
TENSORSHIELD: Tensor-based Defense Against
Adversarial Attacks on Images

Negin Entezari
University of California, Riverside

nente001@ucr.edu

Evangelos E. Papalexakis
University of California, Riverside

epapalex@cs.ucr.edu

Abstract—Recent studies have demonstrated that machine
learning approaches like deep neural networks (DNNs) are
easily fooled by adversarial attacks. Subtle and imperceptible
perturbations of the data are able to change the result of
deep neural networks. Leveraging vulnerable machine learning
methods raises many concerns, especially in domains where
security is an important factor. Therefore, it is crucial to design
defense mechanisms against adversarial attacks. For the task
of image classification, unnoticeable perturbations mostly occur
in the high-frequency spectrum of the image. In this paper, we
utilize tensor decomposition techniques as a preprocessing step
to find a low-rank approximation of images that can significantly
discard high-frequency perturbations. Recently a defense frame-
work called SHIELD [1] could “vaccinate” Convolutional Neural
Networks (CNN) against adversarial examples by performing
random-quality JPEG compressions on local patches of images
on the ImageNet dataset. Our tensor-based defense mechanism
outperforms the SLQ method from SHIELD by 14% against Fast
Gradient Descent (FGSM) adversarial attacks, while maintaining
comparable speed.

Index Terms—adversarial machine learning, deep neural net-
works, image classification.

I. INTRODUCTION

In the last few years, Deep Neural Networks (DNNs) have
been tremendously popular in various domains, including
image processing and computer vision [2], [3], [4]. However,
recently, the robustness of DNNs has been questioned when
facing adversarial inputs. The performance of DNNs can
significantly drop even on slightly perturbed instances [5].
For the task of image classification, attackers put constraints
on perturbations such that they remain unnoticeable to the
human eye, but they are still able to greatly deteriorate the
performance of the model [6], [7], [8].

Utilizing machine learning methods that are vulnerable to
adversarial attacks in a system where safety and security are
critical factors may cause serious problems. Therefore, it is
crucial to have a robust model against adversaries, especially
in security-sensitive domains like autonomous driving and
medical imaging. To address this concern, recent studies have
researched to analyze the vulnerability of deep learning meth-
ods to come up with defense techniques against adversarial
attacks [1], [9], [10], [11], [12].

To measure the strength of a perturbation, usually an l2
or l∞ norm is used. Adversarial perturbations are mostly
designed to have a small norm and are unnoticeable to human
inspection [13]. Designing a defense mechanism is a difficult

task. Typically, the defender has only access to the perturbed
instances (and definitely not the original ones, where there
would be hope to identify which parts have been tampered
with) and should be able to defend against different types
of perturbations. