PARAFAC decomposition using PARCUBE

Now, let us demonstrate how to apply PARCUBE in order to scale up the popular PARAFAC decom-
position, with non-negativity constraints. We choose to operate under the non-negativity regime
since the vast majority of applications of interest naturally impose this type of constraint.

Algorithm 2 demonstrates the most basic approach in which one extracts a sample from the
original tensor, runs the PARAFAC decomposition on that (significantly) smaller tensor and then
redistributes the factor vectors to their original positions, according to the sampled indices I,J ,K.
Note that many of the coefficients of the resulting PARAFAC factor matrices will be exactly zero,
since their corresponding indices will not be included in the sample and consequently, they will not
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receive an updated value. This implies that a natural by-product of our approach is sparsity on the
factors by construction, thereby satisfying Goal G2.

However, Algorithm 2 relies on a sole sample of the tensor and it might be the case that some
significant portions of the data, depending on the sampling factor and the data distribution, may
be left out. To that end, we introduce Algorithm 3 which is our main contribution. Algorithm 3
generates many samples and correctly combines them, in order to achieve better extraction of the
true latent factors of the data tensor.

The key idea behind Algorithm 3 is the method by which all the different samples are combined in
order to output the decomposition matrices; more specifically, intuitively we enforce all the different
samples to have a common set of indices Ip,Jp,Kp, where p ∈ [0, 1] is a fraction of the sampled
indices per mode. For example, for a mode of size I and sampling factor s, the common set of
indices will be of size Ip is pI/s. This p fraction of indices is selected to be the indices with the
highest density, as indicated by the weights that we compute. After we select these common indices,
the rest of the sampling is being conducted on the remaining indices. Having this common basis,
we are able to combine the samples using Algorithm 4. In section 3.3, we elaborate on the proposed
merging scheme, and provide an illustrative example.

Note that the generation of the r distinct samples of X, as well as the PARAFAC decomposition
of each of them may be carried out in parallel; thus satisfying Goal G1. Regarding Goal G3, note
that correctness of the merge operation requires certain conditions; it cannot be guaranteed when the
individual random samples do not satisfy PARAFAC identifiability conditions, or when the common
piece that is used as a reference for merging is too small (p is too low). Proposition 3.2 provides a
first correctness result for our merging algorithm.

3.3. Merging explained
Suppose we want to merge the partial factor matrices Ai i = 1 · · · r into the full-sized factor matrix
A. The ordering of the PARAFAC components is arbitrary, since the PARAFAC decomposition is
unique up to scaling and component permutations. Since any ordering is good, we have to, arbi-
trarily, agree on an ordering for the components/columns of A. A problem that arises when we are
about to merge the partial factors Ai into A is the fact that each Ai has its own arbitrary ordering
of columns which, sometimes, is not consistent for all i. We, thus, have to first agree on a single
ordering, and then permute the columns of all Ai such that they obey that ordering.

Key to identifying the correct correspondence of columns between different Ai is the common
set of sampled indices Ip,Jp,Kp. By fixing these indices, we force the rows of matrices Ai that
correspond to indices Ip to be approximately the same, and accordingly for the rows of Bi and
Jp, as well as Ci and Kp. We will elaborate more in subsection 3.4 about the conditions that need
to be met, in order for the rows that correspond to the same subset of indices to be approximately
equal, but we may assume that this is the case, for the purposes of explaining the merging algorithm
(Algorithm 4). It is important to note here that we normalize every column of Ai in such a way that
the ‖A(Ip, j)‖F = 1 for j = 1 · · ·F (we do the same for Bi and Ci).

The basic idea of Algorithm 4 is the following: We arbitrarily choose the columns of A1 as the
reference ordering. After doing that, we update the columns of A (the final matrix), which originally
contains all zero values, using the values of Ai. The way we update is described in Algorithm 2. In
the next iteration of Algorithm 4, we first need to permute the columns of A2 so that they match
the (arbitrary) ordering of the columns of A1 that we decided upon. In order to do that, we take
the inner products of combinations of the common parts of the columns of A1 and A2. Because of
the way we have normalized, the parts of the matrices that correspond to the common set of indices
will have unit norm; thus, for the matching pair, the inner product will be approximately equal to 1,
whereas for the rest of the pairs it will be close to 0. We prove this claim in subsection 3.4. After we
establish the correct ordering, we update only the non-zero coefficients of A using A2. We choose
to update only the non-zero values, since averaging values that happen to correspond to different
samples was not retaining the correct scaling of the factors.
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Fig. 3. Example of merging two partial factor matrices to the final matrix, while accounting for potential column permuta-
tions. (Best viewed in color)

After we establish the correct correspondence for the columns of Ai, we can apply the same
permutation to the columns of Bi and Ci, instead of computing the correspondence seperately. In
addition to the factor matrices, we have to also reorder the λi vector at every merging step.

