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Abstract—Given the set of social interactions of a user, how can
we detect changes in interaction patterns over time? While most
previous work has focused on studying network-wide properties
and spotting outlier users, the dynamics of individual user
interactions remain largely unexplored. This work sets out to
explore those dynamics in a way that is minimally invasive
to privacy, thus, avoids to rely on the textual content of user
posts—except for validation. Our contributions are two-fold.
First, in contrast to previous studies, we challenge the use of
a fixed interval of observation. We introduce and empirically
validate the “Temporal Asymmetry Hypothesis”, which states
that appropriate observation intervals should vary both among
users and over time for the same user. We validate this hypothesis
using eight different datasets, including email, messaging, and
social networks data. Second, we propose iNET, a comprehensive
analytic and visualization framework which provides personal-
ized insights into user behavior and operates in a streaming
fashion. iNET learns personalized baseline behaviors of users and
uses them to identify events that signify changes in user behavior.
We evaluate the effectiveness of iNET by analyzing more than
half a million interactions from Facebook users. Labeling of the
identified changes in user behavior showed that iNET is able to
capture a wide spectrum of exogenous and endogenous events,
while the baselines are less diverse in nature and capture only
66% of that spectrum. Furthermore, iNET exhibited the highest
precision (95%) compared to all competing approaches.

I. INTRODUCTION

User behavior modeling in social networks mostly focuses
on the network-wide properties of the group behavior within a
fixed time interval and aims at spotting users who are outliers
[1], [2]. Some studies have focused on identifying network-
wide or other static properties of users, such as graph patterns
in the friendship graph [3], [4]. However, there is also need
to focus on individual users who may deviate from their
usual patterns of behaviors in social media. Few studies have
used social media to identify postpartum depression in new
mothers [5] or how quitting an addictive habit (e.g., smoking)
is reflected on the social media behavior [6]. We discuss
previous work in more detail in Section VI.

In this paper, we focus on the automatic and personalized
identification of transitions in online user behaviors without
accessing textual information and when the information arrives
in a streaming fashion. The identified changes in social media
behavior may point to real events and changes, some of
which can benefit from intervention. Although exploring the
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Fig. 1. iNET detects variable-duration periods of activity that deviates from
the expected, across multiple streaming features of the user interaction (show-
ing for Left: top: weighted in-degree, middle: self posts, bottom: keywords).
In this particular example, the time period where the user’s behavior deviates
from the expected pattern appears to be related to a product release or
announcement by Apple. Right: Empirical validation of Temporal Asymmetry
Hypothesis that states - different users have different time granularity and it
varies over time.

correlation between online user behavior and real life events
is an important next step, it is beyond the scope of this paper.

So far, most research involving time-evolving graphs con-
sider fixed intervals of observation (e.g., a day or week) when
they build the user interaction graphs. However, selecting the
right interval of observation is challenging since different
intervals may lead to different inferences from the data, ob-
servations and interventions. Instead, we propose a streaming
method to detect changes in the online behaviors of the users
with a user-centric approach.

Our work makes two main contributions. First, we challenge
the widely adopted fixed interval of observation in favor of a
variable interval of observation. An obvious challenge is how
to adaptively determine these intervals. Second, we develop
iNET, an analytic framework, to detect and visualize changes
in online behaviors of individual users without using their text
based interactions.

We use eight different real datasets to validate our ideas and
techniques. These datasets include social media, email, and
online forums and span multiple years of observation and up
to more than a million interactions. We describe our datasets



in more detail in section II.
For illustration purposes, in Figure 1 we show an indicative

result from using iNET on our Facebook dataset: The depicted
user exhibits one window that deviates from the expected
behavior (highlighted in blue) which, after further investigation
for validation purposes, appears to be related to a new product
release or announcement by Apple.

Our work can be summarized in the following points.
• Temporal Asymmetry Hypothesis: We introduce and

empirically validate two hypotheses which state that the
appropriate observation interval should vary among users
and over time for the same user. This is a fundamental
observation that forms the basis for the remainder of our
work.

• Mining & Visualization Framework: We propose iNET,
an algorithm that operates on streams of user interactions
and detects periods of time for which there was an
unusual deviation in user’s nature of interaction. iNET in-
troduces a systematic way to identify variable intervals of
observation in an personalized and adaptive way. We also
present a comprehensive visual summary of the user’s
timeline, highlighting the periods of interest, enabling an
analyst to investigate the causes of the behavior further.

• Representation Learning: iNET learns a representation
of a user’s social behavior over time by passing the
limitations of the Temporal Asymmetry Hypothesis, since
it uses variable length intervals of observation.

• Case Study: We evaluate the effectiveness of iNET by
analyzing data from Facebook users. Our method was
able to capture 100% of relevant categories, whereas
baselines ranged between 22% to 66%. Furthermore,
iNET exhibited the highest precision (95%) compared to
all baselines.

Our work in perspective. We view our work as first step
towards fully exploring the amount and type of information
that can be extracted from the online social footprint of a
person. We see two next steps: (a) identifying the minimum in-
formation needed to detect behavioral change, and (b) mapping
online behavioral changes to real-life changes of the user. The
first step is our effort to collect only the information needed,
while the second step could have significant societal impact
in detecting depression, manic episodes, suicidal tendencies,
and cyber-bullying.

In the remainder of this paper, we first discuss the problem
definition, the motivation and reasoning behind our work in
more detail. Then, we describe the iNET algorithmic frame-
work, our experiments and results. Finally, we present some
related work and our conclusions.

II. PROBLEM DEFINITION AND DATASETS

We first present some terms and definitions and describe the
datasets that we will use in our work.

Problem 1: Given a stream of interactions for a set of users,
identify periods of time for which there was an significant
deviation in a user’s nature of interaction from the expected
behavior.

We represent the time-evolving interactions between users
with “dynamic interaction networks”, i.e., a time series of
graphs, each of which represents a graph snapshot: an ag-
gregation of streaming interactions over a time interval of
observation.

Graph snapshot at interval T . Given a time interval T ,
we represent the user interactions during T with a weighted
directed graph GT (VT , ET ). The edge direction indicates the
“sender-receiver” flow of the interaction. The weight of an
edge encodes the number of interactions between the nodes.
Given the streaming setup of our problem, the interactions
arrive at different times, and an edge is considered if it happens
during the interval T . Similarly, a node is included in GT , if
it participates in an interaction during that interval.

As we mentioned earlier, identifying the right interval of
observation is a challenge and we discuss it below.

User centric monitoring. Here, we are interested in un-
derstanding personalized interaction networks of users. As a
result, we can create user-centric graphs (often called ego-
nets), which are star graphs with the user of interest in its
center (hub).

Example: For illustration purposes, we use a Facebook user
interaction network. Every Facebook user has a wall, which
can essentially be described as the user’s space. The wall
captures all the ideas and thoughts shared by the user, and
the user’s friends interact through likes, comments and posts
on user’s wall. These interactions are time-labeled and directed
and we consider them as incoming interactions since they are
directed to the user. If the user authors a post on their own
wall, we call this a self post. Given a start time and an end
time, we can get a count of the number of self posts on a
user’s wall in that period.

Our datasets. We describe the 8 datasets that we use
in our work. Each dataset is a collection of users and the
temporal interactions between them at a given timestamp. We
consider all edges that involve a user’s participation to create
the interaction network of the user.

• Facebook1 (FB1) and Facebook2 (FB2), D2y: We con-
sider all interactions (e.g., comments, likes and wall-to-
wall posts between a user and user’s friends) on Facebook
occurring between user and user’s friends. FB1 and FB2
are of four-month periods in 2011 and 2012, respectively.
The duration of D2y is 18.5 months between April 2012
and October 2013.

• Enron: This is an email interaction network of users [7]
in an organization.

• FB MPI: This is an activity network of Facebook users
writing on each others walls in 2009.

• Digg: This is the reply network of the social news website
Digg. Each node is a user of the website, and each
directed edge denotes that a user replied to another user.

• Slashdot: This is the reply network of technology website
Slashdot. Nodes are users and edges are replies. The
edges are directed and start from the responding user.
Edges are annotated with the timestamp of the reply.



• UC Irvine messages: This directed network contains sent
messages between the users of an online community of
students from the University of California, Irvine. A node
represents a user, and a directed edge corresponds to a
sent message.

We accessed the FB MPI, Digg, Slashdot, and UC Irvine
messages network datasets from the Koblenz network dataset
repository [8]. The data in FB1, FB2, and D2y datasets was
collected between 2011 and 2013 via a Facebook third-party
application.

III. THE TEMPORAL ASYMMETRY HYPOTHESIS

The overarching goal of this paper is to observe change-
points in a user’s behavior. Given the variability in a user’s
behavior, we hypothesize that every user’s temporal behavior
needs to be observed at a different time granularity, and further
this granularity varies over time.

Several previous works used fixed-length intervals to ana-
lyze temporal data. Researchers in [9] analyzed the evolution
of Facebook activity network by partitioning interactions be-
tween users into per day and per month intervals. To spot
anomalies in network traffic measurements, [10] aggregated
the data into 1-minute intervals. [11] used moving windows
of size 7 days to detect deviations in user behavior in a
large mobile phone network. Admittedly, some of our own
previous works have used intervals of fixed lengths to analyze
temporal data [2]. The amount of structure one requires in
a network depends on what one intends to do with that
network. Finding change in nature of interactions in a user’s
behavior requires developing an insight into the underlying
structure of interactions in time. Since every user is unique in
terms of temporal behavior, each user’s interaction data stream
has different rates. Aggregation lengths are often somewhat
arbitrary, usually of a fixed-length in time, chosen based on
intuition, convenience, or convention.

