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Abstract

Background

Analysis of data from multiple sources has the potential to enhance knoeuisizpvery by capturin
underlying structures, which are, otherwise, difficult to extract. Fudatg from multiple source
has already proved useful in many applications in social network anakigisal processing an
bioinformatics. However, data fusion is challenging since data from multipleces are often (i
heterogeneous (i.e., in the form of higher-order tensors and matr{geg)complete, and (iii) have
both shared and unshared components. In order to address thibsege® in this paper, we introduce
a novel unsupervised data fusion model based on joint factorization wicesmand higher-orde
tensors.
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Results

While the traditional formulation of coupled matrix and tensor factorizations tiragenly share
factors fails to capture the underlying structures in the presence of batbdsand unshared factors,
the proposed data fusion model has the potential to automatically reveadistrad unshared compp-
nents through modeling constraints. Using numerical experiments, we deateribe effectiveness
of the proposed approach in terms of identifying shared and unsharedoments. Furthermore,
we measure a set of mixtures with known chemical composition using both LCEM8id Chro-
matography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonandedemonstrate that
the structure-revealing data fusion model can (i) successfully capterehttmicals in the mixtures
and extract the relative concentrations of the chemicals accurately, uider promising results i
terms of identifying shared and unshared chemicals, and (iii) reveal ldnearg patterns in LC-M
by coupling with the diffusion NMR data.

Conclusions

We have proposed a structure-revealing data fusion model that can jatlyze heterogeneous, in-
complete data sets with shared and unshared components and demonsipabetisisg performanc
as well as potential limitations on both simulated and real data.
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Background

Data fusion, in other words, joint analysis of data from multiple sources phaved useful in many
disciplines. For instance, in bioinformatics, jointly analyzing multiple data setesepting different
organisms [1,2] or different tissue types [3,4] improves the understgradithe underlying biological
processes. Similarly, in metabolomics, biological fluids such as blood or, ameeinvestigated us-
ing different analytical techniques, e.g., LC-MS and NMR, and their fukias the potential for more
accurate biomarker identification [5-7].

An effective way of jointly analyzing data from multiple sources is to represata from different
sources as a collection of matrices, and then jointly analyze these matricgcabactive matrix fac-
torization [8]. Matrix factorization-based data fusion studies have beecessfully applied in social
network analysis [9,10], signal processing [11,12] and bioinformati(&4,5,13]. Recently, joint ma-
trix factorization approaches have been extended to joint analysis ebbeteeous data sets, i.e., data
in the form of matrices and higher-order tensors [14-17]. For instanpbéures studied by NMR spec-
troscopy (a.k.a. DOSY - diffusion-ordered spectroscopy [18,181) lwe represented as a third-order
tensor with modes: mixtures, chemical shift and gradient levels [20,21] WBHMS measurements of
the same mixtures can be represented using a mixtures by features matFig(ge€l). Joint factoriza-
tion of such heterogeneous data has been studied to analyze multi-reldatmabarticularly, in social
networks [15,22-24].

Figure 1 A third-order tensor coupled with a matrix.

While there are many successful applications of joint data analysis, theanadl formulation of joint
factorization of multiple data sets is based on modeling only shared factongevdn data from multi-
ple sources often have both shared and unshared components. dbitedf data fusion is accurate data



reconstruction, e.g., missing data estimation or link prediction, then identificattisihaoed/unshared
factors is not a major concern. On the other hand, in many applicationsotieofydata fusion is
to extract and interpret the underlying factors. For instance, in metabaapjications, underlying
factors need to be captured uniquely so that they can be used furtheddostand the patterns corre-
sponding to a problem of interest, e.g., a specific type of diet or a disddmefore, in this paper,
we develop a novel unsupervised data fusion model for joint factorizatidveterogeneous data sets,
which is quite effective in terms of revealing shared and unshared canfgonUsing numerical ex-
periments, we demonstrate that while the traditional formulation, modeling ontgaFectors, fails to
capture the underlying structures in the presence of both shared simarad components, the proposed
model achieves accurate identification of shared and unshared comgpof&rthermore, we study a
set of mixtures of known chemical composition by two analytical techniquesl.-CeMS and diffusion
NMR. While NMR can capture all chemicals, one of the chemicals is invisible td1SC\We demon-
strate the effectiveness of our model on this prototypical example usahglaéa, where coupled data
sets have both shared and unshared components. This is an extersied oEour work [25] where,
we have introduced our model briefly and discussed preliminary findingaicer metabolomics. Here,
we study the performance of the model in depth using both simulated ancataadets, where the un-
derlying ground truth is known. Several other studies have also pgyidiscussed methods revealing
shared and unshared components. However, these studies eithemnfocoupled matrix factoriza-
tions [1,2,13,26-29] or assume that the number of shared/unshared fiagboe-determined by the user
based on the performance of joint factorization in the training set (whesidered in a supervised set-
ting) [30]. Modeling shared and unshared components has also basideaed within the context of
Canonical Correlation Analysis [31-34] focusing only on joint analy$isatrices.