An illustrative example of our merging scheme, for two partial factor matrices, is shown in Fig.
3. Here, we describe the merging procedure. Say that the small matrices shown on the leftmost part
the figure are the Ai i = 1 · · · r matrices (where r = 2 in the example). Each color corresponds to a
distinct latent component; different shades of the same color denote the fact that two vectors belong
to the same rank-one component of the non-sampled tensor, however they correspond to a different
set of sampled indices. Notice that there are component permutations across matrices which need
to be resolved in order to merge correctly. Without loss of generality, assume that the upper part of
each component is the common part, defined by the shared sample of indices. The common part is
denoted by a dark shade of the color of each component, in Fig. 3. Then, Algorithm 4 will do the
following steps: starting from A1, it will redistribute the values of the factors to the original index
space. The ordering of components imposed by A1 (shown in different colors in Fig. 3) is the order
that Algorithm 4 will impose to the rest of the partial results. In Fig. 3, the second partial factor
matrix A2 has a different ordering of the last two components, therefore the algorithm will use the
common part in order to identify this discrepancy, and reorder the columns of A2 before merging
its values to the final result. The algorithm proceeds this way, until all partial matrix columns have
been reordered to match the ordering of A1.

A fairly subtle issue that arises is how to overcome scaling disparities between factors coming
from two different samples. Key here, as described in line 5 of Algorithm 3, is to counter-scale the
two merge candidates, using only the norms of the common parts indexed by Ip,Jp,Kp; by doing
so, the common parts will be scaled to unit norm, and the rest of the vectors will also refer to the
correct, same scaling, thereby effectively resolving scaling correspondence.

Finally, we must note that our merging scheme is very similar to the very well know Hungarian
Algorithm [Kuhn 1955], used to efficiently solve combinatorial assignment problems.

Algorithm 2: Basic PARCUBE for Non-negative PARAFAC

Input: Tensor X of size I × J ×K, number of components F , sampling factor s.
Output: Factor matrices A,B,C of size I × F , J × F , K × F respectively.

1: Run BIASEDSAMPLE (X, s) (Algorithm 1) and obtain Xs and I,J ,K.
2: Run Non-Negative PARAFAC (Xs, F ) and obtain As,Bs,Cs of size I/s× F , J/s× F and
K/s× F .

3: A(I, :) = As, B(J , :) = Bs, C(K, :) = Cs
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Algorithm 3: PARCUBE for Non-negative PARAFAC with repetition
Input: Tensor X of size I × J ×K, number of components F , sampling factor s, number of

repetitions r.
Output: PARAFAC factor matrices A,B,C of size I × F , J × F , K × F respectively and vector

λ of size F × 1 which contains the scale of each component.
1: Initialize A,B,C to all-zeros.
2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1]) indices Ip,Jp,Kp

to be common across all repetitions.
3: for i = 1 · · · r do
4: Run Algorithm 2 with sampling factor s, using Ip,Jp,Kp as a common reference among all

r different samples and obtain Ai,Bi,Ci. The sampling is made on the set difference of the
set of all indices and the set of common indices.

5: Calculate the `2 norm of the columns of the common part: na(f) = ‖Ai(Ip, f)‖2,
nb(f) = ‖Bi(Jp, f)‖2, nc(f) = ‖Ci(Kp, f)‖2 for f = 1 · · ·F . Normalize columns of
Ai,Bi,Ci using na,nb,nc and set λi(f) = na(f)nb(f)nc(f). Note that the common part
will now be normalized to unit norm.

6: end for
7: A =FACTORMERGE (Ai)
8: B =FACTORMERGE (Bi),C =FACTORMERGE (Ci) without computing the ordering from

scratch. Use the ordering obtained for the Ai.
9: Apply the same ordering to λi.

10: λ = average of λi.

Algorithm 4: FACTORMERGE

Input: Factor matrices Ai of size I × F each, where i = 1 · · · r, and r is the number of
repetitions, Ip: set of common indices.

Output: Factor matrix A of size I × F .
1: Set A = A1

2: for i = 2 · · · r do
3: for f1 = 1 · · ·F do
4: for f2 = 1 · · ·F do
5: Compute similarity v(f2) = (A(Ip, f2))T (Ai(Ip, f1)))
6: end for
7: c = argmaxc′ v(c

′)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for

10: end for

3.4. Correctness
In the following lines, we prove that when we have multiple repetitions, the FACTORMERGE Algo-
rithm is going to find the right correspondence between the components of the intermediate results,
and thus, improve the approximation of the original data.

PROPOSITION 3.2. Let (A,B,C) be the PARAFAC decomposition of X, and assume that
A(Ip, :) (A restricted to the common I-mode reference rows) is such that any two of its columns are
linearly independent; and likewise for B(Jp, :) and C(Kp, :). Note that if A(Ip, :) has as few as 2
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Fig. 4. Example of rank-1 PARAFAC using PARCUBE (Algorithm 3). The procedure described is the following: Create
r independent samples of X, using Algorithm 1. Run the PARAFAC- ALS algorithm for K = 1 and obtain r triplets of
vectors, corresponding to the first component of X. As a final step, combine those r triplets, by distributing their values to
the original sized triplets, as indicated in Algorithm 3.

rows (|Ip| ≥ 2) and is drawn from a jointly continuous distribution, this requirement on A(Ip, :) is
satisfied with probability 1. Further assume that each of the sub-sampled models is identifiable, and
the true underlying rank-one (punctured) factors are recovered, up to permutation and scaling, from
each sub-sampled dataset. Then Algorithm 4 is able to merge the factors coming from the different
samples of the tensor correctly, i.e., is able to find the correct correspondence between the columns
of the factor matrices Ai,Bi,Ci.

PROOF. Consider the common part of the A-mode loadings recovered from the different sub-
sampled versions of X: under the foregoing assumptions, the Ai(Ip, :) will be permuted and
column-scaled versions of A(Ip, :). After scaling the common part of each column to unit norm,
Algorithm 4 seeks to match the permutations by maximizing correlation between pairs of columns
drawn from Ai(Ip, :) and Aj(Ip, :). From the Cauchy-Schwartz inequality, correlation between any
two unit-norm columns is≤ 1, and equality is achieved only when the correct columns are matched,
because any two distinct columns of the underlying A(Ip, :) are linearly independent. Furthermore,
by normalizing the scales of the matched columns to equalize the norm of the common reference
part, the insertions that follow include the correct scaling too. This shows that Algorithm 4 works
correctly in this case.

The above proposition serves as a sanity check for correctness. In reality, there will be noise and
other imperfections that come into play, implying that the punctured factor estimates will at best
be approximate. This implies that a larger common sample size (|Ip| ≥ 2, |Jp| ≥ 2, |Kp| ≥ 2)
will generally help Algorithm 4 to correctly merge the pieces coming from the different samples.
We have carried out extensive experiments verifying that Algorithm 4 works well in practice, under
common imperfections. A reasonable value for p is about 10-20 percent of the sampled indices,
depending on the application at hand. Those experiments also suggest that increasing the number of
samples, r, reduces the PARAFAC approximation error.

A good rule of thumb on selecting the number of repetitions r is to set it equal to double the
sampling factor, since this will, empirically, allow for PARCUBE to explore most of the variation in
the data. The exact values for s, r depend on the sparsity of the original tensor; if the tensor is highly
sparse, then only a few, small samples may suffice. In [Sidiropoulos et al. 2014a; Sidiropoulos et al.
2014b] we propose a formal extension of PARCUBE, were we are able to prove identifiability of
the decomposition, as well as give precise guidelines on the size of the sample and the number of
repetitions.

3.5. Parallel Algorithm
A great advantage of the proposed PARCUBE method is the fact that on its first phase, it produces r
independent tensors which are significantly smaller in size. Each one of those r tensors, can be con-
sequently decomposed independently from the rest, and as a result, all r tensors can be decomposed
in parallel (assuming that we have a machine with r cores). In other words, in our parallel imple-
mentation of PARCUBE, lines 3-6 of Algorithm 3 are executed entirely in parallel. In the case that a

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10

machine has less than r cores/workers (say w), then w decompositions are carried out in parallel at
any given point in time, until the number of repetitions is met.

3.6. On Sparsity
As we outline in the Introduction as well as in the requirements for the algorithm, PARCUBE pro-
duces factors which are sparse. In fact, at any given point in time throughout the lifetime of the
algorithm, PARCUBE operates on a sub-sampled portion of the data, and hence, operates on sparse
data. This is not generally true for tensor decomposition methods: for instance, the ALS algorithm
for PARAFAC, which iteratively computes estimates of the factor matrices, operates on dense data,
even if the original data and the true latent factors are sparse, since least squares estimates tend to
be dense.

Typically, sparsity in the factors is obtained through regularization using the `1 norm (e.g., [Pa-
palexakis et al. 2013]), as a convex relaxation of the `0 norm. Contrary to this line of work, PAR-
CUBE achieves sparsity in a more direct way, by ignoring a portion of the parameters altogether: if
an index is not sampled by PARCUBE, then the corresponding value of any factor for that index will
be zero.

The nature of PARCUBE’s sparsity is approximate, and it comes as a side benefit of the sampling
that PARCUBE uses. We must note that if the number of sampled tensors is rather small, in the
sense that they capture only a small part of the variation of the data, then there will be parameters
in the factors that will be left zero, even though the optimal solution to the problem (minimizing
the `0 norm of the factors) would possibly yield a non-zero value for them. However, if we increase
the number of independent sampled tensors that we decompose (i.e. parameter r), as we empirically
demonstrate in Section 4.2, PARCUBE’s solution will converge to the solution that directly optimizes
for sparsity.

3.7. Extension to other models
Even though the focus of the present paper is the PARAFAC decomposition, the same methodol-
ogy can be applied in order to accelerate and parallelize other tensor decomposition models. For
instance, in [Papalexakis et al. 2014], we illustrate how the same principles can help accelerate the
Coupled Matrix-Tensor Factorization (CMTF).The CMTF model is very similar to the PARAFAC
model, and thus, our algorithms can carry through without loosing the correctness guarantees.

On the other hand, extending PARCUBE to models such as TUCKER3 is not straightforward. In
Section 3.4 we invoke the uniqueness of the PARAFAC factors in order to show that the merging
will be correct; however, TUCKER3 is highly non-unique, and therefore we cannot apply the same
claim that PARCUBE will work correctly. This is not to say, however, that the key concepts behind
PARCUBE cannot be used for TUCKER3, but simply that this needs to be done carefully, in light of
the differences of TUCKER3 from PARAFAC.

4. EXPERIMENTS & DISCOVERIES
In this section we provide experimental evaluation of our proposed method. First, we evaluate the
performance of PARCUBE, compared to the current state of the art for handling sparse tensors
in Matlab, i.e. the Tensor Toolbox for Matlab [Bader and Kolda 2007a]. Since our algorithm, by
construction, tends to output sparse factors, we also evaluate the validity of that claim by comparing
the degree of sparsity of the output to the one given by the Tensor Toolbox and the one given by
PARAFAC SLF [Papalexakis and Sidiropoulos 2011], which is the state of the art for PARAFAC
decompositions with sparsity on the latent factors. The results of Section 4.1 were measured on a
2.7 GHz Intel Core i5 with 4GB of RAM.

Additionally, we evaluate how PARCUBE scales as the input and the parameter size grows, the
benefits of executing PARCUBE in parallel, as well as how PARCUBE compares against TUCKER3
compression accelerated PARAFAC decomposition. The aforementioned experiments correspond
to Sections 4.3 - 4.6 and were carried out on a machine with 4 Intel Xeon E74850 2.00GHz, and
512Gb of RAM.
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Finally, in Section 4.7 we apply our approach in order to analyze real datasets presented in Table
II.

Table II. Datasets analyzed

Name Description Dimensions NNZ Sparsity ( NNZ
IJK

)
ENRON [ENR 2014] (sender, recipient, month) 186× 186× 44 9838 0.0065
LBNL [Pang et al. 2005] (src, dst, port #) 65170× 65170× 65327 27269 10−10

FACEBOOK [Viswanath et al. 2009] (wall owner, poster, day) 63891× 63890× 1847 737778 10−7

NELL [RTW 2014] (noun-phrase, noun-phrase, context) 14545× 14545× 28818 76879419 10−5

We implemented PARCUBE in Matlab and Java, and we make it publicly available2. We further-
more use the Tensor Toolbox for Matlab [Bader and Kolda 2007a] as our core PARAFAC decompo-
sition implementation.

4.1. Performance & Speedup Evaluation
In the following lines, we evaluate the performance of PARAFAC using PARCUBE (Algorithm 2).
As a performance metric, we use the relative cost of the PARAFAC model, i.e. the cost of the model
using our sampling approach, divided by the cost of fitting a PARAFAC model using the original
tensor. As a reminder, we refer the reader to Equation 1 for the approximation cost of PARAFAC. In
Fig. 5, we measure the relative cost as a function of the speedup incurred by using our PARCUBE, for
different values of the sampling factor; this experiment was carried out on 100×100×100 randomly
generated, synthetic tensors, as we required full control over the true number of components and the
degree of sparsity for each component. We did 50 iterations of the experiment, and we report the
means. We observe that even for a relatively high sampling factor, the relative cost is very good, and
can be further improved using more parallel repetitions which will not harm the speedup achieved.

In Fig. 6, we show the relative cost using the ENRON dataset, for various numbers of repetitions
(i.e. distinct samples). We see, in this case, that as the number of repetitions increases, the approxi-
mation improves, as expected, from our theoretical result. In both cases of Fig. 6, the approximation
error improves as the number of repetitions r increases, as expected from our theoretical analysis of
Section 3.4.

