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Abstract

Deep neural networks have gained enormous popularity in machine learning and
data science alike, and rightfully so, since they have demonstrated impeccable
performance in a variety of supervised learning tasks, especially a number of
computer vision problems. Albeit very successful in providing accurate clas-
sifications, deep neural networks are notorious for being hard to interpret, explain,
and debug, a problem amplified by their increasing complexity. This is an ex-
tremely challenging problem and the jury is still out on whether it can be solved
in its entirety. Here, we propose a novel factorization framework, aiming to an-
swer the following questions: Given an already trained deep neural network, and
a set of test inputs, how can we gain insight into how those inputs interact with
different layers of the neural network? Furthermore, can we characterize a given
deep neural network based on its observed behavior on different inputs? The
proposed approach will give a more flexible yet still interpetable mechanism for
understanding and interacting with deep networks.

1 Overview of Proposed Method & Key Results

The key idea behind our proposal, shown in Figure 1, is the following: we jointly factorize the raw
inputs to the deep neural network and the outputs of each layer, to the same low-dimensional space.
Intuitively, such a factorization will seek to identify commonalities in different parts of the raw input
and how those are reflected and processed within the network. For instance, if we are dealing with
a Deep CNN that is classifying handwritten digits, such a joint latent factor will seek to identify
different shapes or patterns that are common in a variety of input classes and identify correlations
on how different layers behave collectively for such high-level latent patterns.

Here, we present a proof-of-concept approach. Suppose we have an already trained deep CNN and
we have a separate hold-out validation set. If we feed this validation set to the network, we express
a coupled factorization of the raw validation inputs and the intermediate outputs of the activation
layers as shown in Figure 1.

J(P,F,O) =

C−1∑
i=0

‖Di −PiF
T ‖2F +

L−1∑
j=0

‖Aj −OjF
T ‖2F , (1)

where C is the number of channels in an input image and L is the number of layers of the neural
network being analyzed, P and O are sets of factor matrices . Each Di is the set of ith channel
of the input images to the neural network, where each column of Di is a channel of the image in
vectorized form, thus each row of Di is a pixel or location in the original image. Each Aj is the
matrix of activations of the j-th layer of the neural network, where each column of Aj , for instance,
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Figure 1: Overview of our approach.

the k-th column Aj(:, k), is the activation of layer j of the network for k-th input image, i-th channel
of which is represented by Di(:, k). Each Pi is a matrix that stores the latent representation of each
pixel (for the i-th channel) in its rows, each Oj is a matrix that stores the latent representation
of each neuron (or activation) of layer j in its rows. Finally, F is a matrix that stores the latent
representation of each image fed to the neural network in it’s rows. In our on-going work, we are
experimenting with formulating the above coupled factorization as an instance of the PARAFAC2
tensor factorization [2], which is tailored to irregular tensors, where one of the modes is not of
consistent size, and preliminary results agree with the ones obtained with model 1.

Key Insight: We expect the rank of the factorization to correlate with the complexity of the
relationship learned by the network. Trivially, a linear relationship can be adequately described
by a rank-one factorization; the more complex it gets, the more latent factors are required.

1.1 Deep Network Characterization

We used the MNIST dataset modified to a resolution of 28 by 28 pixels, and we analyze a simple
network consisting of 2 consecutive Convolutional Layers with Maxpool and ReLU, followed by
a fully connected layer which feeds to a softmax output. As a thought experiment, since one of
our interests is to debug a poorly trained network, we did exactly that: we conduct the following
experiment: we train a CNN poorly in two different ways: 1) train on a subset of the training data,
and 2) train on a subset of the classes. Figures 2(a) and 2(b) show the RMSE of our objective
function for different ranks. We make the following intriguing observation: Better trained networks
tend to have a coupled factorization of higher rank than poorly trained ones. Furthermore, this is
derived without using test labels, but merely using raw inputs and activation outputs. In our on-
going work we have observed consistent results in different models (AlexNet, VGG, ResNet, and
DenseNet) and for the CIFAR-10 dataset.

Figure 2(c) demonstrates such an experiment where the RMSE of our unsupervised model captures
the same pattern as the loss function, which is evaluated on labeled data, and this can be used inform
early stopping or changing the learning rate during training, and predict when the network starts to
overfit.

1.2 Deep Network Visualization

The proposed coupled factorization is relating raw inputs and their transformations throughout the
network. Such factorization models have been shown to produce interpretable representations [4],
thus, we aim to investigate the explanatory power of our proposed model with respect to the complex
relationships that the deep network has learned. In Figure 3, we visualize the latent factors learnt by
our coupled factorization (both for the inputs as well as the hidden layers), on a problematic scenario
where the network has been only trained on the digit ‘9’; in this case, our visualization clearly shows
that the network is heavily underutilized and it mostly responds to high-level concepts that resemble
‘9’ or different parts thereof.
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(a) Trained on subset of the classes
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Figure 4: WCALS on VGG11. LR changes at Epochs 100 and 200
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Figure 2: Deep Network Characterization: (a,b): The worse the performance, the lower the rank of the
factorization; (c): RMSE of our model captures the same trend as the test loss and can be used to inform early
stopping or learning rate changes. Both patterns are obtained without using labels

Figure 3: Deep Network Visualization

2 Related Work

“Network Dissection” quantifies the interpretability of activations of hidden layers of CNNs by eval-
uating the alignment between neural activations in the hidden units and a set of semantic concepts.
Olah, et al. [5] focus on learning what each neuron or a group of neurons detect based on feature vi-
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sualization. Subsequently, Raghu et al. [6] introduced a Canonical Correlation Analysis based study
that jointly analyzes the hidden layers of a CNN, however, this analysis is not relating the derived
representations of CCA to the input data, thus may not be able to provide an end-to-end characteri-
zation and visualization. Sedghi et al. [7] analyze the singular values of the convolutional layers of
a CNN towards better regularization and quality improvement. Sundarajan et al. [8] is proposing a
framework for attributing the influence of certain features to a classification outcomes by providing
a set of intuitive axioms that the framework should obey, while, Kim et al. [3] probe the network
with a set of desired inputs and a user-defined concept, and measures the sensitivity of the network
to this concept. Our work seeks to automatically determine such concepts, however, both works can
be seen as complementary. Finally, Cohen et al. [1] theoretically analyze the coefficients of shallow
and deep networks and draw parallels between different tensor factorizations using the notion of the
rank as the expressive power of the network; this line of work, combined with the proposed work
(where we analyze the representations learned rather than the network coefficeints) can shed further
light in understanding and characterizing deep networks.

3 Conclusions

In this paper we present an on-going line of research that is casting the behavior of deep networks
(CNNs in particular) under the same analytical lens that has been used in a variety of data science
tasks [4], aiming to characterize and understand how and what such networks learn. Understanding
of this process can, subsequently, spark new ideas for theoretical research in the foundations of deep
learning.
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