We survey the related work further in Section “Related work”. In Sectidgiethods”, we introduce
our data fusion model and the algorithmic approach. Section “Results angsiien” demonstrates the
performance of the proposed approach on simulated and real dat8esgtisn “Conclusions” concludes
with future research directions.

Related work

Data fusion has been studied for decades dating back to the models aimingtucedéte common
variation in two data sets, i.e., Canonical Correlation Analysis [35]. Eatligliess on data fusion have
focused on joint factorization of multiple matrices [1,4,8-12,36-38]. Theptamlmatrix factorization
problem is typically formulated as

U VW)= X-UV P+ Y -UWT|?, (1)

whereX ¢ R’*7 andY € R/*X are matrices coupled in the first mode/dimension and the factor
matrix corresponding to the common modé, € R’* is shared by both factorizations. Her®,
indicates the number of factors. This formulation extends to factorization tijpheunatrices coupled

in different modes. In some applications such as in metabolomics, sparsilgifigdpoenalty terms are
added to coupled matrix factorizations in order to extract interpretabla$d&t@89]. Recently, a convex
formulation of coupled matrix factorizations has also been proposedTé@kor factorizations [41-43]
can also be considered as one way of jointly analyzing multiple matrices fornerglities of a third-
order tensor; however, neither coupled matrix factorization nor teastorization methods can handle
joint analysis of heterogeneous data sets.

As an extension of Eq. (1), joint factorization of heterogeneous daia, @ third-order tensdk <
RI*IxK “coupled with a matriy € R’”*M | can be formulated as

f(A,B,C,V):Hx—[[A,B,C]] ”2+”Y_AVT|’27 (2)



where tensofX and matrixY are simultaneously factorized through the minimization of the objective
function in Eq. (2), which fits a CANDECOMP/PARAFAC (CP) [44,45] modeDaand factorizeY

in such a way that the factor matrix corresponding the common modeAi.e, R’ is the same.

B € R7* andC € RE*E are factor matrices corresponding to the second and third mod¥s of
respectively. We use the notatiéh = [A, B, C] to denote the CP modeV € RM*% s the factor
matrix that corresponds to the second mod&ofThis formulation of coupled matrix and tensor fac-
torizations (CMTF), dating back to the studies of Harshman and Lundygd&]Smilde et al. [16], has
recently been a topic of interest in many studies [3,14,47-50]. The modd&lden extended to different
loss functions [17,22,23], and tensor factorizations other than CP [bD,52]. It has also shown to be
quite effective in addressing missing data estimation [24,51,52] and link predproblems [22].

Methods
Model: structure-revealing coupled matrix and tensor factorizatons

The coupled matrix and tensor factorization model given in Eq. (2) makiesicit assumption that all
columns of factor matriYA, i.e.,a,. forr = 1,..., R, are shared by the matrix and the third-order tensor,
where R indicates the number of factors. When all factors are shared acrtzsseta, the model can
accurately capture the underlying factors [14]. However, in gendw@le are both shared and unshared
factors in coupled data sets. Therefore, we reformulate the problerohrasuay that through modeling
constraints, we let the model identify shared/unshared components. Weyrttaifbjective function

in Eq. (2) and rewrite the optimization problem as follows:

i — XA 24Y —AZVT?
M’gl’gl’c’vllfx [A;AB,C[|" + | EVIIE+BIAL+8lalh )

s.t. Ja | =]bl[=c | =]|ve|=1forr=1,...,R,

whereX € Rf*! ande € R®*! correspond to the weights of rank-one components in the third-order
tensor and the matrix, respectively (Figure ¥).c R®*% is a diagonal matrix with entries of on the
diagonal.|| . || denotes the Frobenius norm for higher-order tensors/matrices anehthrenor vectors
while || . ||, denotes the 1-norm of a vector, i.¢x ||, = >.% | |z,|. 8 > 0is a penalty paramete,
denotes theth column ofA. In this formulation, our goal is to sparsify the weight@ndo using the
1-norm penalties so that unshared components will have weights eqciakerto 0 in one of the data
sets.

Figure 2 lllustration of a coupled factorization of a third-order ten sor and a matrix.

In order to solve this constrained optimization problem, we first convert itarddferentiable uncon-
strained optimization problem and then use a first-order optimization algorithrimg lt/ee quadratic
penalty method [53], we convert the constraints into penalty terms. In ¢oderake the objective
function differentiable, we also replace the 1-norm terms with differentiapproximations, e.g., for

sufficiently smalle > 0, /27 + € = |z;| [54]. Our objective function can be formulated as follows, for



Ao, AB,C,V)=|X—-[XABC[|*+[|Y-AZVT|?
R R
—I—BZ\/)\%—Fe—FBZ\/J%—i—e
r=1 r=1

R ) R ) (4)
+ad (la =12 +ad (bl —1)
r=1 r=1

R R
+ay (lerll =17 +a) (vl -1)°
r=1 r=1

Missing data

The modelin Eqg. (4) extends to joint analysis of incomplete data sets, i.e. gdataith missing entries.
Missing data is encountered in many applications due to errors in the dataioollpmcess or costly
experiments. In the presence of missing entries, we can still jointly analysenpiete data sets by
ignoring missing entries and modeling only the known data entries as follows:

fuX o, AB,C, V) =Wy = (X — [\ A, B, C]) | + | Wy # (Y — ASVT) ||?
R R
+B8Y VA te+B) Voite
r=1 r=1

R ) R ) (5)
+a) (la =1 +a) (b [|—1)
r=1 r=1

R R
+a) (e |- +ad (|ve ] - 1)
r=1 r=1

where + denotes the Hadamard product éWdy € R/*/*X indicates the missing entries & <
RIXJ>XK sych that
1 if 245, is known
Wijk = . . ..
0 if ;5 is missing

Similarly, Wy € R*M indicates the missing entries M < R/*M. Modeling only the known
data entries has shown to be useful when fitting CP models in terms of both milsgagstimation
performance [55,56] and computational efficiency [56]. Recently, axeehalso studied the CMTF
model in Eg. (2) in terms of missing data estimation using a similar formulation [52]e, ke only
show that the structure-revealing CMTF model can easily handle missindpaatée do not focus on
the missing data estimation problem in this paper.

Algorithm

Previously, we have studied the minimization of the objective for the original Elhodel in Eq. (2)

[14] using an all-at-once gradient-based optimization approach, whiebsstine optimization problem
for all factor matrices simultaneously. Here, we extend that work to fit thetstre-revealing CMTF
model and focus on the minimization of the objective function in Eq. (4).

We first briefly discuss the computation of the gradient. The gradient eanoimputed by taking the
partial derivates off with respect to the factor matrices and the vectondo. The gradientV f of
sizeR(I +J+ K + M +2) can be formed by vectorizing the partials with respect to the factor matrices



and concatenating them with the partials with respect to the vektarslo as follows:
ar\ " P P o \T o o]
Vf= vec(afi) vec( f) vec( f) vec(a{c,) % %

LetT = [X\;A,B,C] andZ = AXVT. Assuming that each term ifiis multiplied by% for ease of
computation, the partial derivatives can be computed as

0 _
ai (T - X)) ATOCOB) +(Z - Y)VE +a(A - A)
af T 5

6B (T(Q) — (2))()\ ® C ® A) + Oé(B — B)

of T ~
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where x,, denotes the tensor-vector product in it mode;® denotes the Khatri-Rao product, and
X () denotes the tensdX unfolded in thenth mode. Unfolding (or matricization) in theth mode
rearranges a higher-order tensor as a matrix by using the mdidbers as the columns of the resulting
matrix (See [42,43] for detailsA corresponds te\ with columns divided by their 2-norms. Hereis
set to10~5.

Once the gradient is computed, we use the Nonlinear Conjugate Gradie@) (Hethod [53] with the
Moré-Thuente line search as implemented in the Poblano Toolbox [57] @ardhwvergence properties
of NCG, we refer interested readers to [53]). Any other first-ordethotesuch as the other algorithms
implemented in the Poblano Toolbox can also be used to fit the model. Note thatwselang a
non-convex optimization problem and cannot guarantee to reach thd globenum. Therefore, we
use random initializations and pick the solution with the minimum function value inxqeraments in

the next section. The computational cpst iterationdepends on the gradient computations, and in the
case of a third-order tensor of si2é x N x N coupled with a matrix of sizé&/ x N, the leading term

in the gradient computation (N3 R) for an R-component model.

Results and discussion

In this section, we first compare the performance of our model with the tradit©MTF model us-
ing simulated coupled data sets in terms of identifying shared/unshared centpofliVe then use the
proposed model to jointly analyze LC-MS and NMR measurements of a set tfinggxwith known
chemical composition and demonstrate that our model can successfullyectichemicals used in
the mixtures, extract the relative concentrations of the chemicals accuaattigrovide promising re-
sults in terms of identifying shared/unshared chemicals.



Simulations

We generate simulated coupled data sets with different underlying strsi@ndecompare the original
CMTF formulation in Eqg. (2) with the model in EqQ. (4).

Experimental set-up

We generate factor matricés ¢ R/ B € R/*F C ¢ REXE andV e RM* ! with entries randomly
drawn from the standard normal distribution. The columns of factor matdcesiormalized to unit
norm. Here, we sef = 50, J = 30, K = 40 and M = 20. The factor matrices are used to construct a
third-order tensof = [A; A, B, C] coupled with matrixY = AX V', where and diagonal entries

of diagonal matrix3, i.e., o of length R, correspond to the weights of rank-one third-order tensors
and matrices, respectively. A small amount of Gaussian noise is addetatsata. Using four sets
of weights, we generate cases wh&eomponents are shared differently among coupled data sets: (i)
Case 1: One shared and one unshared component in each data Seti[¢.0 1] ande =[1 1 0]T,
whereR = 3. (ii) Case 2: One unshared component in the matrix,Ae= [1 1 0]T ando = [1 1 1]T,
whereR = 3. (iii) Case 3: One unshared component in the third-order tensordi.e.,[1 1 1]T and

o =[110]T, whereR = 3. (iv) Case 4: One shared and one unshared component in the thid-or
tensor as well as two unshared components in the matrixX.es,[1 1 0 0]T ande = [1 0 1 1]T,
whereR = 4.