4.2. Factor Sparsity Assessment
In Fig.7, we measure the relative output size (i.e. the relative degree of sparsity) between PAR-
CUBE and Tensor Toolbox non-negative PARAFAC. As before, we carried out 50 iterations of the
experiment and report mean values. The output size is simply defined as NNZ(A) +NNZ(B) +
NNZ(C), which clearly reflects the degree of sparsity in the decomposition factors. We observe
that PARCUBE yields 90% sparser results than plain PARAFAC, while maintaining the same ap-
proximation error. This empirically shows that sparsity introduced by sampling in PARCUBE, albeit
unconventional, produces meaningful representations of the data.

In Fig. 8 we measure the relative output size between PARCUBE and PARAFAC SLF, as a function
of the sampling factor s, for different values of the sparsifying parameter λ used by PARAFAC SLF
[Papalexakis and Sidiropoulos 2011; Papalexakis et al. 2013] 3. This further provides evidence on
the validity of the sparsity introduced by PARCUBE.

4.3. Parallelizability
As we discuss earlier, PARCUBE is inherently a parallel algorithm. Here we investigate the speedup
gained through parallelism, as a function of the data size (measured in number of non-zeros) and
the number of cores/parallel workers. We set the number of repetitions r to be equal to the number
of parallel workers.

2Download PARCUBE at www.cs.cmu.edu/∼epapalex/src/parCube.zip
3Code is available at http://www.cs.cmu.edu/∼epapalex/src/PARAFAC SLF.zip
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Fig. 5. PARCUBE is faster than ALS-PARAFAC: Speedup vs Relative cost (PARCUBE/ ALS-PARAFAC) for 1 repetition, for
varying sampling factor and different degrees of sparsity. We observe that even for a relatively high sampling factor, we get
relatively good relative cost, which may be further improved using repetition. Key here is that by using repetition, because
this procedure may be carried out in parallel, we may improve the accuracy and maintain similar speedup.
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Fig. 6. PARCUBE reduces the PARAFAC approximation cost: (a) Approximation cost vs number of repetitions for varying
s, where r = 2s (b) Approximation cost vs number of repetitions for varying F and fixed s = 5. In both cases, the
approximation improves as r increases, as expected

Figure 9 shows our results: Subfigure 9(a) contains the speedup for different number of parallel
workers, as the number of non-zeros increases. We observe that when as the number of non-zeros
increases, the speedup due to parallelizability becomes more pronounced; intuitively, this result
makes sense, since the more dense the original data is, the more dense the samples will be, and
therefore, the longer it takes for the PARAFAC decomposition to be computed for each sample. For
this particular test case, we observe a monotonic increase of the speedup as the number of non-zeros
increases.

Subfigure 9(b) shows the speedup as a function of the parallel workers for a fixed number of non-
zeros (the largest one we used for this particular experiment). Here we observe near linear speedup,
indicating that the overhead induced by the serial part of the parallel version of PARCUBE is not
a bottleneck, and therefore the parallel version of PARCUBE scales very well, especially for large
input data.

4.4. Scalability in terms of data & parameter size
In addition to measuring PARCUBE’s performance with respect to speeding up a state of the art
solver for PARAFAC, we also measure PARCUBE’s ability to scale in three axes:

(1) Input data size (measured in number of non-zeros): In Fig. 10, we see how PARCUBE scales as
the number of non-zeros grows. We have r = 4 repetitions, and equal number of cores, I = J =
K = 107, and the sampling factor is 104, essentially resulting in the parallel decomposition of
4 103 × 103 × 103 tensors. We can see that PARCUBE scales near-linearly with the number of
non-zeros.
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Fig. 7. PARCUBE outputs sparse factors: Relative Output size (PARCUBE/ ALS-PARAFAC) vs Relative cost. We see that
the results of PARCUBE are more than 90% sparser than the ones from Tensor Toolbox, while maintaining the same approx-
imation error.
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Fig. 8. PARCUBE outputs sparse factors: Relative Output size (PARCUBE/ PARAFAC SLF) vs sampling factor s (where
no. of repetitions is r = 2s.

(2) Input dimensionality (measured in the mode sizes of the tensor): In Fig. 11, we test how can
PARCUBE scale as the dimensions of the tensor grow. In order to keep other things constant,
we keep the number of non-zeros equal to 106; as I = J = K grow, this results in increasingly
sparser tensors, which from a data analysis point of view might not offer useful information.
However, from the viewpoint of testing PARCUBE’s scalability, this experiment provides an
insight on how PARCUBE behaves on very high dimensional tensors. Indeed, PARCUBE scales
near-linearly as the dimensionality of the tensor grows.

(3) Decomposition rank: Fig. 12 demonstrates how PARCUBE scales as the rank of the decompo-
sition increases. In scenarios where the tensor dimensions are in the orders of 107 (as in Fig. 12)
it is reasonable to seek a decomposition of rank larger than, say, 10 or 20. As the Figure shows,
PARCUBE is able to handle the growth of the rank without experiencing a significant increase
in the execution time, thus being scalable in the decomposition rank.

We ran the above experiments 5 independent times, and as the error-bars indicate, the variability of
the results is minimal, thus PARCUBE is consistent in terms of scalability.

4.5. Accuracy as a function of tensor density
Here, we experimentally demonstrate that PARCUBE’s performance is consistent for tensors of vary-
ing density. In particular, we created a series of randomly generated 102 × 102 × 102 tensors, with
varying number of non-zeros, ranging from fully dense (i.e. 106 non-zeros), to 0.99 percent sparse
(104 non-zeros). In order to estimate the stability of our results, we ran 50 independent iterations
of this experiment, for all different tensors. In Figure 13 we present the results of this experiment
(where F = 3, the sampling factor is s = 2 and the number of repetitions were r = 10). We ob-
serve that the relative cost remains very close to 1 for all different densities that we examined, and
the results seem to be very consistent, as indicated by the small error-bars around each point of the
figure. Therefore, PARCUBE is able to perform well in a wide range of scenarios, from fully dense
tensors, to very sparse ones, as well as for tensors within that spectrum.

4.6. Comparison against TUCKER3 compression
As we highlighted in Section 2.2, an alternative approach of reducing the size of the tensor into a
smaller, compressed version is via the TUCKER3 decomposition. We compare against the method
introduced in [Bro et al. 1999], where the tensor is first compressed using TUCKER3, PARAFAC is
fitted in the compressed data and the factor matrices of the TUCKER3 model are used to decompress
the results. In order to compute the TUCKER3 decomposition, we use the highly optimized Memory
Efficient Tucker (MET) algorithm [Kolda and Sun 2008], included in the Tensor Toolbox for Matlab
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Fig. 9. Serial vs. Parallel PARCUBE

In order to ensure a fair comparison, we chose the parameters of both algorithms so that we have
the same size for the reduced-size tensor(s). More specifically, we choose s = 100 for PARCUBE,
and P = Q = R = 100 for TUCKER3, while the original tensor is of dimensions 104 × 104 × 104.

Figure 14 clearly shows that PARCUBE is orders of magnitude faster than TUCKER3 compres-
sion. The reason why this behavior is observed is because computing the TUCKER3 decomposition
on the full data entails a similar Alternating Least Squares algorithm such as the one used for
PARAFAC; therefore, it suffers from similar issues, becoming the bottleneck, even when using a
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highly optimized algorithm such as MET. On the other hand, the sampling step of PARCUBE is,
in practice, much faster than computing the TUCKER3 decomposition on the full data, and thus
PARCUBE ends up being significantly faster.

4.7. PARCUBE at work
In this section we present interesting patterns and anomalies, that we were able to discover in the
datasets of Table II, demonstrating that our proposed algorithm PARCUBE is both practical and
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effective for data mining practitioners. So far, we don’t have an automated method for the selection
of parameters s, r, and p, but we leave this for future work; the choice is now made empirically.

4.7.1. ENRON. This very well known dataset contains records for 44 months (between 1998 and
2002) of the number of emails exchanged between the 186 employees of the company, forming
a 186 × 186 × 44 of 9838 non-zero entries. We executed Algorithm 3 using s = 2 and r = 4
and we applied similar analysis to the resulting factors as the one applied in [Bader et al. 2006;
Papalexakis and Sidiropoulos 2011]. In Figure 15 we illustrate the temporal evolution of the 4
most prevailing groups in our analysis for every month, having annotated the figure with important
events, corresponding to peaks in the communication activity. Labelling of the groups was done
manually; because the factors were not very sparse we filtered out very low values on each factor.
This issue most certainly stems from the fact that this dataset is not particularly large and therefore
by applying the regular ALS-PARAFAC algorithm to the samples (which is known to yield dense

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:19

2 4 6 8 10
10

1

10
2

10
3

10
4

Rank F

T
im

e
 (

s
e

c
)

ParCube vs. Tucker3 Compression, 

NNZ(X)=10
6
, I=J=K=10

4

 

 

Parallel ParCube, r=4, s=100

Tucker3 Compression, P=Q=R=100
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factors), we end up with dense sample factors, which eventually, due to repetition, tend to cover
most of the data points. This, however, was not the case for larger datasets analyzed in the following
lines, for which the factors turned out to be extremely sparse.
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Fig. 15. Temporal evolution of 4 groups in the ENRON dataset. We have labelled the groups, according to the position of
the participants in the company. The labels of the extracted groups are consistent with other works in the literature albeit they
have been extracted with somewhat different order. We have also discovered 2 Legal groups that behave slightly differently
over time, a fact probably stemming from the different people involved in each group.

