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Abstract

Background

Analysis of data from multiple sources has the potential to enhance knowledge discovery by capturing
underlying structures, which are, otherwise, difficult to extract. Fusingdata from multiple sources
has already proved useful in many applications in social network analysis, signal processing and
bioinformatics. However, data fusion is challenging since data from multiple sources are often (i)
heterogeneous (i.e., in the form of higher-order tensors and matrices),(ii) incomplete, and (iii) have
both shared and unshared components. In order to address these challenges, in this paper, we introduce
a novel unsupervised data fusion model based on joint factorization of matrices and higher-order
tensors.



Results

While the traditional formulation of coupled matrix and tensor factorizations modeling only shared
factors fails to capture the underlying structures in the presence of both shared and unshared factors,
the proposed data fusion model has the potential to automatically reveal shared and unshared compo-
nents through modeling constraints. Using numerical experiments, we demonstrate the effectiveness
of the proposed approach in terms of identifying shared and unshared components. Furthermore,
we measure a set of mixtures with known chemical composition using both LC-MS(Liquid Chro-
matography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that
the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures
and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in
terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS
by coupling with the diffusion NMR data.

Conclusions

We have proposed a structure-revealing data fusion model that can jointlyanalyze heterogeneous, in-
complete data sets with shared and unshared components and demonstrated itspromising performance
as well as potential limitations on both simulated and real data.
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Background

Data fusion, in other words, joint analysis of data from multiple sources, has proved useful in many
disciplines. For instance, in bioinformatics, jointly analyzing multiple data sets representing different
organisms [1,2] or different tissue types [3,4] improves the understanding of the underlying biological
processes. Similarly, in metabolomics, biological fluids such as blood or urine, are investigated us-
ing different analytical techniques, e.g., LC-MS and NMR, and their fusion has the potential for more
accurate biomarker identification [5-7].

An effective way of jointly analyzing data from multiple sources is to represent data from different
sources as a collection of matrices, and then jointly analyze these matrices using collective matrix fac-
torization [8]. Matrix factorization-based data fusion studies have been successfully applied in social
network analysis [9,10], signal processing [11,12] and bioinformatics [1,2,4,5,13]. Recently, joint ma-
trix factorization approaches have been extended to joint analysis of heterogeneous data sets, i.e., data
in the form of matrices and higher-order tensors [14-17]. For instance, mixtures studied by NMR spec-
troscopy (a.k.a. DOSY - diffusion-ordered spectroscopy [18,19]) can be represented as a third-order
tensor with modes: mixtures, chemical shift and gradient levels [20,21] whileLC-MS measurements of
the same mixtures can be represented using a mixtures by features matrix (seeFigure 1). Joint factoriza-
tion of such heterogeneous data has been studied to analyze multi-relationaldata, particularly, in social
networks [15,22-24].

Figure 1 A third-order tensor coupled with a matrix.

While there are many successful applications of joint data analysis, the traditional formulation of joint
factorization of multiple data sets is based on modeling only shared factors. However, data from multi-
ple sources often have both shared and unshared components. If the goal of data fusion is accurate data



reconstruction, e.g., missing data estimation or link prediction, then identification of shared/unshared
factors is not a major concern. On the other hand, in many applications, the goal of data fusion is
to extract and interpret the underlying factors. For instance, in metabolomics applications, underlying
factors need to be captured uniquely so that they can be used further to understand the patterns corre-
sponding to a problem of interest, e.g., a specific type of diet or a disease.Therefore, in this paper,
we develop a novel unsupervised data fusion model for joint factorization of heterogeneous data sets,
which is quite effective in terms of revealing shared and unshared components. Using numerical ex-
periments, we demonstrate that while the traditional formulation, modeling only shared factors, fails to
capture the underlying structures in the presence of both shared and unshared components, the proposed
model achieves accurate identification of shared and unshared components. Furthermore, we study a
set of mixtures of known chemical composition by two analytical techniques, i.e., LC-MS and diffusion
NMR. While NMR can capture all chemicals, one of the chemicals is invisible to LC-MS. We demon-
strate the effectiveness of our model on this prototypical example using real data, where coupled data
sets have both shared and unshared components. This is an extended version of our work [25] where,
we have introduced our model briefly and discussed preliminary findings incancer metabolomics. Here,
we study the performance of the model in depth using both simulated and real data sets, where the un-
derlying ground truth is known. Several other studies have also previously discussed methods revealing
shared and unshared components. However, these studies either focus on coupled matrix factoriza-
tions [1,2,13,26-29] or assume that the number of shared/unshared factors is pre-determined by the user
based on the performance of joint factorization in the training set (when considered in a supervised set-
ting) [30]. Modeling shared and unshared components has also been considered within the context of
Canonical Correlation Analysis [31-34] focusing only on joint analysis of matrices.

We survey the related work further in Section “Related work”. In Section “Methods”, we introduce
our data fusion model and the algorithmic approach. Section “Results and discussion” demonstrates the
performance of the proposed approach on simulated and real data sets.Section “Conclusions” concludes
with future research directions.