Once coupled data sets are generated, they are jointly factorized usit@df®nal CMTF model

in Eq. (2) and our proposed structure-revealing CMTF model in Eq.(réferred to as Advanced
CMTF (ACMTF)). As described in Section “Methods”, we use a gradleaged all-at-once optimiza-
tion approach for fitting ACMTF, which we call ACMTF-OPT. Similarly, for fitgrihe model in Eq. (2),
CMTF-OPT [14] is used and it is also based on a gradient-based alleatapproach. Both CMTF-OPT
and ACMTF-OPT are implemented in the MATLAB CMTF Toolbox (available from
http://www.models.life.ku.dk). As stopping conditions, both methods use the eetdtange in function
value (set td0~1°) and the 2-norm of the gradient divided by the number of entries in triiegra(set

to 10719).

Numerical results

Experiments demonstrate the potential problem with the CMTF model and hals tofadentify shared
and unshared components due to uniqueness issues. On the othesurastd,cture-revealing model
can successfully identify shared/unshared components through tbésysasity penalties on the com-
ponent weights. Figure 3, 4, 5, 6 demonstrate the weihasido, estimated using both models for 100
runs returning the same function vatuee., multiple random starts are used and the minimum function
value is obtained 100 times. When we use CMXRndo are estimated by normalizing the columns
of the extracted factor matrices. In Figure 3, we expect to rechver [1 0 1]T ande = [1 1 0]T;
however, we observe that weights captured by CMTF vary hiding theutmderlying structure of the
data sets. On the other hand, ACMTF reveals the true structure indicatirntp¢ia is one shared and
one unshared component in each data set. The order of original tladte’l components is different
due to the permutation ambiguity in the models. Also, due to the permutation ambiguitgsaible
permutations of the components for different runs returning the minimumiémealue are compared
and the results are reported based on the best matching permuta&imttom plots in Figure 3 show
how well the extracted factors match with the true columns of factor maAtriket &, be therth column

of the factor matrixA extracted from the common mode. The match score correspo |T o
after finding the best matching permutation of the columns. These plots shomotranly the welghts
can indicate shared/unshared components but also factor vectore eatirbated well using ACMTF.
Similarly, in Figure 4, we expect to see three non-zero weights for the maititveo non-zero weights


http://www.models.life.ku.dk

for the tensor. However, there is variation for the same function valugplarly in o hiding the struc-
ture of the data sets and preventing recovery of the factor vectorsadelyuvhen data sets are modeled
using CMTF. ACMTF, on the other hand, can identify shared and uedr@mponents accurately. Un-
like Case 1 and 2, CMTF performs well for Case 3, where the tensorlhtasese components and two
of them are shared with the matrix (Figure 5).

Figure 3 Case 1 - Weights\ and o as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

Figure 4 Case 2 - Weights\ and o as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

Figure 5 Case 3 - Weights\ and o as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

Figure 6 Case 4 - Weights\ and o as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

While ACMTF performs well for all three cases, we should note that umgsg properties of the model
need to be better understood. For instance, in Case 4, there are tvesathsbhmponents in the matrix
and, in Figure 6, match scores for ACMTF indicate that underlying factansno longer be perfectly
recovered. That is mainly because the model is no longer unique. Twargtscomponents in the
matrix span the same subspace in different runs returning the same fuadtierbut components from
different runs can no longer be compared using the match score.

We also show how effective the penalty method is in terms of satisfying the amii-nonstraints in
Figure 7. Figure 7 illustrates the 2-norm of each column of the factor matrixach enode as the
algorithm runs. We observe that while norms of the columns fluctuate initiallgnvwthe algorithm
stops, they are all close to 1. This indicates that even though we solve rierained optimization
problem in (3) using the quadratic penalty method, we can still satisfy theéraorts. The parameter

« is set toa = 1 for all modes since we want the quadratic penalty terms to have the same aight
the first two terms in the objective in Eq. (4). Note that before fitting the modeh elata set, i.e.,
tensorX and matrixY, is divided by its Frobenius norm. Therefore, by selecting 1, we give equal
importance to every term in the objective except the sparsity-inducingdtigsnaVe use3 = 103 as

the sparsity penalty parameter in our experiments.

Figure 7 2-norm of each column of the factor matrix in each mode.

In order to assess the sensivity of ACMTF to the selection ofsthralue, we show the performance of
the model for Case 1 using differefitvalues, i.e3 € {0,107°,107%,1073,1072,10~'} in Figure 8.

We observe that except for = 0, shared and unshared factors can be correctly identified for all other
(3 values. However, for higher values gf i.e., 3 = 1072 and3 = 107!, it becomes difficult to get

the true solution, i.e., out of 1000 random starts, only few runs returnuikestiiution for highs values
while the true solution is reached by approximately 50%—-75% of the randota &ta3 = 10~* or
f=10"°¢,

Figure 8 Sensitivity of ACMTF with respect to 3.

Finally, we discuss how we interpret the extracted weights. For instaoc&dse 1, while the true
nonzero weights are set to 1 X and o when generating the data sets, the estimated values of the



nonzero weights by the ACMTF model are approximatef0 in Figure 3(b). That is due to the fact
that models are fitted to data sets divided by their Frobenius norms, whicppareximatelyl.42. In
order to find the actual weights in each data set, we would multiply the captwigthte by the norm

of each data set. However, in joint data analysis, we are looking for ¥geigat can show the relative
significance of a factor in one data set with respect to the other dataathts, than absolute weights in
each data set. For instance, if we generate coupled data set\usifitD0 0 100]" ando = [1 1 0]T,

the ACMTF model still reveals the weights given in Figure 3(b). Furthermbeefactor has different
contributions to the data sets, that will also be revealed by the weights. faméesin Case 2, data sets
are generated usiny = [1 1 0]" ando = [1 1 1]T, where the shared component contributes more
to X compared tdY. That is revealed by the weights extracted by the ACMTF model in Figurg 4(b
whereX = [0.70 0.70 0]T andé = [0.57 0.56 0.57]T.

Extension to multiple data sets

Our experiments so far have focused on joint analysis of two data sefts, e also demonstrate that
the proposed model has a promising performance in terms of identifyingdghashared factors when
more than two data sets are jointly analyzed. We use the coupled data setingiigure 9(a) as an
illustrative example.

Figure 9 Modeling of more than two data sets using ACMTF. (a)A third-order tensofX coupled
with matricesY andZ in the first mode(b) Weights\, o and~ captured by ACMTF as well as the
match score for factor matriA.

In order to construct the data sets in Figure 9(a), factor matdAcesR’ < B ¢ R/*E C e REXE,

V € RM*E andS € RY*E are generated as described in the Experimental Set-up section. Here, we
setl = 50,J = 30, K = 40, M = 20, L = 40, andR = 4. Factor matrices are then used to construct

a third-order tensoX = [; A, B, C] coupled withY = AXVT andZ = ATST in the first mode,
wherel, diagonal entries of the diagonal matB i.e., o, and diagonal entries of the diagonal matrix

T, i.e.,~, correspond to the weights of the components. Figure 9(b) demonstraferformance of the
ACMTF model in terms of identifying shared/unshared components whdndzda set has one shared
and one unshared component; in other words, data sets are geneiatgihe weights\ = [1 1 0 0]T,
o=[1010]T,andy = [1 0 0 1]7. We observe that the extracted weights reveal that there is one
component shared by all three data sets and one unshared compogesrtt thata set.

Real data

In this section, the structure-revealing CMTF model is used to jointly analjzesion NMR and LC-
MS measurements of 29 mixtures prepared using five chemicals. We ficsit#ethe sample prepara-
tion and the measurements, and then demonstrate the performance of ouimtedek of capturing
the signatures/patterns related to chemicals used to prepare the mixtures.

Sample preparation and measurements

Five chemicals with different relative sizes, hence, different diffusieere selected: two peptides, a sin-
gle amino acid, a sugar and an alcohol, i.e., Valine-Tyrosine-Valine (MaWal), Tryptophan-Glycine
(Trp-Gly), Phenylalanine (Phe), Maltoheptaose (Malto) and Prop&8kamples were prepared with
varying concentrations according to a predetermined design (see Addifilerl) in a phosphate buffer
(pH 7.4). The buffer was prepared with deuterated water accordingtotacol for biological sam-
ples [58] but with a 10-fold increase in the concentration of TSP (sodu{imrBethylsilyl)-propionate-
2,2,3,3-d) in order to ensure sufficient signal intensity for reference dedativa [59]. The 10-fold



increase in the concentration of TSP did not affect the pH of the bulechemicals were purchased
from Sigma Aldrich and used without further purification. Samples weredtat 3C until they were
measured.

NMR spectra of the samples were recorded on a Bruker DRX 500 spestizo (Bruker Biospin Gmbh,
Rheinstetten, Germany) operating at a proton frequendy0ofl3 MHz. For each spectrum, 32768
complex points were acquired in 64 scans with a recycle delay of 2 seapradsominal temperature
of 298 K. The spectrometer was equipped with a 5 mm BBI probe and spestearecorded using the
Oneshot45 sequence [60] with 8 gradient levels ranging from 3.4 to 2609 Gwith equal steps in gra-
dient squared in nominal gradient amplitude. The diffusion time was 100 mhargtadient encoding
time was 1 ms. All processing of the data, including phase correction, agtimtizFourier transforma-
tion, baseline correction, referencing to TSP signal, and referermoadaution, was performed using
the DOSY Toolbox [61]. In order to correct for instrument instabilitiefgrence deconvolution was per-
formed using the TSP methyl signal as a reference, using a target lpgeshé.5 Hz [59,62]. The MAT-
LAB code for the DOSY toolbox is freely available via http://dosytoolbox.chemisi@nchester.ac.uk/.
NMR measurements for each mixture correspond to a set of spectraedcatrdifferent gradient lev-
els. Since we have several mixtures, NMR data can be arranged as-arttérdtensor with modes:
mixtures, chemical shift and gradient levels (Figure 1). The chemicdl(gkif, the conventional scale
for a'H NMR spectrum) is related to the chemical environment of the protons, argtadeent levels
encode the diffusion property of the various molecular species.