4.7.2. LBNL Network Traffic. This dataset consists of (source, destination, port #) triplets, where
each value of the corresponding tensor is the number of packets sent. The snapshot of the dataset we
used, formed a 65170×65170×65327 tensor of 27269 non-zeros. We ran Algorithm 3 using s = 5
and r = 10 and we were able to identify what appears to be a port-scanning attack: The component
shown in Fig. 16 contains only one source address (addr. 29571), contacting one destination address
(addr. 30483) using a wide range of near-consecutive ports (while sending the same amount of
packets to each port), a behaviour which should certainly raise a flag to the network administrator,
indicating a possible port-scanning attack.
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Fig. 16. Anomaly on the LBNL data: We have one source address (addr. 29571), contacting one destination address (addr.
30483) using a wide range of near-consecutive ports, possibly indicating a port scanning attack.

4.7.3. FACEBOOK Wall posts. This dataset 4 first appeared in [Viswanath et al. 2009]; the specific
part of the dataset we used consists of triplets of the form (Wall owner, Poster, day), where the Poster
created a post on the Wall owner’s Wall on the specified timestamp. By choosing daily granularity,
we formed a 63891×63890×1847 tensor, comprised of 737778 non-zero entries; subsequently, we
ran Algorithm 3 using s = 100 and r = 10. In Figure 17 we present our most surprising findings:
On the left subfigure, we demonstrate what appears to be the Wall owner’s birthday, since many
posters posted on a single day on this person’s Wall; this event may well be characterized as an
“anomaly”. On the right subfigure, we demonstrate what “normal” FACEBOOK activity looks like.

4.7.4. NELL. This dataset consists of triplets of the form (noun-phrase, noun-phrase, context).
which form a tensor with assorted modes of size 14545 × 14545 × 28818 and 76879419 non-
zeros, and as values the number of occurrences of each triplet. The context phrase may be just
a verb or a whole sentence. The PARAFAC decomposition is able to give us latent concepts of
noun-phrases that are contextually similar. We used PARCUBE to compute a F = 50 component
PARAFAC decomposition of this dataset. The sampling factor was set to s = 50 and the number of
repetitions r = 20, and we used 12 workers. Since this dataset is significantly larger than the other
three we analyzed, it is worth mentioning that the total running time was 86 minutes. The factors
produced were very sparse, with their relative sparsity being:

NNZ(A) +NNZ(B) +NNZ(C)

IF + JF +KF
= 0.2

We were not able to compute the exact PARAFAC decomposition on a single machine, and thus,
we estimate the number of non-zeros of a fully dense matrix A as IF (and accordingly for the
remaining factors).

After computing the PARAFAC decomposition we computed the noun-phrase similarity matrix
AAT +BBT and out of that, we were able to discover contextual synonyms to noun-phrases, that
we report on Table III; the relationship between the words in that table can be viewed as being
contextually similar. Additionally, in Table IV, we show 10 out of the 50 components that we ex-
tracted (in particular, we show the top-3 noun-phrases and context terms). Each row of the Table
corresponds to a single concept, and the way to interpret it is the following: The first column shows
the top-3 noun-phrases in the first position, the second column contains the second noun-phrase,

4Download FACEBOOK at http://socialnetworks.mpi-sws.org/data-wosn2009.html
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Fig. 17. Results for FACEBOOK using s = 100, r = 10, F = 15. Subfigure (a): FACEBOOK “anomaly”: One Wall, many
posters and only one day. This possibly indicates the birthday of the Wall owner. Subfigure(b): FACEBOOK “normal” activity:
Many users post on many users’ Walls, having a continuous daily activity

and the third column contains the context phrase that connects these two noun-phrases. We observe
that the concepts extracted are coherent and meaningful.

Table III. NELL: Potential synonym discovery

Noun-phrase Potential Contextual Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students
company community, life, family
groups people, companies, men
life experience, day, home
data information, life, business
people members, companies, children
countries people, areas, companies
details part, information, end
clients people, children, customers
ability order, life, opportunity
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Table IV. NELL: Concepts of noun-phrases and context words

Noun-phrase 1 (np1) Noun-phrase 2 (np2) Context between np1 & np2
day, time, events year, month, week np1 throughout np2, np1 during np2, np1 last np2
information, data, details site, program, research np2 and contact np1, np1 on our np2, np1 provided by np2
information, services, data use, value, variety np1 through np2, np2 of their np1, p1 to make np2
family, friend, company support, home, one np2 of my np1, np2 of their np1, np2 of her np1
areas, countries, communities services, work, people np2 in various np1, np2 within np1, np1 such as np2
knowledge, development, needs students, members, users np1 of our np2, np1 of their np2, np1 of his np2
business, internet, data information, system, services np1 management np2, np1 software np2, np2 including np1
access, changes, information services, site, students np1 to our np2, np1 to my np2, np1 through np2
customers, clients, members quality, value, success np2 of their np1, np2 of our np1, np2 of my np1
community, country, company information, services, issue np2 within np1, np2 in our np1, np2 across np1

5. RELATED WORK
5.1. Tensor applications
Tensors and tensor decompositions have gained increasing popularity in the last few years, in the
data mining community [Kolda and Bader 2009]. The list of tensor applications in data mining is
long, however we single out a few that we deemed representative: In [Kolda and Bader 2006], the
authors extend the well known link analysis algorithm HITS, incorporating textual/topical informa-
tion. In [Bader et al. 2006] and [Bader et al. 2008] the authors use tensors for social network analysis
on the ENRON dataset. In [Sun et al. 2009], the authors propose a sampling-based TUCKER3 decom-
position in order to perform content based network analysis and visualization. The list continues,
including applications such as Cross-language Information Retrieval [Chew et al. 2007], Anomaly
Detection [Maruhashi et al. 2011], Brain Signal Analysis and detection of Epilepsy[Acar et al.
2007], Machine Vision [Vasilescu and Terzopoulos 2002], Web Search[Sun et al. 2005], and Bioin-
formatics [Li and Ngom 2011], to name a few. Apart from Data Mining, tensors have been and are
still being applied in a multitude of fields such as Chemometrics [Bro 1997] and Signal Processing
[Sidiropoulos et al. 2000].

5.2. State of the art toolboxes
The standard framework for working with tensors is Matlab; there exist two toolboxes, both of very
high quality: The Tensor Toolbox for Matlab[Bader and Kolda 2007b; Bader and Kolda 2007a]
(specializing in sparse tensors) and the N-Way Toolbox for Matlab [Andersson and Bro 2000] (spe-
cializing in dense tensors).

5.3. Fast and scalable tensor decompositions
The authors of [Bro et al. 1999] introduce an algorithm that compresses the tensor using TUCKER3,
and decomposes the core tensor, which is significantly smaller. In [Phan and Cichocki 2009;
Huy Phan and Cichocki 2011], the authors propose a partition-and-merge scheme for the PARAFAC
decomposition which, however, does not offer factor sparsity. In [Papalexakis and Sidiropoulos
2011], the authors introduce a PARAFAC decomposition with latent factor sparsity. In [Nion and
Sidiropoulos 2009] and [Sun et al. 2006] we find two interesting approaches, where a tensor is
viewed as a stream and the challenge is to track the decomposition. In terms of parallel algorithms,
[Zhang et al. 2009] introduces a parallel Non-negative Tensor Factorization. In [Tsourakakis 2009;
Sun et al. 2009] the authors propose randomized, sampling based TUCKER3 decompositions. In
[Kang et al. 2012], the authors introduce a highly scalable Alternating Least Squares implementa-
tion of PARAFAC for Hadoop, whereas in [Beutel et al. 2014], the authors provide a versatile and
highly scalable Distributed Stochastic Gradient Descent Hadoop implementation which, among oth-
ers, is able to perform PARAFAC decomposition. In [Kim and Candan 2011] and [Kim and Candan
2012] the authors introduce a very interesting, alternative viewpoint of scaling up tensor decompo-
sitions, employing relational algebra. The authors of [De Almeida et al. 2014] provide an alternative
framework of parallelizing tensor decompositions, based on partitioning the problem and distribut-
ing the computation using a multi-layer graph in order to represent the machines that operate on the
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problem. In [Papalexakis et al. 2014], the authors build upon the present method in order to speed up
the related problem of Coupled Matrix-Tensor Factorization, achieving a speedup factor of 200. In
[Sidiropoulos et al. 2014a; Sidiropoulos et al. 2014b], following a similar approach of reducing the
dimensions of the tensor and decomposing smaller instances of the problem in parallel, the authors
introduce an algorithm that uses random projections and they provide identifiability guarantees.

6. CONCLUSION
In this work we have introduced PARCUBE, a novel, fast, parallelizable tensor decomposition which
produces sparse factors by construction. Furthermore, it enables processing of large tensors that
may not fit in memory. We provide theoretical results that indicate correctness of our algorithm;
one of our core contributions pertains to the correct merging of the individual samples. We have
demonstrated its merits with respect to sparsity and speedup, compared to the current state of the art,
through extensive experimentation. Moreover, we provide a highly scalable parallel implementation
(which is publicly available) that scales for very large tensors. Finally, we highlight the practicality
of PARCUBE by analyzing four different real datasets, discovering patterns and anomalies.
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