Related work

Data fusion has been studied for decades dating back to the models aiming to capture the common
variation in two data sets, i.e., Canonical Correlation Analysis [35]. Earlier studies on data fusion have
focused on joint factorization of multiple matrices [1,4,8-12,36-38]. The coupled matrix factorization
problem is typically formulated as

f(U,V,W) = ‖X−UVT ‖2 + ‖Y −UWT ‖2 , (1)

whereX ∈ R
I×J andY ∈ R

I×K are matrices coupled in the first mode/dimension and the factor
matrix corresponding to the common mode,U ∈ R

I×R, is shared by both factorizations. Here,R

indicates the number of factors. This formulation extends to factorization of multiple matrices coupled
in different modes. In some applications such as in metabolomics, sparsity-inducing penalty terms are
added to coupled matrix factorizations in order to extract interpretable factors [5,39]. Recently, a convex
formulation of coupled matrix factorizations has also been proposed [40].Tensor factorizations [41-43]
can also be considered as one way of jointly analyzing multiple matrices forming the slices of a third-
order tensor; however, neither coupled matrix factorization nor tensor factorization methods can handle
joint analysis of heterogeneous data sets.

As an extension of Eq. (1), joint factorization of heterogeneous data, e.g., a third-order tensorX ∈
R
I×J×K , coupled with a matrixY ∈ R

I×M , can be formulated as

f(A,B,C,V) = ‖X− JA,B,CK ‖2 + ‖Y −AVT ‖2 , (2)



where tensorX and matrixY are simultaneously factorized through the minimization of the objective
function in Eq. (2), which fits a CANDECOMP/PARAFAC (CP) [44,45] model toX and factorizesY
in such a way that the factor matrix corresponding the common mode, i.e.,A ∈ R

I×R is the same.
B ∈ R

J×R andC ∈ R
K×R are factor matrices corresponding to the second and third modes ofX,

respectively. We use the notationX = JA,B,CK to denote the CP model.V ∈ R
M×R is the factor

matrix that corresponds to the second mode ofY. This formulation of coupled matrix and tensor fac-
torizations (CMTF), dating back to the studies of Harshman and Lundy [46]and Smilde et al. [16], has
recently been a topic of interest in many studies [3,14,47-50]. The model has been extended to different
loss functions [17,22,23], and tensor factorizations other than CP [17,22,50,51]. It has also shown to be
quite effective in addressing missing data estimation [24,51,52] and link prediction problems [22].

Methods

Model: structure-revealing coupled matrix and tensor factorizations

The coupled matrix and tensor factorization model given in Eq. (2) makes animplicit assumption that all
columns of factor matrixA, i.e.,ar for r = 1, . . . , R, are shared by the matrix and the third-order tensor,
whereR indicates the number of factors. When all factors are shared across data sets, the model can
accurately capture the underlying factors [14]. However, in general,there are both shared and unshared
factors in coupled data sets. Therefore, we reformulate the problem in such a way that through modeling
constraints, we let the model identify shared/unshared components. We modify the objective function
in Eq. (2) and rewrite the optimization problem as follows:

min
λ,σ,A,B,C,V

‖X− Jλ;A,B,CK ‖2 + ‖Y −AΣVT ‖2 + β ‖λ ‖1 + β ‖σ ‖1
s.t. ‖ar ‖ = ‖br ‖ = ‖ cr ‖ = ‖vr ‖ = 1 for r = 1, . . . , R,

(3)

whereλ ∈ R
R×1 andσ ∈ R

R×1 correspond to the weights of rank-one components in the third-order
tensor and the matrix, respectively (Figure 2).Σ ∈ R

R×R is a diagonal matrix with entries ofσ on the
diagonal.‖ . ‖ denotes the Frobenius norm for higher-order tensors/matrices and the 2-norm for vectors
while ‖ . ‖1 denotes the 1-norm of a vector, i.e.,‖x ‖1 =

∑R
r=1 |xr|. β ≥ 0 is a penalty parameter.ar

denotes therth column ofA. In this formulation, our goal is to sparsify the weightsλ andσ using the
1-norm penalties so that unshared components will have weights equal orclose to 0 in one of the data
sets.

Figure 2 Illustration of a coupled factorization of a third-order ten sor and a matrix.

In order to solve this constrained optimization problem, we first convert it intoa differentiable uncon-
strained optimization problem and then use a first-order optimization algorithm. Using the quadratic
penalty method [53], we convert the constraints into penalty terms. In orderto make the objective
function differentiable, we also replace the 1-norm terms with differentiableapproximations, e.g., for

sufficiently smallε > 0,
√

x2i + ε = |xi| [54]. Our objective function can be formulated as follows, for



α ≥ 0:
f(λ,σ,A,B,C,V) = ‖X− Jλ;A,B,CK ‖2 + ‖Y −AΣVT ‖2

+ β

R
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(4)

Missing data

The model in Eq. (4) extends to joint analysis of incomplete data sets, i.e., data sets with missing entries.
Missing data is encountered in many applications due to errors in the data collection process or costly
experiments. In the presence of missing entries, we can still jointly analyze incomplete data sets by
ignoring missing entries and modeling only the known data entries as follows:

fw(λ,σ,A,B,C,V) = ‖WX ∗ (X− Jλ;A,B,CK) ‖2 + ‖WY ∗ (Y −AΣVT) ‖2

+ β
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R
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(‖vr ‖ − 1)2,

(5)

where∗ denotes the Hadamard product andWX ∈ R
I×J×K indicates the missing entries ofX ∈

R
I×J×K such that

wijk =

{

1 if xijk is known,

0 if xijk is missing.

Similarly, WY ∈ R
I×M indicates the missing entries inY ∈ R

I×M . Modeling only the known
data entries has shown to be useful when fitting CP models in terms of both missingdata estimation
performance [55,56] and computational efficiency [56]. Recently, we have also studied the CMTF
model in Eq. (2) in terms of missing data estimation using a similar formulation [52]. Here, we only
show that the structure-revealing CMTF model can easily handle missing databut we do not focus on
the missing data estimation problem in this paper.

Algorithm

Previously, we have studied the minimization of the objective for the original CMTF model in Eq. (2)
[14] using an all-at-once gradient-based optimization approach, which solves the optimization problem
for all factor matrices simultaneously. Here, we extend that work to fit the structure-revealing CMTF
model and focus on the minimization of the objective function in Eq. (4).

We first briefly discuss the computation of the gradient. The gradient can be computed by taking the
partial derivates off with respect to the factor matrices and the vectorsλ andσ. The gradient∇f of
sizeR(I+J+K+M +2) can be formed by vectorizing the partials with respect to the factor matrices



and concatenating them with the partials with respect to the vectorsλ andσ as follows:

∇f =

[

vec

(

∂f
∂A

)T

vec

(

∂f
∂B

)T

vec

(

∂f
∂C

)T

vec

(

∂f
∂V

)T
∂f
∂λ

T ∂f
∂σ

T

]T

Let T = Jλ;A,B,CK andZ = AΣVT. Assuming that each term inf is multiplied by 1
2 for ease of

computation, the partial derivatives can be computed as

∂f

∂A
= (T(1) −X(1))(λ

T �C�B) + (Z−Y)VΣ+ α(A− Ā)

∂f

∂B
= (T(2) −X(2))(λ

T �C�A) + α(B− B̄)

∂f

∂C
= (T(3) −X(3))(λ

T �B�A) + α(C− C̄)

∂f

∂V
= (Z−Y)TAΣ+ α(V − V̄)

∂f

∂λr
= (T −X)×1 ar ×2 br ×3 cr +

β

2

λr
√

λr
2 + ε

∂f

∂σr
= aTr (Z−Y)vr +

β

2

σr√
σr2 + ε

where×n denotes the tensor-vector product in thenth mode;� denotes the Khatri-Rao product, and
X(n) denotes the tensorX unfolded in thenth mode. Unfolding (or matricization) in thenth mode
rearranges a higher-order tensor as a matrix by using the mode-n fibers as the columns of the resulting
matrix (See [42,43] for details.)̄A corresponds toA with columns divided by their 2-norms. Here,ε is
set to10−8.

Once the gradient is computed, we use the Nonlinear Conjugate Gradient (NCG) method [53] with the
Moré-Thuente line search as implemented in the Poblano Toolbox [57] (for the convergence properties
of NCG, we refer interested readers to [53]). Any other first-order method such as the other algorithms
implemented in the Poblano Toolbox can also be used to fit the model. Note that we are solving a
non-convex optimization problem and cannot guarantee to reach the global minimum. Therefore, we
use random initializations and pick the solution with the minimum function value in our experiments in
the next section. The computational costper iterationdepends on the gradient computations, and in the
case of a third-order tensor of sizeN ×N ×N coupled with a matrix of sizeN ×N , the leading term
in the gradient computation isO(N3R) for anR-component model.

Results and discussion

In this section, we first compare the performance of our model with the traditional CMTF model us-
ing simulated coupled data sets in terms of identifying shared/unshared components. We then use the
proposed model to jointly analyze LC-MS and NMR measurements of a set of mixtures with known
chemical composition and demonstrate that our model can successfully capture the chemicals used in
the mixtures, extract the relative concentrations of the chemicals accuratelyand provide promising re-
sults in terms of identifying shared/unshared chemicals.



Simulations

We generate simulated coupled data sets with different underlying structures and compare the original
CMTF formulation in Eq. (2) with the model in Eq. (4).

Experimental set-up

We generate factor matricesA ∈ R
I×R,B ∈ R

J×R,C ∈ R
K×R andV ∈ R

M×R with entries randomly
drawn from the standard normal distribution. The columns of factor matricesare normalized to unit
norm. Here, we setI = 50, J = 30,K = 40 andM = 20. The factor matrices are used to construct a
third-order tensorX = Jλ;A,B,CK coupled with matrixY = AΣVT, whereλ and diagonal entries
of diagonal matrixΣ, i.e., σ of lengthR, correspond to the weights of rank-one third-order tensors
and matrices, respectively. A small amount of Gaussian noise is added to data sets. Using four sets
of weights, we generate cases whereR components are shared differently among coupled data sets: (i)
Case 1: One shared and one unshared component in each data set, i.e.,λ = [1 0 1]T andσ = [1 1 0]T,
whereR = 3. (ii) Case 2: One unshared component in the matrix, i.e.,λ = [1 1 0]T andσ = [1 1 1]T,
whereR = 3. (iii) Case 3: One unshared component in the third-order tensor, i.e.,λ = [1 1 1]T and
σ = [1 1 0]T, whereR = 3. (iv) Case 4: One shared and one unshared component in the third-order
tensor as well as two unshared components in the matrix, i.e.,λ = [1 1 0 0]T andσ = [1 0 1 1]T,
whereR = 4.

Once coupled data sets are generated, they are jointly factorized using thetraditional CMTF model
in Eq. (2) and our proposed structure-revealing CMTF model in Eq. (4)(referred to as Advanced
CMTF (ACMTF)). As described in Section “Methods”, we use a gradient-based all-at-once optimiza-
tion approach for fitting ACMTF, which we call ACMTF-OPT. Similarly, for fitting the model in Eq. (2),
CMTF-OPT [14] is used and it is also based on a gradient-based all-at-once approach. Both CMTF-OPT
and ACMTF-OPT are implemented in the MATLAB CMTF Toolbox (available from
http://www.models.life.ku.dk). As stopping conditions, both methods use the relative change in function
value (set to10−10) and the 2-norm of the gradient divided by the number of entries in the gradient (set
to 10−10).

Numerical results

Experiments demonstrate the potential problem with the CMTF model and how it fails to identify shared
and unshared components due to uniqueness issues. On the other hand,our structure-revealing model
can successfully identify shared/unshared components through the useof sparsity penalties on the com-
ponent weights. Figure 3, 4, 5, 6 demonstrate the weights,λ andσ, estimated using both models for 100
runs returning the same function valuea, i.e., multiple random starts are used and the minimum function
value is obtained 100 times. When we use CMTF,λ andσ are estimated by normalizing the columns
of the extracted factor matrices. In Figure 3, we expect to recoverλ = [1 0 1]T andσ = [1 1 0]T;
however, we observe that weights captured by CMTF vary hiding the trueunderlying structure of the
data sets. On the other hand, ACMTF reveals the true structure indicating that there is one shared and
one unshared component in each data set. The order of original and extracted components is different
due to the permutation ambiguity in the models. Also, due to the permutation ambiguity, all possible
permutations of the components for different runs returning the minimum function value are compared
and the results are reported based on the best matching permutationb. Bottom plots in Figure 3 show
how well the extracted factors match with the true columns of factor matrixA. Let âr be therth column
of the factor matrixÂ extracted from the common mode. The match score corresponds toâT

r
ar

‖ âr ‖‖ar ‖
after finding the best matching permutation of the columns. These plots show that not only the weights
can indicate shared/unshared components but also factor vectors can be estimated well using ACMTF.
Similarly, in Figure 4, we expect to see three non-zero weights for the matrix and two non-zero weights

http://www.models.life.ku.dk


for the tensor. However, there is variation for the same function value particularly inσ hiding the struc-
ture of the data sets and preventing recovery of the factor vectors accurately when data sets are modeled
using CMTF. ACMTF, on the other hand, can identify shared and unshared components accurately. Un-
like Case 1 and 2, CMTF performs well for Case 3, where the tensor has all three components and two
of them are shared with the matrix (Figure 5).

Figure 3 Case 1 - Weightsλ and σ as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

Figure 4 Case 2 - Weightsλ and σ as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

Figure 5 Case 3 - Weightsλ and σ as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

Figure 6 Case 4 - Weightsλ and σ as well as the match score for factor matrixA captured by (a)
CMTF (b) ACMTF.

While ACMTF performs well for all three cases, we should note that uniqueness properties of the model
need to be better understood. For instance, in Case 4, there are two unshared components in the matrix
and, in Figure 6, match scores for ACMTF indicate that underlying factorscan no longer be perfectly
recovered. That is mainly because the model is no longer unique. Two unshared components in the
matrix span the same subspace in different runs returning the same functionvalue but components from
different runs can no longer be compared using the match score.

We also show how effective the penalty method is in terms of satisfying the unit-norm constraints in
Figure 7. Figure 7 illustrates the 2-norm of each column of the factor matrix in each mode as the
algorithm runs. We observe that while norms of the columns fluctuate initially, when the algorithm
stops, they are all close to 1. This indicates that even though we solve the constrained optimization
problem in (3) using the quadratic penalty method, we can still satisfy the constraints. The parameter
α is set toα = 1 for all modes since we want the quadratic penalty terms to have the same weightas
the first two terms in the objective in Eq. (4). Note that before fitting the model, each data set, i.e.,
tensorX and matrixY, is divided by its Frobenius norm. Therefore, by selectingα = 1, we give equal
importance to every term in the objective except the sparsity-inducing penalties. We useβ = 10−3 as
the sparsity penalty parameter in our experiments.

Figure 7 2-norm of each column of the factor matrix in each mode.

In order to assess the sensivity of ACMTF to the selection of theβ value, we show the performance of
the model for Case 1 using differentβ values, i.e,β ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1} in Figure 8.
We observe that except forβ = 0, shared and unshared factors can be correctly identified for all other
β values. However, for higher values ofβ, i.e.,β = 10−2 andβ = 10−1, it becomes difficult to get
the true solution, i.e., out of 1000 random starts, only few runs return the true solution for highβ values
while the true solution is reached by approximately 50%–75% of the random starts for β = 10−4 or
β = 10−5 c.

