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Abstract—In this paper, an ensemble learning model, namely the
random forest (RF) model, is used to predict both the exact values
as well as the class labels of 24 hourly prices in the California
Independent System Operator (CAISO)’s day-ahead electricity
market. The focus is on predicting the prices for the Pacific Gas
and Company (PG&E) default load aggregation point (DLAP).
Several effective features, such as the historical hourly prices
at different locations, calender data, and new ancillary service
requirements are engineered and the model is trained in order
to capture the best relations between the features and the target
electricity price variables. Insightful case studies are implemented
on the CAISO market data from January 1, 2014 to February
28, 2016. It is observed that the proposed data mining approach
provides promising results in both predicting the exact value and
in classifying the prices as low, medium and high.
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I. INTRODUCTION

Forecasting the market price is a key factor for the decision
makers in determining the short term operating schedules and
bidding strategies in the electricity markets. For example, a
transmission company is interested in knowing the exact value
of the future price to strategically bid into the market. As
another example, a demand response market participant is inter-
ested in knowing whether the price is high or low to optimize its
operation [1]. In this case, the price value forecasting problem
reduces to a price classification problem.

One thread of related work focuses on forecasting the exact
value of the electricity price using data mining techniques,
e.g., in [2]–[7]. A method based on pattern sequence similarity
was presented in [2]. In [3], the authors applied the regression
trees and normalized radial basis function networks to the New
England market price data. A neural network model was applied
by [4], [5] to forecast electricity prices. Gonzalez et. al in [6]
applied different regression methods using tree-based models to
forecast the electricity price for the Spanish-Iberian market. The
features such as load, hydro and thermal generation and wind
energy production are considered. In [7], the authors applied
a gradient boosting regression technique to forecast the exact
value price. The average mean absolute error (MAE) was 7.13
$/MWh which outperformed the average MAE, 8.64 $/MWh,
using ARMAX. A review of the state-of-the-art in forecasting
the exact values of the electricity market prices is given in [8].

There is another, but less explored, thread of related work
that focuses on electricity price classification, e.g., in [1], [9],
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[10]. The authors in [9] proposed a classification of future
electricity market prices using support vector machines with
data from Ontario and Alberta electricity markets. The authors
in [10] addressed the short-term energy price classification
based on the decision tree method. Two different methods for
classifying the prices were applied in [1]. In the first one,
the exact value of the electricity market price was obtained
using multilayer perceptron (MLP) and then it was classified
based on the pre-specified threshold. In the second one, the
class labels of the prices were directly obtained using three
techniques: Decision Trees (DT), Naive Bayes (NB), and K-
Nearest Neighbor (KNN). The results showed that the second
method outperforms the first one.

While data mining has previously been used in forecasting
electricity prices, there is still great potential to enhance perfor-
mance. In fact, in this field, the devil is in details. Specifically,
the performance of a data mining approach highly much
depends on: 1) the features selected, 2) the learning algorithms,
and 3) the market under study. Furthermore, the results in one
market can not be necessary generalized to other markets. For
example, using the same features and approach, MAEs were
obtained as 2.37 $/MWh and 3.14 $/MWh for New York ISO
and the Australian Energy Market Operator, respectively [5].
To the best of our knowledge, the analysis in this paper is
different from the literature in all these three distinctive aspects
and it properly forecasts and classifies the electricity market
prices at California Independent System Operator (CAISO).
Accordingly, the contributions in this paper are:

• New and Extensive Features: We engineered several fea-
tures to best capture the target variable characteristics, i.e.,
the day-ahead market price values. These features include
the historical market prices at different nodes, the features
related to year and month, the net demand, as well as the
ancillary service requirements such as reserve, regulation
and regulation mileage. The last two features are based
on a relatively new market design platform by CAISO.
Some features such as the prices at other locations and new
ancillary service requirements, like regulation mileage,
are entirely new in this paper and some other features
previously used in other papers. Moreover, the combined
set of the features we made in this paper is new and not
been studied together before. For example, no ancillary
service requirements were taken into account in [4]–[6].
The historical electricity prices and demand differences
were the important features in [7]. Also, reference [1] only
considered the historical electricity prices as the features.