The limitations of fixed observations intervals. Choosing
network aggregation intervals based on intuition has three
short-comings. First, if the interval is too short, meaningful
connections in time might be lost and the graph may lack
sufficient structure for analysis. Second, if the interval is too
long, we might remove the fine-grained changes critical to
understanding temporal changes in user’s behavior. Third, if
the user’s interaction exhibit a variable rates, fixed-length
intervals will only be appropriate for part of the time of
the experiment. In addition, if we analyze interactions over
the entire duration of the dataset, we remove a lot of noise,
smoothing out considerable amount of temporal information
useful towards understanding the evolving nature of the user.

We hypothesize that fixed-length intervals do not provide
enough support towards understanding time-evolving behavior
of users.

Hypothesis 1: The appropriate time granularity of obser-
vation is dependent on the streaming rate of user interactions
and varies from user to user.

To examine the validity of hypothesis 1, we conducted
experiments using eight longitudinal network datasets from

a variety of domains. Each dataset consists of a set of
users and timestamped interactions between them. Researchers
have proposed frameworks [12], [13] to identify appropriate
aggregation lengths in temporal streams. However powerful
[12] is, it requires the entire set of interactions up front and,
thus, we cannot use it in a streaming fashion.

[14] introduce ADAGE, which takes as input streaming
graph edges of user interactions and partitions a user’s timeline
into disjoint, variable-length intervals. It uses a network mea-
sure as part of its stopping criterion to detect the convergence
of timeline into intervals. When we are dealing with a global
graph (as in the case of [14]), there is a wide variety of network
measures that we can employ in order to measure stability.
However, in our case of a personalized interaction network,
the graph we observe is essentially a star graph (i.e., the user
of interest node is in the center and there are incoming and
outgoing edges to and from that node). In this case, the number
of possible metrics that we can use is heavily reduced by the
type of graph we observe, and in fact, one of the most sensible
and intuitive choices is the weighted degree, which captures
the density of interaction. In most of the cases we studied,
we only observed incoming interaction, and thus, we use the
weighted in-degree as our metric of choice throughout the case
study of this paper.

Formally, the problem that we would like to solve in order to
identify the windows of observation per user is the following:

Problem 2 (Constructing graphs from streaming interactions):
Given a stream of time-labeled edges for user interactions
construct a snapshot of the graph for which a particular metric
of the graph is stable.

There are two main aspects to Problem 2: Firstly, the
temporal edges occur in a streaming fashion. Secondly, there
is need to determine when a set of aggregated edges converges
into a stable graph. Fortunately, [14] has equipped us with a
methodology for handling the above two aspects and solving
Problem 2.

Using ADAGE, we computed the appropriate intervals of
individual users for the above datasets. Figure 2 presents the
median of interval sizes for all users in a dataset computed
based on the interaction streams of each user. The diversity
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Fig. 2. Median of interval lengths of all users in the datasets measured in
terms of weighted in-degree. High variability indicates asymmetry in temporal
behavior of users.
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Fig. 3. Variable-length intervals calculated for ten random users in various
datasets. The distribution of quartiles indicates the high variability in the
granularity of intervals within the users. The mere fact of this variability
demonstrates Hypothesis 2.

in median values demonstrates that every user needs to be
observed at a different time granularity, hence indicating that
Hypothesis 1 is true. We hypothesize that even within an
individual user, her behavior changes in time:

Hypothesis 2: The appropriate granularity of observation for
a user varies over time.

Figure 3 illustrates the distribution of variable-length inter-
vals for ten random users in the dataset. This implies that the
rate of change of a user’s timeline varies over time. Hence,
to understand emergence of behavior in individual users,
variable-length intervals are required. In the next Section,
we present our proposed method, which takes into account
Temporal Asymmetry Hypothesis, learns a personalized rep-
resentation for each user and conducts anomaly detection on
that representation.

IV. PROPOSED METHOD

As we saw in the previous section, our overarching goal
outlined by Problem 1 is to identify periods of time for
which there was a significant deviation of a user’s nature
of interaction from what is considered expected interaction
behavior. Before we proceed with the description of the inner
workings of our proposed method iNET, we introduce an
instance of the problem as a case study. This case study
will guide the method description. In order to do so, in the
following lines we define expected and outlying interaction
patterns for this particular instance of the problem.
Case Study: As we mention in the introduction, we focus
on interaction-based networks that support functionalities of
broadcasting a message to one’s peers and receiving inter-
actions from those peers. Following the Facebook example,
broadcasting is when a user posts on their own timeline,

whereas incoming interaction is anything that this user’s friend
posts either on their timeline or pertaining to a particular “self-
post”. For those types of networks that we study, we define
expected and outlying interaction patterns as follows:

Definition 1 (Expected Interaction Pattern): The number of
self-posts and the number of incoming interactions from the
user’s peers are correlated.

Definition 2 (Outlying Interaction Pattern): An interaction
pattern is defined as outlying if either (1) the number of self-
posts is much higher than the number of incoming interactions,
or, conversely, (2) the incoming interactions significantly out-
number the self-posts.

Outlying interactions, and changes in them, may indicate a
variety of events, ranging from life changes to psychological
disorders. Thus, being able to detect them early can be critical
for timely intervention (especially in the latter case). We
must note here that our definition of expected and outlying
interaction patterns defines the particular choices we make
in the metrics that iNET will use, however, as we stress
earlier, iNET is modular and one can easily define a different
“anomaly signature” and incorporate that to iNET.

A. Method Description

In the following lines we present iNET in detail, outlining
and justifying particular design choices on the way. An outline
of iNET is presented in Algorithm 1. iNET consists of the
following three steps. Within each step, we first provide a
general description that is agnostic to our particular case study,
and subsequently we adapt each step to our case study.

Step 1: Representation Learning. For each user, we learn
a personalized representation of their interaction patterns over
time. As we saw in the previous section, due to the Temporal
Asymmetry Hypothesis, one size for window of observation
does not fit all users, therefore, we treat each user individually
and we iteratively solve Problem 2 as in [14] in order to obtain
a set of windows of observation for that user. After we have
exhausted the entire stream of interactions for a particular user,
we end up with a set of (wi, fi) values where wi is the window
of observation and fi is the value of the network measure at
the end of that window. Note that we can run this step for each
user in parallel, or even interleave the representation learning
for different users as we observe the stream of edges for all
the users.
Case Study: The stability measure fi of our graph, in this
particular case, is the weighted in-degree. In order to be
able to detect anomalous changes in the nature of interaction,
according to Definitions 1 and 2, we also have to record the
number of self-posts or broadcasts for a given user at the end
of each window wi. This is a simple counter that we need to
keep track of in addition to the network measure fi and at the
end of each window, we have a triple of numbers (wi, fi, si).
The set of all those triples for a given user is the representation
that we learn. The number of those triples, and the the actual
values of each wi, as per the Temporal Asymmetry Hypothesis,
will vary among users and within a given user for different i.



Step 2: Outlier Detection. The personalized representation we
derive for each user ((wi, fi) in the simplest case) is essentially
a set of data points corresponding to every time window. Given
a definition of “expected” behavior, we thus can use outlier
detection algorithms such as Local Outlier Factor (LOF) [15]
that marks points as outliers in a non-parametric manner.

In order to improve LOF’s ability to identify mean-
ingful outliers, instead of processing each user’s set of
points/windows individually, we process all users jointly. The
rationale behind this choice is that LOF needs a large number
of data points that define the “typical” trend; since we define an
outlier the same way for each user, and the representation that
we learn maps every user into the same (incoming interactions,
self-posts) space, using the points from all users can improve
outlier detection via LOF (in fact, we observed that to be true
in early experimentation).

After identifying outlier windows, iNET outputs a set of
users that are associated with those windows (there may be
cases where more than one outlier windows correspond to a
particular user) and highlights the periods for which there was
an deviation from the expected behavior.
Case Study: At this step, we argue that the personalized
representation (wi, fi, si) we learn for each user is sufficient
for detecting windows of time where the interaction patterns
were outlying, according to Definition 2. The reason why
this is true is because our representation disassociates the
interaction from a physical temporal scale and attaches two
feature values (fi, i.e., the number of incoming interactions,
and si, the number of self-posts) to each window. These two
feature values are thus sufficient to help us detect windows of
activity that deviates from the expected pattern.

Furthermore, since our definition of “expected” and “out-
lying” is based on the ratio of the two features we measure
(since Definition 1 defines typical behavior the one for which
fi and si are essentially correlated across time), we may
treat each window wi for every user as a data point in the
two-dimensional space defined by fi and si and we detect
windows of outlying behavior by detecting outliers in this two-
dimensional space (i.e., data points / windows for which fi and
si are not correlated).

It is important to note that data points that correspond to
different windows wi are observed over widely different time-
scales (e.g., one day vs. two months). However, since we are
interested in whether fi and si are correlated or not, we are
effectively interested in their ratio which is a pure number
(i.e., it has no units) making joint analysis possible.
Step 3: Outlier Visualization. We present a visualization
framework as part of the iNET methodology to understand
and analyze outlier intervals that were identified via LOF. The
specifics of the visualization depend on our case study.
Case Study: For each outlier interval, we provide the word
cloud of user text in self posts; by inspection of the word cloud
we can identify emerging themes. We leave for future work the
incorporation of topic modeling algorithms [16], [17] to the
visualization component of iNET. Extracting topical words for
the word cloud provides the analyst with a quick overview of

user’s activity while protecting the privacy of the user. Coming
back to our Facebook example, we plot the weighted in-degree
value (i.e., the network measure of the stable graph in the
interval) and the count of self posts on the user’s timeline to
create a context around the outlier interval. An example of the
visualization framework is shown in Figure 1.

Algorithm 1: iNET Methodology for determining changes
in nature of interactions in a user’s timeline
Input: Stream of time labeled edges of user interactions

Number of outliers N
Output: Visualization of outlier intervals activity for top N

outliers
// Step 1

1: Solve Problem 2 for each user and calculate (wi, fi)
2: Calculate si for the user in each wi window. For

instance, in our case si is the number of self posts
// Step 2

3: Create Scatter plot where each point corresponds to a
window wi and the two dimensions are si and fi. This
includes points for all users

4: Determine top N outliers using LOF [15]
5: Consolidate the outlier intervals to the respective users

// Step 3
6: Visualize outlier intervals as described in Step 3

B. Discussion

Handling Streaming Data: iNET operates on streaming data
of user interactions and does not require the entire timeline of
a user in order to produce a set of anomalous results.

Furthermore, iNET is an anytime algorithm in the sense
that it can produce an output at any given point in time which
will reflect the current state of the personalized interaction
networks, as they have been observed in the stream. This is
important because this implies that iNET can be deployed and
track changes in users’ nature of interaction in near real-time
for the portion of the stream it has observed so far.

Sensitivity to User Privacy: In order for iNET to work, we do
not require access to the content (e.g., text or photos) that a
user or their friends share. Such content is very frequently
personal and private in nature and users may feel uncom-
fortable with sharing such private information for the sake of
our analysis. Furthermore the representation that iNET learns
requires only aggregate statistics of a user’s interaction net-
work, without keeping track of the particular individuals with
whom the user is interacting. If, for instance, data collection is
done via a custom-built social network application, the entire
functionality Step 1 of iNET can be pushed to the application
and the only information accessible to the analyst would be
the aggregate statistics of the personalized representation.

As part of evaluating iNET, in Section V we use the text
posted by the user during a given outlier interval to analyze
the context and understand the reasoning as to what has given
rise to the outlier indicating change in the nature of user



interactions. This, however, is done with the user’s consent
and is strictly for evaluation purposes. We believe that iNET
is minimally invasive to a user’s privacy and is a step towards
exploring the trade off of how invasive such a method needs
to be in order to effectively identify anomalous events.

Generality: iNET is a general methodology that can be applied
to a variety of time-evolving user interaction networks. In our
particular realization of iNET, we use Facebook as our case
study and our running example, and we tailor our notions of
“expected” and “outlying” with respect to that example (see
Definitions 1 and 2). However, the methodology is directly
applicable to other scenarios, as long as the features that are
used in lieu of fi and si are aggregated in the same unit, or
can be easily transformed to the same unit. For instance, in
our case fi and si are the number of incoming and self posts
respectively over the course defined by window wi and their
units are “posts per duration of window wi, and their ratio is a
pure number, which enables us to compare the behavior across
different windows. We may also add more features that we
measure per window and in that case, the outlier detection step
would be carried out in the space defined by those features.
For example, if we observe interactions between the peers of
the center of our star graph (i.e., the user whose personalized
representation we are learning), we can use additional graph
metrics such as the number of triangles in our analysis.

V. EXPERIMENTS

In this section, we present the experiments using iNET on a
Facebook user dataset. We discuss results of outliers obtained
using variable-length intervals and compare and contrast with
those outliers obtained from fixed-length intervals.

A. D2y Dataset

The dataset D2y is an 18.5-month longitudinal Facebook
dataset collected via an application voluntarily installed by
Facebook users. It consists of 831 Facebook users and all the
activity on their Facebook walls. The duration of the dataset
is approximately 18.5 months, 13 Apr 2012 through 30 Oct
2013. A user’s Facebook wall/timeline can be described as
their space where users express their ideas and thoughts, and
interact with other users through likes, comments and status
updates. We analyzed 381,690 wallposts out of which 295,265
were authored by the users themselves, which we call self
posts and the 86,425 were posted on the users’ walls by
their friends as friend posts. We extracted 415,589 interactions
between users and their friends occurring in the form of likes,
comments and posts, from the walls of users. Each interaction
is represented by a temporal edge (from-id, to-id, timestamp),
where from-id is the source of the interaction, to-id is the user
whom the interaction is directed towards and the timestamp
pertains to when the interaction occurred.

B. Using iNET on D2y dataset

We used iNET to analyze users in the D2y dataset described
above. We use weighted in-degree network statistic to compute

variable-length intervals using Step 1 of our iNET methodol-
ogy. At each aggregation step, it measures the weighted in-
degree of the aggregated edges until it meets the stopping
criterion and repeats the interval convergence process until
there are no more temporal edges left in the user’s interaction
stream. Once the variable-length intervals are computed for
each user, we obtain the number of self posts that the user
has made in these interval periods. We combine the weighted
in-degree network statistic and the self posts of all users in
all intervals for efficiency and compute the top N outliers (we
considered the top 30) using the LOF method and analyze
those outlier windows using the visualization framework.
Some of the example outliers of our analysis can be observed
in Figure 4.

The visualization framework presents plots of the weighted
in-degree and the count of self posts in each aggregation
interval on the timeline of the user. This helps understand how
those interaction values varied from interval to interval in the
user’s timeline.

Exclusively for validation. Although we expressly avoid
analyzing the text during the identification of the intervals (to
ensure that our method is minimally invasive to user privacy),
we look at the text for the purposes of interpreting the results.
We present a word cloud from the text in user’s self posts
in the outlier interval to infer what external event has given
rise to an outlier interval. Figure 4 presents the visualization
of four different users with outlier intervals identified in an
unsupervised fashion by iNET.

The outlier intervals are classified into nine categories
(shown in Table I) based on the frequency of words that
appeared in the corresponding user posts. We argue that this
approach not only presents a quick overview of the user’s
activity, but also protects the privacy of user. An interval can
belong to more than one category. The word cloud in three
outlier intervals of user #13 in Figure 4(a) depicts that the
user shares a lot of posts related to Politics, where the words
‘Obama’, ‘new’, and ‘President’ are repeated in every outlier
interval. In addition, we observe that the number of self posts
in the outlier interval is slightly higher than in the previous
interval, which could suggest that the occurrence of an external
event has triggered the user towards sharing more posts than
usual. This trend can also be observed with weighted in-degree
plot presented in the top portion of the visualization, indicating
that the user’s friends engage more than usual with the user
during the outlier interval via likes, comments, and posting
on user’s wall. Further inquiry into user’s sharing behavior
has shown us that the user shares a lot of link-type posts
from news websites. From the words in the user #13’s outlier
interval word cloud, we categorize the user’s behavior as
interested in Politics. Figure 4(b) only has four variable-length
intervals out of which the outlier interval has more number
of interactions than usual, but lower number of self posts.
The top words in the outlier interval word cloud are ‘Apple’,
‘new’, ‘iPhone’, ‘company’ and ‘cloud’. We categorize the
user’s interest during the outlier period as Technology and
News. Figure 4(c) presents the visualization for User #22.



Personalized Timeline for User #13

(a) Obama

Personalized Timeline for User #14

(b) Apple

Personalized Timeline for User #22

(c) Pope Benedict

Personalized Timeline for User #24

(d) Warren Buffet
Fig. 4. Four indicative results of the Visualization component of iNET framework. By exception, we also include the word clouds for each interval of interest
in order to enable the interpretation and validation of the results.

Category iNET
iNET-fixed

24-hour 1-week 1-month 3-month
Politics 13 15 17 15 14
Personal 11 0 9 10 4
News 8 0 4 3 7
Religion 4 0 0 0 0
Movies 2 0 0 0 0
Music 4 0 0 3 2
Sports 3 0 0 2 2
Technology 2 0 0 0 0
Misc 2 15 7 3 6

TABLE I
CATEGORIZATION OF VARIABLE-WINDOW AND FIXED-WINDOW OUTLIERS

USING CONTENT IN THE OUTLIER INTERVAL. THE HIGHLIGHTED ROWS
INDICATE CATEGORIES THAT ARE OF LOW INTEREST SINCE WE WERE

EITHER UNABLE TO LABEL, OR THEY CORRESPOND TO “ORGANIC”
EVENTS THAT HAVE A LIFE-SPAN OF DAY, SUCH AS BIRTHDAY

CELEBRATIONS. WE OBSERVE THAT INET OFFERS A WIDE VARIETY OF
NON-ORGANIC AND RELEVANT EVENTS, COMPARED TO INET-FIXED

WHICH IS RESTRICTED TO A SINGLE-DAY OBSERVATION WINDOW.

The user has both high number of interactions as well as self
posts during that period. Words like ’Pope’, ’Benedict’, ’Holy’,
’Vatican’, and ’God’ prominently appear in the word cloud
during the outlier period and we categorize the user’s interest
as Religion. In the Figure 4(d), the number of interactions
as well as self posts in the outlier interval is lower than the
previous interval and words like ‘Colerain’, ‘Buffett’, ‘Mullet’,
‘White’ and ‘House’ appear prominently in the word cloud
of the user. Given the user’s penchant to share information,
we label this user #22’s outlier interval as News and Politics.
Notice the distinct number of variable-length intervals in each
user in Figure 4 which is further validation of our Temporal
Asymmetry Hypothesis.

C. What about using fixed-length intervals?

iNET computes variable-length intervals depending on the
rate of interactions in the user stream and outputs the visu-
alization of user’s activity in the outlier interval to help the
analyst understand the context of the outlier. In order to see
how well iNET performs against using fixed-length intervals,
we introduce iNET-fixed with four different durations of 24-
hour, 1-week, 1-month, and 3-months, as a baseline approach.

iNET-fixed uses the same methodology as iNET, except for the
step where it computes variable-length intervals. For example,
the duration of the D2y dataset is 566 days, which gives 566
intervals of fixed-length, each with a duration of 24 hours. In
like manner, D2y dataset can be partitioned into 82 intervals
of 1-week, 19 intervals of 1-month and 6 intervals of 3-
month duration each. For a user, for each fixed interval, we
aggregate all incoming interactions into a graph and compute
the weighted in-degree network statistic for that period. In
addition, we get the count of self-posts on the user’s wall
for a given fixed interval. For the purposes of efficiency, we
compute outlier scores for the pairs of values (weighted in-
degree, self-posts) using LOF and output the visualization
framework for the top 30 outliers using iNET-fixed. Since we
manually label the categories of detected outliers, we chose
30 outliers, which is a large enough number for evaluation
purposes, yet manageable for labeling.

Our visualization framework provides a quick way for the
analyst to understand the context of the outlier window. We
classify the top 30 outlier intervals obtained via iNET and
the iNET-fixed into categories, which we present in Table I.
The categories Politics and Personal seem highly prevailing
in both the methodologies. The Personal category consists of
personal things occurring in the interval including the names
of user’s friends and discussions that are only pertinent to
user’s life. As an indicative example, user #10’s outlier interval
has words such as ‘tripbday’, ‘memorialbbqcalm’, ’chowder’,
‘plan’, ‘family’ and ‘drunk’, along with name mentions, which
we believe are user’s friends. We do not present the related
visualization to maintain user anonymity. Figure 4(a) presents
outlier windows belonging to the category Politics, where the
word cloud contains all the words related to American politics.
In addition, we observe categories News, Religion, Movies,
Music, Sports, and Technology. The category Misc are those
outlier intervals that did not exhibit a thematic coherence and
user birthdays that occur without any interference from the
user.

a. iNET discovers more diverse and relevant categories
compared to iNET-fixed. We computed the Shannon’s en-
tropy values for the two methodologies to measure the di-



versity in outlier intervals. Intuitively, if a method identifies
only one category, its entropy is zero. Higher entropy reflects
higher diversity in the discovered outliers and we observe
this with iNET. iNET-fixed has entropy of 0.76, 1.88, 2.1,
and 2.4 respectively for durations, 24-hour, 1-week, 1-month,
and 3-months, where iNET has the highest entropy with 2.75
bits. Note that we excluded the Misc category from the
precision calculation, since Misc does not represent a single
thematically-coherent category.

b. Variable size windows identify meaningful user
“phases” more effectively. Going a step deeper, we examined
the categories of the windows adjacent (previous and next)
to the discovered outliers for both iNET and iNET-fixed. In
the majority of cases in iNET-fixed, there was no change
in category from the adjacent intervals. For example, if the
outlier interval with a 1-week duration is of category Politics,
the adjacent intervals usually belonged the same category.
However, with iNET, we observed that the category of intervals
adjacent varied from that of the category of the discovered
outlier. iNET captured 100% of relevant categories with a 95%
precision, compared to the baselines.

c. Exogenous influence on user behavior: Based on the
word cloud of the outlier interval of user #8, we categorized
it as Politics, where the top words are ‘India’, ‘Gujarat’,
‘Narendra’, ‘Modi’, ‘leadership’ and ‘visionary’. The duration
of the interval is 126 days with period being Jun-Sep 2013.
The time period coincides exactly with the elections in India,
where a politician declared running for prime minister’s office
in September 2013. The categories of the subsequent windows
are Personal and Sports, which differ from that of the outlier
interval category, further confirming our belief that variable-
length intervals provide for better observation of user behavior.

iNET provides better understanding towards identifying
change in behavior since the overarching goal is to identify
those periods of time for which there was a significant devia-
tion of a user’s nature of interaction without any supervision,
letting the data answer the question for us. By placing the
constraint on the iNET-fixed that the intervals be of a certain
size, we impose a certain kind of supervision on the algorithm
towards finding the outlier periods in the user’s timeline. Of
course, selecting the network measure fi (e.g., the weighted in-
degree) introduced a bias to our analysis, however, we believe
that such a bias is much more flexible than committing to a
single, fixed-size interval.