Figure 8 Sensitivity of ACMTF with respect to β.

Finally, we discuss how we interpret the extracted weights. For instance, for Case 1, while the true
nonzero weights are set to 1 inλ andσ when generating the data sets, the estimated values of the



nonzero weights by the ACMTF model are approximately0.70 in Figure 3(b). That is due to the fact
that models are fitted to data sets divided by their Frobenius norms, which areapproximately1.42. In
order to find the actual weights in each data set, we would multiply the captured weights by the norm
of each data set. However, in joint data analysis, we are looking for weights that can show the relative
significance of a factor in one data set with respect to the other data sets, rather than absolute weights in
each data set. For instance, if we generate coupled data sets usingλ = [100 0 100]T andσ = [1 1 0]T,
the ACMTF model still reveals the weights given in Figure 3(b). Furthermore, if a factor has different
contributions to the data sets, that will also be revealed by the weights. For instance, in Case 2, data sets
are generated usingλ = [1 1 0]T andσ = [1 1 1]T, where the shared component contributes more
to X compared toY. That is revealed by the weights extracted by the ACMTF model in Figure 4(b),
whereλ̂ = [0.70 0.70 0]T andσ̂ = [0.57 0.56 0.57]T.

Extension to multiple data sets

Our experiments so far have focused on joint analysis of two data sets. Here, we also demonstrate that
the proposed model has a promising performance in terms of identifying shared/unshared factors when
more than two data sets are jointly analyzed. We use the coupled data sets given in Figure 9(a) as an
illustrative example.

Figure 9 Modeling of more than two data sets using ACMTF. (a)A third-order tensorX coupled
with matricesY andZ in the first mode,(b) Weightsλ,σ andγ captured by ACMTF as well as the
match score for factor matrixA.

In order to construct the data sets in Figure 9(a), factor matricesA ∈ R
I×R,B ∈ R

J×R,C ∈ R
K×R,

V ∈ R
M×R andS ∈ R

L×R are generated as described in the Experimental Set-up section. Here, we
setI = 50, J = 30,K = 40,M = 20, L = 40, andR = 4. Factor matrices are then used to construct
a third-order tensorX = Jλ;A,B,CK coupled withY = AΣVT andZ = AΓST in the first mode,
whereλ, diagonal entries of the diagonal matrixΣ, i.e.,σ, and diagonal entries of the diagonal matrix
Γ, i.e.,γ, correspond to the weights of the components. Figure 9(b) demonstrates the performance of the
ACMTF model in terms of identifying shared/unshared components when each data set has one shared
and one unshared component; in other words, data sets are generated using the weightsλ = [1 1 0 0]T,
σ = [1 0 1 0]T, andγ = [1 0 0 1]T. We observe that the extracted weights reveal that there is one
component shared by all three data sets and one unshared component ineach data set.

Real data

In this section, the structure-revealing CMTF model is used to jointly analyze diffusion NMR and LC-
MS measurements of 29 mixtures prepared using five chemicals. We first describe the sample prepara-
tion and the measurements, and then demonstrate the performance of our modelin terms of capturing
the signatures/patterns related to chemicals used to prepare the mixtures.

Sample preparation and measurements

Five chemicals with different relative sizes, hence, different diffusion, were selected: two peptides, a sin-
gle amino acid, a sugar and an alcohol, i.e., Valine-Tyrosine-Valine (Val-Tyr-Val), Tryptophan-Glycine
(Trp-Gly), Phenylalanine (Phe), Maltoheptaose (Malto) and Propanol.29 samples were prepared with
varying concentrations according to a predetermined design (see Additional file 1) in a phosphate buffer
(pH 7.4). The buffer was prepared with deuterated water according to aprotocol for biological sam-
ples [58] but with a 10-fold increase in the concentration of TSP (sodium 3-(trimethylsilyl)-propionate-
2,2,3,3-d4) in order to ensure sufficient signal intensity for reference deconvolution [59]. The 10-fold



increase in the concentration of TSP did not affect the pH of the buffer.All chemicals were purchased
from Sigma Aldrich and used without further purification. Samples were stored at 5◦C until they were
measured.

NMR spectra of the samples were recorded on a Bruker DRX 500 spectrometer (Bruker Biospin Gmbh,
Rheinstetten, Germany) operating at a proton frequency of500.13 MHz. For each spectrum, 32768
complex points were acquired in 64 scans with a recycle delay of 2 secondsat a nominal temperature
of 298 K. The spectrometer was equipped with a 5 mm BBI probe and spectrawere recorded using the
Oneshot45 sequence [60] with 8 gradient levels ranging from 3.4 to 26.9 Gcm−1 with equal steps in gra-
dient squared in nominal gradient amplitude. The diffusion time was 100 ms andthe gradient encoding
time was 1 ms. All processing of the data, including phase correction, apodization, Fourier transforma-
tion, baseline correction, referencing to TSP signal, and reference deconvolution, was performed using
the DOSY Toolbox [61]. In order to correct for instrument instabilities, reference deconvolution was per-
formed using the TSP methyl signal as a reference, using a target lineshape of 4.5 Hz [59,62]. The MAT-
LAB code for the DOSY toolbox is freely available via http://dosytoolbox.chemistry.manchester.ac.uk/.
NMR measurements for each mixture correspond to a set of spectra recorded at different gradient lev-
els. Since we have several mixtures, NMR data can be arranged as a third-order tensor with modes:
mixtures, chemical shift and gradient levels (Figure 1). The chemical shift (i.e., the conventional scale
for a 1H NMR spectrum) is related to the chemical environment of the protons, and thegradient levels
encode the diffusion property of the various molecular species.