• Effective Ensemble Learning Method: The analysis in
this paper is based on the ensemble learning method,
namely the random forest (RF) method, which is known as
one of the most powerful learning methods in data mining
[11]. RF creates multiple decision trees in training phase
and then aggregates the results and returns the solution
in test phase. It is good in dealing with large datasets
and handling over-fitting issue. It is also an overall robust
approach. We experimentally adjusted the parameters for
RF to increase the accuracy in our forecasting problem.
Most importantly, RF is capable of taking advantages of
our significantly diverse set of features; see the previous
bullet point; compared to the existing literature.

• Insightful Case Studies: Our dataset comes from CAISO
and our focus is on forecasting the day ahead market prices
of the CAISO for the Pacific Gas and Electric (PG&E)’s
default load aggregation point (DLAP).
Our paper addressed predicting both the exact value and
class label. We showed that our features and RF method
could provide a promising results in both the exact value
and class labels predictions. This is in contrast with
[1], where the exact value prediction was not useful for
class labeling. Our results also outperform in terms of
MAE, mean absolute percentage error (MAPE) and mean
percentage classification error (MPCE) in comparison with
[1] and [5]. For Example, MPCE is reported as 9.21%
when the approach in [1] is applied to our dataset com-
pared to 6.53% for our approach. MAPE is also reported as
13.12% by applying the method in [5], while our method
returns 2.13 $/MWh and 5.96% in terms of MAE and
MAPE. Importantly, we also show how different features
contributed to enhance forecast accuracy. Interestingly, it
turns out that net demands, DLAPs at other locations and
ancillary service requirements are effective features in our
case study.

Finally, note that according to the literature survey reported in
[4], most studies assess their models over four representative
weeks across a year. Here, we examined our method on every
day of 12 consecutive months. In such a case, MAPE may
become larger and thus it is modified and smoothed to limit
the effect of null and abnormal values as mentioned in [4].
However, in this study the evaluation framework involves the
conventional definition of the MAPE.

II. CALIFORNIA ISO ELECTRICITY MARKET

The CAISO market is multi-settlements consisting of two
interrelated markets: day ahead market and real time market.
Day ahead market is a forward market where generators and
load commitments are determined for every hour of the next
operating day, while the real time market is a spot market,
where energy can be purchased at spot prices for each 15
minutes. Since the generation and load capacities traded at day
ahead market are much more compared to the ones traded in
real time market, the day ahead market has higher priority from
the economic perspective such as price forecast studies.
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Fig. 1. The Main Components in Our Proposed Model

CAISO solves security constraint unit commitment (SCUC)
problem to clear the market. The objective of SCUC is to maxi-
mize the social welfare of the system, and also to minimize an-
cillary service procurement cost subject to all grid constraints.
In fact, the SCUC adjusts generation, load, import and export
schedules based on the submitted energy supply and demand
bids as well as ancillary service bids to meet ancillary service
requirements, while managing grid congestion by enforcing
transmission lines and generation units constraints [12]. The
ancillary service requirements include: non-spinning/spinning
reserve, regulation up/down, and mileage up/down.

Due to the complexity of locational marginal prices at differ-
ent buses, CAISO is using the aggregation points to define the
average prices of major regions in its territory. Those regions
are based on the utilities which are responsible to buy energy
on behalf of their consumers from CAISO market. One of the
main utilities is PG&E which is in charge of the loads located
in Northern California. Accordingly, PG&Es DLAP is the price
average of purchasing energy in Northern California [12].

III. THE PROPOSED MODEL

A. Methodology
In this paper, we gathered, and cleaned CAISO public

available data [13] including the electricity market prices, net
demand and ancillary service requirements. Then we engi-
neered a reasonable set of features that could likely capture
the target variable characteristics, i.e., the characteristics of the
price values of the next operating day. Then we normalized
our features. Then we split the data into two distinct parts
named train set and test set. We studied the problem from both
regression and classification perspectives.