D. Discussion

Flexibility of observation intervals: While observing out-
lying intervals in users, we observed that there were some
internal and external factors that influence user behavior. For
example, users interacted more during the 2012 US elections,
sharing opinions and posting news. In addition, the adjacent
intervals belonged to different category than that of the outlier,
which was also the case in majority of the outlier intervals
discovered via iNET. While change in behavior based on
external events is not surprising, fixed-length intervals do not
provide any information about change-points without some

kind of manual supervision. Based on the examples provided
earlier, we observed that iNET detects change-points as well as
the beginning and end of these change points, thus providing
us the with appropriate observation intervals determined by
user interaction patterns.
Similarity search: One of the applications for iNET is finding
users similar in their interaction signature irrespective of the
timescale. In order to simpify the representation that iNET
learns, we may take the ratio of the interaction features in each
interval to present a concise, unit-free interaction signature.
Each personalized representation now is essentially a time
series where the time axis is defined by wi. Thus, given
a user of interest who was indicated to us by Step 2, we
can search for other users in our collection of personalized
representations that share the same interaction signature over
time. It is important that we not restrict our search to cases
where the interaction signatures perfectly align with respect
to the (arbitrary) time axes wi. We should allow for cases
where the same pattern is observed in “elongated” or “shorter”
forms, but the overall trend over those arbitrary windows of
time is the same. For that purpose we can use the so-called
Dynamic Time Warping (DTW) distance [18] for time-series.
Once we find outliers using iNET, we can employ DTW to find
users with similar interaction patterns as outliers. We reserve
investigation of this application for future work.

VI. RELATED WORK

Our work lies in the intersection of various topics that
researchers have extensively studied in the past. We discuss
the state of the art for each of those areas in the next few
lines. However, we must point out that to the best of our
knowledge, our viewpoint of conducting such an analysis on
a personalized, per-user basis and introducing the Temporal
Asymmetry Hypothesis that is instrumental in the derivation
of iNET has not been studied before.

A. Time-evolving networks and granularity

A key characteristic of dynamic interaction networks is their
continual change. Researchers have developed systematic ap-
proaches on partitioning a data stream. Sulo et al. [19] identify
appropriate aggregation intervals by balancing the trade-off
between smoothness and noise in the network. [12] proposed
DAPPER, which uses a window size and a shift parameter to
calculate a frequency change vector and partition data based
on changes in network structure. GRAPHSCOPE [20] is an
MDL-based, parameter-free algorithm that merges “similar”
snapshots into a segment and compresses them together; on
the other hand, “dissimilar” consecutive snapshots lead to the
creation of a new segment, and declaration of a change-point.
[21] proposed a supervised time scale detection framework
that leverages ground truth from training data for “good win-
dowing” based on the task at hand, predicting links, attributes,
or change-points. These works identify fixed-length intervals
and require the entire data stream at once. Several previous
works address problems like finding interesting patterns [22],
mining periodic behaviors [23] as well as subgraphs [24] from



longitudinal networks. For our work, we use ADAGE [14],
which is an online approach for partitioning streaming graph
data into variable-length intervals. While these works focused
on evolution of dynamic global graphs, we focus on individual
dynamic interaction graphs to analyze user behaviors in time.

B. Anomaly detection

Anomaly or outlier detection is a major direction in the
data mining community and there exist several surveys for a
variety of static and time-evolving data [25], [26], including
graphs [27].
Clouds of points. For outliers in clouds of points the represen-
tative algorithm is the Local Outlier Factor (LOF) [28], which
marks points as outliers if their local density is different from
the density of their neighbors. Improved techniques include
LOCI [29] that detects outliers and micro-clusters without
user-defined parameters, and COF [30] that distinguishes the
cases of isolation and low density. OddBall [1] detects anoma-
lies in static graphs by focusing on egonet-related properties,
depicting pairs of them in plots, and leveraging LOF-based
outlierness scores to detect original nodes that are anoma-
lous in the projected space. OPAvion [31] combines feature
aggregation, outlier detection (via OddBall) and visualization
(via Apolo [32]) into a system that automatically mines and
interactively visualizes static anomalies in large graphs.
Change point detection. Work in this space attempts to
identify points in time when the observed network (or some
substructures) change significantly. Clustering is a common
technique used to that end: [33] aims at change detection in
streaming graphs using projected clustering; Com2 [34] uses
graph-search and PARAFAC tensor decomposition followed
by MDL to find dense temporal cliques and bipartite cores.
[35] uses incremental cross-association for change detection
in dense blocks over time.

VII. CONCLUSIONS

We introduce iNET, a novel analytic framework, in the inter-
section of dynamic and time-evolving graph mining, anomaly
detection, and personalization on the web, and is a systematic
approach for identifying changes in users’ mode of interaction.
Indicatively,in our case study, iNET produces results that span
the entire spectrum of categories while the best performing
baseline covers only 66%. We view this paper as first stepping
stone towards exploring the trade-off between the minimum
invasive information needed to detect behavioral change, and
our ability to relate online behavioral changes to real-life
changes of the user.
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