Prior to LC-MS measurements, 29 samples were diluted to 10 ppm in water and subsequently analyzed
with ultra-performance liquid chromatography (UPLC) system coupled to quadruple time-of-flight (Pre-
mier QTOF) mass spectrometer (Waters Corporation, Manchester, UK). Each sample (10µL) was in-
jected into the UPLC equipped with a1.7µm C18 BEH column (Waters) operated with a 6-min linear
gradient from0.1% formic acid in water to0.1% formic acid in20% acetone:80% acetonitrile. The data
were acquired on the positive electrospray ionization (ESI) mode with the following settings: capillary
probe voltage was set to 2.8 keV, desolvation gas temperature was at 400◦C, cone voltage was 40 V, with
the Ar collision gas energy of 10 V. The centroided raw data were converted to an intermediate netCDF
format with the DataBridgeTM utility provided with the MassLynx software. Automatic peak detection
and integration were performed using the XCMS package [63]. Since individual chemical compounds
give rise to more than one fragment ion upon ionization, these ion-features, generated by XCMS, were
grouped together using the CAMERA package [64]. The final LC-MS data set is in form of a mixtures
by features matrix (Figure 1).

Analysis

Before discussing joint analysis of the third-order tensorX representing diffusion NMR measurements
and the matrixY representing LC-MS data (Figure 1), we briefly discuss the analysis of the NMR data
individually. X has an underlying CP structure [20,21,65-68] and can be modeled using a CP model,
i.e.,X ≈ JA,B,CK. Here,A,B andC correspond to the factor matrices in the mixtures, chemical shift
and gradient levels modes, respectively. When we modelX using a 5-component CP model, we observe
that each CP component corresponds to one of the chemicals used in the mixtures. The signatures in the
chemical shift mode (the NMR spectra), i.e., the columns of matrixB, as well as the exponential decay
signatures represented by the columns of matrixC can be used to identify these chemicals. Figure 10
shows the NMR signatures extracted by the CP model (Signatures in the chemical shift mode (spectra)
of pure chemicals are given in Additional file 2 as a reference). MatrixA captures the relative concen-
trations of the extracted components in the mixtures and we observe thatA matches well with the design
used in sample preparation in Figure 11. MatrixY representing LC-MS measurements can be analyzed
individually using matrix factorizations. However, matrix factorizations withoutany constraints on the
factors have a rotational freedom; therefore, capturing the patterns corresponding to each chemical us-

http://dosytoolbox.chemistry.manchester.ac.uk/


ing only LC-MS data is challenging. One potential approach may be to use sparse principal component
analysis [69]; however, even with careful fine-tuning of the sparsity parameter, the underlying design
cannot be captured as well as in Figure 11 due to unavoidable experimental noise in LC-MS (results not
shown).

Figure 10 Columns of factor matrix B corresponding to the chemical shift (ppm) mode (i.e., NMR
spectra).The figure in the bottom-right corner shows the columns of factor matrixC corresponding to
the gradient levels mode. These are the factor matrices captured by the CP model of NMR data.

Figure 11 Columns of factor matrix A corresponding to the mixtures mode extracted by the CP
model of NMR data. Red lines show the columns ofA while the blue line shows the original relative
concentrations of the chemicals used in sample preparation, i.e., normalized columns of the matrix given
in Additional file 1.

Analysis of the diffusion NMR data not only reveals the underlying structures in the chemical mixtures
but can also be used to extract the relevant patterns corresponding to the same chemicals from data sets,
which are much harder to analyze, e.g., LC-MS measurements. LC-MS data are often noisy and contain
many irrelevant features due to the sensitivity of the analytical technique. Next, we jointly analyze NMR
and LC-MS measurements using the structure-revealing CMTF model and demonstrate the benefits of
joint analysis of these data sets. As a preprocessing step, LC-MS features are scaled by their standard
deviations and both NMR and LC-MS data sets are scaled by their respective Frobenius norms. We
jointly analyze the data sets using (i) Model 1: ACMTF model with no sparsity penalty, i.e.,β = 0,
and (ii) Model 2: ACMTF model with sparsity penalties on the weights of rank-one components, where
β = 10−3. For both models, the number of components is set toR = 6. Since there are five chemicals
in the samples and we expect to have some experimental noise, we useR = 6 components. We discuss
the choice of the number of components further in the Discussion section.