In regression view, a random forest regressor was applied
on the training set and then the performance of the model
was evaluated on the test dataset using MAE and MAPE. In
classification perspective, we used two different approaches.
In the first one, we trained an RF regressor and predict the
price values on the test set. Then, we compared values with
the class labels using pre-specified threshold. In the second one,
we converted all price features to pre-specified class labels and
created an RF classifier to obtain the class labels directly. The
performance of both approaches were evaluated by MPCE. Fig.
1 represents the main components of our proposed model.



TABLE I
FEATURE DESCRIPTION IN OUR PROPOSED MODEL

Features ID Components Feature Type
VeryShortTerm Last 24 hours prices Numeric

ShortTerm Previous 25 to 48 hours prices Numeric

LongTerm Last week the same hour
Last year the same hour Numeric

Temporal
Weekdays

Year
Month

Binary
Numeric
Numeric

Geographical The price at other DLAPs
at 24, 25 and 26 hours ago Numeric

NetworkCondition Net Demand
Ancillary Service Requirements Numeric

B. Feature Engineering

We categorized our features into 6 groups, as shown in Table
I. Next, we explain the features of each group.
Very Short Term and Short Term Features. The electricity
market prices are highly autocorrelated. That is, the historical
electricity market prices at previous hours provide effective
features for predicting the future prices. As the focus of this
paper is to predict and classify the prices for the day ahead
market, 24 consecutive prices corresponding to 24 consecutive
hours of the day should be predicted. As for predicting the price
at hour H of the day of interest, one can ignore the effect of
previous predicted prices at time slots 1, . . . , H − 1. However,
it is reasonable to take them into account [1]. In such a case,
the predicted prices at previous hours are given as features. In
this paper, the prices for the last 48 hours are considered. For
example, if we aim to predict the electricity price at time slot
10:00 a.m., Dec. 8, 2015, the last 48 hours prices starting from
10:00 a.m., Dec. 6, 2015 to 9:00 a.m., Dec. 8, 2015 are taken as
features. Needless to say that the prices starting from 1:00 a.m
to 9:00 a.m., Dec. 8, 2015 are the predicted prices determined
ahead by our proposed model.
Long Term Features. In price forecasting, it is important to
take into account the long term trends in addition to the short
term trends. We engineered relevant features based on historical
data which lasts for longer period. The features such as last year
on the same day at the same hour data, last week on the same
day at the same hour prices are used in this paper.
Temporal Features. The day at which the price is determined
is also of importance. For example, one can expect the lower
prices at the weekends compared to a typical business day.
Thus, we introduced 7 binary features, each corresponding to
one day of the week, to capture this characteristic. We also
consider the year and months as numeric features into account.
Geographical and Network Condition Features. The mech-
anism of market clearing process is another important factor to
determine the market prices. The CAISO market is cleared by a
co-optimization problem taking the ancillary services and net-
work constraints into account. Therefore, we engineered three
different features in our proposed model. These features are the
historical price data for other important locations in the CAISO,
net demand forecast and ancillary service requirements.
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Fig. 2. The Price Data From Jan. 2014 to Feb. 2016.

C. The Learning Method

Ensemble methods learn several base estimators using a
learning algorithm and combine their predictions. This ap-
proach can improve robustness over a single estimator. Ac-
cording to literatures, experimental evidences have shown that
ensemble methods are often much more accurate than any
single constituent model [11].

RF is one of the ensemble methods where each estimator is a
decision tree. In this paper, we applied random forest with 150
estimators. To learn an estimator, a subsample of the training
set is created using bootstrapping. The subsample size is equal
to the training set size. For a given decision tree, the quality of
each split is measured by Gini Impurity.

IV. CASE STUDY

A. Dataset Description

Our dataset consists of electricity market data obtained from
California ISO Open Access Same-time Information System
(OASIS). The data includes electricity market prices, net de-
mand forecasts, ancillary service requirements during Jan. 1,
2014 to Feb. 28, 2016 [13]. The price trend in our dataset is
presented in Fig. 2. The overall trend is that the day ahead
electricity market price had been decreased during these two
years. The price distribution is also presented in Fig. 3. The
probability for each bin is equal to the number of the prices
within the bin to the total number of prices. It is seen that the
prices fall between 20 $/MWh and 60 $/MWh with more than
80% probability. However, there is still 20% chance that the
price takes the higher or lower values. We created and labeled
more than 80 features as shown in Table I. After cleaning the
data, we found 18895 instances in total.

As for the classification problem, the class labels are named
as low, medium and high. We first define two prices as 38 and
56 $/MWh. The price of 38 $/MWh is obtained as the mean of
all the prices in the dataset. 56 $/MWh is at the boarder of the
10% highest prices in our dataset. We named the prices below
38 $/MWh as “low”, the price between 38 and 56 $/MWh as
“medium” and the price above 56 $/MWh as “high” price.

As for predicting the exact value, we used two measures,
namely MAE and MAPE [5]. As for the classification error,



Price ($/MWh)
0 20 40 60 80 100 120 140 160 180

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 3. The Distribution of Price Data From Jan. 2014 to Feb. 2016.

MPCE is a common evaluation method [1]. MPCE is defined
as the total number of misclassification to the total number of
instances in the test data. All the simulations were implemented
on Python 2.7 using scikit-learn [14]. The computational time
was 57 seconds in average for one day including train and test
experiments.

B. Prediction Results: Exact Values and Class Labels

In this section, the exact values and class labels of the
predicted prices for 12 months are obtained as shown in Table
II. We foretasted the prices for each hour of a day starting from
Mar. 2015 to Feb. 2016. For each specific day, the training
data includes all the days starting from Jan. 2014 to the day
before it. The average MAE and MAPE for each month are
shown in Table II. Note that, the average MAE and MAPE
errors for each month is calculated as the average of all MAE
and MAPE errors over all days of the month. In average, the
proposed model reported the 2.13 $/MWh and 5.96% for MAE
and MAPE, respectively. According to Table II, the largest
MAPE error occurs at Feb. 2016. The reason may be related
to not considering the fuel price and temperature features.

We also determined the class labels of the prices. The MPCE
error in average for all test data is 6.98% showing a bit drop
compared to the exact value prediction. We also considered
the method where the class labels are directly obtained. The
average MPCE is 6.53% which is a promising result. Unlike
the reference [1] that the authors observed a huge difference
between these two approaches, our proposed method is show-
ing a small difference. Note that, considering a deterministic
threshold could have a negative impact on predicting the class
labels. For example, the prices 37.5 $/MWh and 38.5 $/MWh
are considered as a low and a medium price, even though it
may not make a noticeable difference to a market participant.
Addressing this issue could be a future research direction.
C. Comparison with Literature: Exact Values and Class Labels

We used KNN and NB methods for the classification. We
combined KNN and NB with mutual information feature se-
lection methods. These two methods worked well in [1]. Table
III shows the results for the classification. As it can be seen,
our proposed method outperforms these two methods. We also

TABLE II
THE AVERAGE ERROR RESULTS FOR OUR PROPOSED METHOD DURING

MAR. 2015 TO FEB. 2016

Month
Exact Value Method Direct

Classification
Method

Exact Value
Prediction

Class Label
Prediction

MAE
($/MWh) MPAE (%) MPCE (%) MPCE (%)

Mar. 1.78 5.86 4.76 6.25
Apr. 2.24 6.68 8.33 8.06
May 2.12 6.36 9.14 7.39
June 2.75 6.17 9.17 9.17
Jul. 2.39 5.23 9.01 8.06

Aug. 2.16 5.66 11.02 8.47
Sep. 2.17 5.36 9.03 8.47
Oct. 1.77 4.84 5.65 6.59
Nov. 1.8 6.02 5.32 4.6
Dec. 1.71 5.92 5.24 3.9
Jan. 1.64 5.69 4.30 4.44
Feb. 1.75 7.77 2.83 2.98

Mean 2.03 5.96 6.98 6.53
Std. 0.337 0.758 2.573 2.081

TABLE III
THE AVERAGE ERROR RESULTS FOR THE METHODS IN THE LITERATURE

DURING MAR. 2015 TO FEB. 2016.