Prior to LC-MS measurements, 29 samples were diluted to 10 ppm in water lbsebsiently analyzed
with ultra-performance liquid chromatography (UPLC) system coupledadiyple time-of-flight (Pre-
mier QTOF) mass spectrometer (Waters Corporation, Manchester, Uk). $aanple 104.L) was in-
jected into the UPLC equipped withla7um C18 BEH column (Waters) operated with a 6-min linear
gradient fromD.1% formic acid in water td).1% formic acid in20% acetone80% acetonitrile. The data
were acquired on the positive electrospray ionization (ESI) mode with tlwsviog settings: capillary
probe voltage was set to 2.8 keV, desolvation gas temperature was’ax,400e voltage was 40 V, with
the Ar collision gas energy of 10 V. The centroided raw data were ctatvéw an intermediate netCDF
format with the DataBridge utility provided with the MassLynx software. Automatic peak detection
and integration were performed using the XCMS package [63]. Sinceidiugil chemical compounds
give rise to more than one fragment ion upon ionization, these ion-feagarsrated by XCMS, were
grouped together using the CAMERA package [64]. The final LC-M& dat is in form of a mixtures
by features matrix (Figure 1).

Analysis

Before discussing joint analysis of the third-order terf§aepresenting diffusion NMR measurements
and the matrixY representing LC-MS data (Figure 1), we briefly discuss the analysi® kR data
individually. X has an underlying CP structure [20,21,65-68] and can be modeled usiRgwo@el,
i.,e.,,X ~ [A,B, C]. Here,A, B andC correspond to the factor matrices in the mixtures, chemical shift
and gradient levels modes, respectively. When we m¥deding a 5-component CP model, we observe
that each CP component corresponds to one of the chemicals used in theemiXiue signatures in the
chemical shift mode (the NMR spectra), i.e., the columns of m&rias well as the exponential decay
signatures represented by the columns of matrigan be used to identify these chemicals. Figure 10
shows the NMR signatures extracted by the CP model (Signatures in the ehshiftmode (spectra)

of pure chemicals are given in Additional file 2 as a reference). Maroaptures the relative concen-
trations of the extracted components in the mixtures and we observ& thatches well with the design
used in sample preparation in Figure 11. Malrixepresenting LC-MS measurements can be analyzed
individually using matrix factorizations. However, matrix factorizations witheny constraints on the
factors have a rotational freedom; therefore, capturing the patterresponding to each chemical us-
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ing only LC-MS data is challenging. One potential approach may be to usgegpancipal component
analysis [69]; however, even with careful fine-tuning of the sparsatameter, the underlying design
cannot be captured as well as in Figure 11 due to unavoidable experimeis&in LC-MS (results not

shown).

Figure 10 Columns of factor matrix B corresponding to the chemical shift (ppm) mode (i.e., NMR
spectra). The figure in the bottom-right corner shows the columns of factor mé@troorresponding to
the gradient levels mode. These are the factor matrices captured by the @Poffdi¥R data.

Figure 11 Columns of factor matrix A corresponding to the mixtures mode extracted by the CP
model of NMR data. Red lines show the columns & while the blue line shows the original relative
concentrations of the chemicals used in sample preparation, i.e., normalizethse®f the matrix given
in Additional file 1.

Analysis of the diffusion NMR data not only reveals the underlying strestum the chemical mixtures
but can also be used to extract the relevant patterns correspondimgsantte chemicals from data sets,
which are much harder to analyze, e.g., LC-MS measurements. LC-MSrdattien noisy and contain
many irrelevant features due to the sensitivity of the analytical technigex, Ne jointly analyze NMR
and LC-MS measurements using the structure-revealing CMTF model amohd&ate the benefits of
joint analysis of these data sets. As a preprocessing step, LC-MSdeata scaled by their standard
deviations and both NMR and LC-MS data sets are scaled by their resp&ctibenius norms. We
jointly analyze the data sets using (i) Model 1: ACMTF model with no sparsibalg i.e.,3 = 0,
and (ii) Model 2: ACMTF model with sparsity penalties on the weights of ran&-components, where
= 103. For both models, the number of components is sét te 6. Since there are five chemicals
in the samples and we expect to have some experimental noise, vie-ugecomponents. We discuss
the choice of the number of components further in the Discussion section.

Model 1 is equivalent to the traditional CMTF model in the sense that it doegnpose sparsity on
the weights of rank-one components. Similar to our observations on simulatedets, we observe
that weights captured by Model 1 (Figure 12(a)) for the runs returtiagame function value suggest
that the model fails to give a unique solution. Model 2, on the other hapdyres the weights given
in Figure 12(b) for the runs returning the same function value, whichestgginiqueness, and extracts
the components illustrated in Figure 13. The model is able to capture the undeshemicals and,
as shown in Figure 14, it is also effective in terms of capturing the undgriyasign used in sample
preparation. In Figure 14, we plot the columns of the factor mairifor all (98) runs returning the
same function value in red and the true design is plotted in blue. This furthdralies the suggested
uniqueness of the model. In order to understand how components aee stmaong data sets, we look
at the weights of rank-one components in Figure 12(b). While the compocemesponding to Val-
Tyr-Val, Trp-Gly, Phe and Malto are shared by both data sets, the cagnpoarresponding to propanol
has a very small weight{ 0.1) in LC-MS. Since propanol is not retained in the liquid chromatography
column and eluted with the solvent front, it does not show up in LC-MS measemts; therefore,
having a small weight for propanol in LC-MS is promising. Similarly, one ofdbeponents in LC-MS

is modeling noise (which could be both structured and random) and bamhsslp in NMR. That is
also expected since this LC-MS data set is very noisy compared to the NMR da

Figure 12 Weights and o captured by (a) Model 1 (3 = 0) and (b) Model 2 (3 = 1073).

Figure 13 Model 2 - Components extracted by coupled factorizatio of NMR and LC-MS using
ACMTF, where 8 = 10~3. Columns of factor matriceB, C andV are plotted.



Figure 14 Model 2 - ScoresColumns of factor matriXA corresponding to the mixtures mode captured
by coupled factorization of NMR and LC-MS data using ACMTF, whére 10~3. Red lines show the
columns ofA while the blue line shows the original relative concentrations of the chemicaliiores,
i.e., normalized columns of the matrix given in Additional file 1.

By individually analyzing NMR data, we have been able to capture NMR siges of the chemicals.
The benefit of jointly analyzing NMR and LC-MS, on the other hand, is tald:f(i) In addition to the
NMR signatures, we also extract the factor vectors corresponding taaHéS feature mode for each
chemical as shown in Figure 13. The features with high coefficients (in tefraissolute value) in each
factor reveal the features relevant to the chemical modeled by that cemip@ee Additional file 3 for
LC-MS features captured by the model for each component). (ii) Weidhené&-one components in
each data set give an indication of the chemicals visible to each analyticalgaeh

Discussion

Even though the main motivation for a structure-revealing coupled factiomzenodel is to identify
shared/unshared components automatically through modeling constrairgsanbetill several param-
eters to be determined: (i) number of componeritsdnd (ii) sparsity penalty parametet)( In order

to see the sensivity of joint factorization of NMR and LC-MS to these parasiete have fit the model
using different3 values, i.e.3 € {1074,1073,1072,10~'}, for different number of components, i.e.,
R € {5,6,7,8}. If we uses = 10~* or 3 = 102, there are small variations in the weights captured by
the runs returning the same function value even though the weights aréacloisat we have obtained in
Model 2 using3 = 10~3. Using a much highes value, i.e.,3 = 10~!, on the other hand, sparsifies the
weights introducing many zeros and fails to capture the underlying cheminakstms of the number
of components, while the three-way NMR data set has 5 components, fittirgpanonent coupled
model cannot find the underlying components accurately due to the adtigtametured/random noise
in LC-MS. The singular values of the centered-scaled LC-MS data stijuget there are 6 significant
components. Model 2, we have discussed so far, is a 6-componentionbdimce we have not centered
LC-MS data, we have also tried 7 and 8-component models. Using a 7-cemipmodel, true chem-
icals can still be captured but the additional component does not look ngdéalnémd slightly distorts
the true components. Using an 8-component model, we have similar obsesvexicept that the 8th
component has a very small weight (0.1) in both data sets indicating that we may be overfactoring
the data. We plan to study and improve the robustness of the model to ¢wdrfgcwhich can make it
easier to choose the number of components.

In our analysis, we have downsampled the NMR spectra by a factor cfddlbe we use many random
starts to find the “true” solution and it is more efficient to work with downsampletR data. However,
for better interpretability of NMR spectra, high digitization is needed. Whejomdly analyze LC-MS
data with the original NMR data, which have not been downsampled, usirggathe model parameters
used for Model 2, the model reveals almost exactly the same componemeayids, showing that the
model is not sensitive to minor changes in the data.

While the model is promising, we should note that it is not perfect even forlgimgxtures like we have
analyzed here. One of the issues is that columns of factor Métcisrresponding to the LC-MS features
mode are dense and not easily-interpretable. /hecolumn of V contains features corresponding to
the chemical which has its NMR signatures assttiecolumn of matrixB andC; however, in addition
to the relevant features, it also contains irrelevant features regasdéalse-positives (see Additional
file 3). Another issue is that it would be more useful to get zero weightsadsié small weights for
unshared components (as in simulated data sets). As pointed out in Sectickgf®and”, several
methods have been proposed for the identification of shared/unst@rgmbeents within the context
of joint analysis of matrices, and the performance comparison of those dsettith the structure-



revealing CMTF model is a topic of future research. However, note thaé shese methods focus
on joint analysis of matrices, there are identifiability issues and the identifiabflitgeomodels are
achieved using constraints on the components, such as orthogonality irb&<&8l approaches [34]
and GSVD-based methods [1]. The structure-revealing CMTF model, ewttier hand, does not
impose any constraints on the components (other than the unit norm cotis$tréire structure-revealing
CMTF model has such an advantange over joint matrix factorization methadsideethe CP model
used to model the higher-order tensor is capable of uniquely capturingntherlying factors. The
CP model is unique under mild conditions up to permutation and scaling (fori@wef uniqueness
studies, see [43]). Furthermore, while we have seen that the struetgaling CMTF model extends
to multiple data sets, some of these joint matrix factorization methods have onlptm®sed for two
data sets [34].

Potential biological applications of interest

In this section, we have illustrated how the structure-revealing CMTF maiebe used to capture
chemicals in mixtures measured using different analytical methods. Intordardy both the strengths
and the limitations of the model, we have used prototypical experimental codatadets, where the
underlying ground truth is known. In many biological applications, we cooness with such hetero-
geneous coupled data sets. For instance, the potential of fluorespateoscopic measurements of
human plasma samples in cancer diagnostics has recently been demonatrdtbdsed on the prior
chemical knowledge, the fluorescence measurements are expectedwoaf@® model [70]. In fluo-
rescence spectroscopy, measurements for each sample are riegkasean excitation-emission matrix,
and multiple samples form a third-order tensor with modes: samples, excitatioenaission wave-
lengths. Plasma samples can also be measured using LC-MS and NMR, whidmamonly used in
metabolomics studies [6]. Measurements from LC-MS and NMR are usuaipged as samples by
features matrices. In a recent study [25], we have jointly analyzedefeence and NMR measure-
ments of plasma samples of a group of verified colorectal cancer patiehtsgnoup of controls with
nonmalignant findings using the structure-revealing CMTF model. The praisnnesults demonstrate
that there are shared/unshared components, and two of the sharednemspachieve arourid .4%
accuracy (with63.6% sensitivity and78.1% specificity) in terms of separating the two groups. Even
though the number of chemicals that can be detected by fluorescent®ppeapy is limited compared
to the chemicals detectable by NMR, the components extracted from the flelcesdata are easily
interpretable, and this can make the identification of biomarkers easier.

Such heterogeneous coupled data sets are also encountered in bibsigdalgrocessing. In order to
have a better understanding of brain activities, it is highly desirable to joint{yae EEG (electroen-
cephalogram) and fMRI (functional Magnetic Resonance Imaging) sidpegause EEG has a high tem-
poral resolution while fMRI provides a better spatial resolution. Cumatd fusion approaches for EEG
and fMRI rely on joint analysis of fMRI data with signals from a single EE@mfel or concatenated
signals from multiple channels [71,72]. On the other hand, it may be possiateaioge multi-channel
EEG signals as a third-order tensor and jointly factorize the tensor with thxmegtresenting the fMRI
data using the structure-revealing CMTF model [72].

Conclusions

Joint analysis of data sets from multiple sources has the potential to enkamwédge discovery.
However, we are still lacking the data mining tools for data fusion and neetter lunderstanding of
the available models in order to improve them to address the challenges inslata fa this paper, we
have introduced an unsupervised data fusion model that can jointly anadyerogeneous, incomplete
data sets with shared/unshared components by formulating data fusiormagledcmatrix and tensor
factorization problem with sparsity penalties on the weights of rank-one aoemts. Using numerical



experiments, we have demonstrated that the proposed model outperfertnaditional coupled fac-
torization model commonly used in the literature in terms of identifying shareddnedttomponents.
Furthermore, we have measured a set of mixtures with known chemical citimposing two different
analytical techniques (LC-MS and NMR) and assessed the performétieeproposed model in terms
of capturing the underlying chemicals, true design and shared/unstamggbnents. The model pro-
vides promising performance and reveals the ground truth in these mixitoigeddition to the strengths
of the proposed model, we have also discussed the potential drawtsiegthis illustrative example.

While the structure-revealing CMTF model inherits uniqueness propertiesthe CP model, the over-
all uniqueness properties of the structure-revealing CMTF model ndszluaderstood better, as it has
been done for coupled CP factorizations in a recent study [73].

We intend to extend our studies in several directions: (i) In order to exdesmily-interpretable patterns
with less false-positives from LC-MS features mode, we plan to imposesispaonstraints on the
factors. Our preliminary studies show that we can decrease the numia¢sespositives; however, the
model distorts the NMR signatures. (ii) Our algorithmic approach based @mstrained optimization
is accurate but not flexible enough to impose constraints. The feasibilityradra flexible modeling
framework for data fusion making use of general purpose optimizatioetsolvill be explored in future
studies [74].

Endnotes

aFunction values are considered the same if they have all digits the same upsixthiheecimal place.
b\When we fit the models and obtain the same function value multiple time#thteeupled component
(ai, by, c;, v;) in one run may be thgth coupled componertit;, b;, c;, v;) in another run. Therefore,
all possible permutations of the coupled components for different rins@npared to find the best
matching components across different runs.

“This is valid when function values are considered to be the same when theeddé between them is
less thanl0~".
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