Model 1 is equivalent to the traditional CMTF model in the sense that it does not impose sparsity on
the weights of rank-one components. Similar to our observations on simulated data sets, we observe
that weights captured by Model 1 (Figure 12(a)) for the runs returningthe same function value suggest
that the model fails to give a unique solution. Model 2, on the other hand, captures the weights given
in Figure 12(b) for the runs returning the same function value, which suggests uniqueness, and extracts
the components illustrated in Figure 13. The model is able to capture the underlying chemicals and,
as shown in Figure 14, it is also effective in terms of capturing the underlying design used in sample
preparation. In Figure 14, we plot the columns of the factor matrixA for all (98) runs returning the
same function value in red and the true design is plotted in blue. This further illustrates the suggested
uniqueness of the model. In order to understand how components are shared among data sets, we look
at the weights of rank-one components in Figure 12(b). While the componentscorresponding to Val-
Tyr-Val, Trp-Gly, Phe and Malto are shared by both data sets, the component corresponding to propanol
has a very small weight (< 0.1) in LC-MS. Since propanol is not retained in the liquid chromatography
column and eluted with the solvent front, it does not show up in LC-MS measurements; therefore,
having a small weight for propanol in LC-MS is promising. Similarly, one of thecomponents in LC-MS
is modeling noise (which could be both structured and random) and barely shows up in NMR. That is
also expected since this LC-MS data set is very noisy compared to the NMR data.

Figure 12 Weightsλ andσ captured by (a) Model 1 (β = 0) and (b) Model 2 (β = 10−3).

Figure 13 Model 2 - Components extracted by coupled factorization of NMR and LC-MS using
ACMTF, where β = 10−3. Columns of factor matricesB,C andV are plotted.



Figure 14 Model 2 - Scores.Columns of factor matrixA corresponding to the mixtures mode captured
by coupled factorization of NMR and LC-MS data using ACMTF, whereβ = 10−3. Red lines show the
columns ofA while the blue line shows the original relative concentrations of the chemicals inmixtures,
i.e., normalized columns of the matrix given in Additional file 1.

By individually analyzing NMR data, we have been able to capture NMR signatures of the chemicals.
The benefit of jointly analyzing NMR and LC-MS, on the other hand, is two-fold: (i) In addition to the
NMR signatures, we also extract the factor vectors corresponding to theLC-MS feature mode for each
chemical as shown in Figure 13. The features with high coefficients (in termsof absolute value) in each
factor reveal the features relevant to the chemical modeled by that component (see Additional file 3 for
LC-MS features captured by the model for each component). (ii) Weights of rank-one components in
each data set give an indication of the chemicals visible to each analytical technique.

Discussion

Even though the main motivation for a structure-revealing coupled factorization model is to identify
shared/unshared components automatically through modeling constraints, there are still several param-
eters to be determined: (i) number of components (R) and (ii) sparsity penalty parameter (β). In order
to see the sensivity of joint factorization of NMR and LC-MS to these parameters, we have fit the model
using differentβ values, i.e.,β ∈ {10−4, 10−3, 10−2, 10−1}, for different number of components, i.e.,
R ∈ {5, 6, 7, 8}. If we useβ = 10−4 or β = 10−2, there are small variations in the weights captured by
the runs returning the same function value even though the weights are closeto what we have obtained in
Model 2 usingβ = 10−3. Using a much higherβ value, i.e.,β = 10−1, on the other hand, sparsifies the
weights introducing many zeros and fails to capture the underlying chemicals.In terms of the number
of components, while the three-way NMR data set has 5 components, fitting a 5-component coupled
model cannot find the underlying components accurately due to the additional structured/random noise
in LC-MS. The singular values of the centered-scaled LC-MS data suggest that there are 6 significant
components. Model 2, we have discussed so far, is a 6-component model but since we have not centered
LC-MS data, we have also tried 7 and 8-component models. Using a 7-component model, true chem-
icals can still be captured but the additional component does not look meaningful and slightly distorts
the true components. Using an 8-component model, we have similar observations except that the 8th
component has a very small weight (< 0.1) in both data sets indicating that we may be overfactoring
the data. We plan to study and improve the robustness of the model to overfactoring, which can make it
easier to choose the number of components.

In our analysis, we have downsampled the NMR spectra by a factor of 10 because we use many random
starts to find the “true” solution and it is more efficient to work with downsampledNMR data. However,
for better interpretability of NMR spectra, high digitization is needed. When wejointly analyze LC-MS
data with the original NMR data, which have not been downsampled, using thesame model parameters
used for Model 2, the model reveals almost exactly the same components andweights, showing that the
model is not sensitive to minor changes in the data.