Month
Method

Naive Bayes KNN
MPCE (%) MPCE (%)

Mar. 7.74 9.67
Apr. 12.08 12.92
May 10.35 13.84
June 13.47 15.56
Jul. 10.89 17.74

Aug. 9.68 13.98
Sep. 12.22 14.72
Oct. 9.81 10.89
Nov. 6.9 7.61
Dec. 6.45 8.47
Jan. 6.32 6.85
Feb. 4.61 4.02

Mean 9.21 11.36
Std. 2.777 4.098

compared our regression method with the one similar to the
neural network model in [5]. The average MAPE was reported
as 13.12%. This shows that the data mining approaches that
are used to forecast the prices in other markets may not work
well for CAISO; which further justifies the need for new studies
based on the specific features of each market, such as our work
in this paper.
D. More Detailed Discussions: The Exact Value Prediction

We considered Jul. 2015 and analyzed its actual and pre-
dicted prices as shown in Fig. 4. The average price for each
hour and its deviation are shown in this figure. The prices at
1:00 a.m. to 8:00 a.m. did not show a high variation, thus make
it easy for our model to estimate the exact value. However,
the price deviation around 15:00 to 21:00 is high. For example
consider the price at hour 18:00 where the actual price deviation
is the highest. The price varies from 30 $/MWh to above 70
$/MWh at that hour. However, our proposed method could not
adopt itself with these deviations and it only deviates from
42 $/MWh to 62 $/MWh. It means that there may be other



Fig. 4. The actual and predicted price variation in Jul. 2015.

TABLE IV
THE CONTRIBUTION OF THE PROPOSED FEATURES ON THE ERROR

DECREASE FOR MAY 2015

Features

Error
Avg

MAE
($/MWh)

MAPE (%)

Avg Max. Med. Min.

VeryShrotTerm 2.7 8.07 20.79 6.4 2.87
+ ShorTTerm 2.69 8.13 18.97 6.81 2.88
+ Temporal 2.61 7.86 18.04 6.66 2.45
+ Geographic 2.53 7.71 17.78 6.56 2.1
All Features 2.12 6.36 11.33 5.85 2.53

features that we did not consider, but they may improve the
performance of our model. It would be interesting to obtain
high-variation hours and add more corrections to the predictor
model to obtain the higher accuracy. Another important issue is
to analyze how our proposed features contribute to improve the
performance accuracy in our model. As the day ahead prices
are highly autocorrelated to the previous days, we first consider
those features as the only features and obtain MAE and MPAE
for the day ahead prices in May 2015. According to Table IV,
considering only the previous day prices have a great impact
on the price accuracy. This is not a surprising result as it is
shown in the previous literature. We then add our proposed
features in Table I and see how the errors would change. It is
interesting to see that adding our proposed features in our RF
model decreases the average MAE and MAPE errors. Another
interesting observation is about the maximum MAPE error. The
maximum MAPE error is the highest error between all the days
in May 2015. As we consider the features related to the network
conditions, i.e., the prices at different location for previous
day, net demand forecasts and ancillary service requirements,
the error decreases significantly by 9.46 % compared to only
considering the last 24 hours prices. Accordingly, we can
conclude that those features can help the model to evaluate
more accurately the conditions that cause the unexpected prices.

V. CONCLUSION

This work applied an ensemble learning model named RF to
predict the exact value and to classify the prices in the CAISO

day ahead market. Several features such as historical prices
in the location of under study, i.e., PG&E DLAP and other
locations, net demand, calender and ancillary service require-
ments such as the new product named mileage requirements
have been engineered. The model was implemented on the
CAISO market from Jan. 2014 to Feb. 2016. The result was
promising. The average MAE and MAPE were 2.13 $/MWh
5.96% during one year test data. The average MPCE result
for classifying was also reported as 6.53%. The model was
compared with the literature and outperformed them. It was
observed that introducing our features helped the model to
reduce the maximum MAPE by 9.46% in average compared
to considering only the historical prices. The future research
would be on introducing the new efficient features to capture
the price characteristics in the hour with high price fluctuations
more appropriately. It is also interesting to Consider the impact
of other features, such as temperature and fuel prices, on exact
value prediction as well as on the classification. Last but not
least, the comparison with more papers is a necessity to evaluate
better the effectiveness of the proposed model.
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