While the model is promising, we should note that it is not perfect even for simple mixtures like we have
analyzed here. One of the issues is that columns of factor matrixV corresponding to the LC-MS features
mode are dense and not easily-interpretable. Therth column ofV contains features corresponding to
the chemical which has its NMR signatures as therth column of matrixB andC; however, in addition
to the relevant features, it also contains irrelevant features regardedas false-positives (see Additional
file 3). Another issue is that it would be more useful to get zero weights instead of small weights for
unshared components (as in simulated data sets). As pointed out in Section “Background”, several
methods have been proposed for the identification of shared/unshared components within the context
of joint analysis of matrices, and the performance comparison of those methods with the structure-



revealing CMTF model is a topic of future research. However, note that since these methods focus
on joint analysis of matrices, there are identifiability issues and the identifiability of the models are
achieved using constraints on the components, such as orthogonality in CCA-based approaches [34]
and GSVD-based methods [1]. The structure-revealing CMTF model, on the other hand, does not
impose any constraints on the components (other than the unit norm constraints). The structure-revealing
CMTF model has such an advantange over joint matrix factorization methods because the CP model
used to model the higher-order tensor is capable of uniquely capturing theunderlying factors. The
CP model is unique under mild conditions up to permutation and scaling (for a review of uniqueness
studies, see [43]). Furthermore, while we have seen that the structure-revealing CMTF model extends
to multiple data sets, some of these joint matrix factorization methods have only beenproposed for two
data sets [34].

Potential biological applications of interest

In this section, we have illustrated how the structure-revealing CMTF model can be used to capture
chemicals in mixtures measured using different analytical methods. In orderto study both the strengths
and the limitations of the model, we have used prototypical experimental coupleddata sets, where the
underlying ground truth is known. In many biological applications, we come across with such hetero-
geneous coupled data sets. For instance, the potential of fluorescencespectroscopic measurements of
human plasma samples in cancer diagnostics has recently been demonstrated,and based on the prior
chemical knowledge, the fluorescence measurements are expected to follow a CP model [70]. In fluo-
rescence spectroscopy, measurements for each sample are represented as an excitation-emission matrix,
and multiple samples form a third-order tensor with modes: samples, excitation and emission wave-
lengths. Plasma samples can also be measured using LC-MS and NMR, which are commonly used in
metabolomics studies [6]. Measurements from LC-MS and NMR are usually arranged as samples by
features matrices. In a recent study [25], we have jointly analyzed fluorescence and NMR measure-
ments of plasma samples of a group of verified colorectal cancer patients and a group of controls with
nonmalignant findings using the structure-revealing CMTF model. The preliminary results demonstrate
that there are shared/unshared components, and two of the shared components achieve around71.4%
accuracy (with63.6% sensitivity and78.1% specificity) in terms of separating the two groups. Even
though the number of chemicals that can be detected by fluorescence spectropscopy is limited compared
to the chemicals detectable by NMR, the components extracted from the fluorescence data are easily
interpretable, and this can make the identification of biomarkers easier.

Such heterogeneous coupled data sets are also encountered in biomedical signal processing. In order to
have a better understanding of brain activities, it is highly desirable to jointly analyze EEG (electroen-
cephalogram) and fMRI (functional Magnetic Resonance Imaging) signals because EEG has a high tem-
poral resolution while fMRI provides a better spatial resolution. Currentdata fusion approaches for EEG
and fMRI rely on joint analysis of fMRI data with signals from a single EEG channel or concatenated
signals from multiple channels [71,72]. On the other hand, it may be possible toarrange multi-channel
EEG signals as a third-order tensor and jointly factorize the tensor with the matrix representing the fMRI
data using the structure-revealing CMTF model [72].

Conclusions

Joint analysis of data sets from multiple sources has the potential to enhanceknowledge discovery.
However, we are still lacking the data mining tools for data fusion and need a better understanding of
the available models in order to improve them to address the challenges in data fusion. In this paper, we
have introduced an unsupervised data fusion model that can jointly analyze heterogeneous, incomplete
data sets with shared/unshared components by formulating data fusion as a coupled matrix and tensor
factorization problem with sparsity penalties on the weights of rank-one components. Using numerical



experiments, we have demonstrated that the proposed model outperforms the traditional coupled fac-
torization model commonly used in the literature in terms of identifying shared/unshared components.
Furthermore, we have measured a set of mixtures with known chemical composition using two different
analytical techniques (LC-MS and NMR) and assessed the performanceof the proposed model in terms
of capturing the underlying chemicals, true design and shared/unsharedcomponents. The model pro-
vides promising performance and reveals the ground truth in these mixtures.In addition to the strengths
of the proposed model, we have also discussed the potential drawbacks using this illustrative example.

While the structure-revealing CMTF model inherits uniqueness properties from the CP model, the over-
all uniqueness properties of the structure-revealing CMTF model need tobe understood better, as it has
been done for coupled CP factorizations in a recent study [73].

We intend to extend our studies in several directions: (i) In order to extract easily-interpretable patterns
with less false-positives from LC-MS features mode, we plan to impose sparsity constraints on the
factors. Our preliminary studies show that we can decrease the number offalse-positives; however, the
model distorts the NMR signatures. (ii) Our algorithmic approach based on unconstrained optimization
is accurate but not flexible enough to impose constraints. The feasibility of amore flexible modeling
framework for data fusion making use of general purpose optimization solvers will be explored in future
studies [74].

Endnotes

aFunction values are considered the same if they have all digits the same up to thesixth decimal place.
bWhen we fit the models and obtain the same function value multiple times, theith coupled component
(ai,bi, ci,vi) in one run may be thejth coupled component(aj ,bj , cj ,vj) in another run. Therefore,
all possible permutations of the coupled components for different runs are compared to find the best
matching components across different runs.
cThis is valid when function values are considered to be the same when the difference between them is
less than10−6.
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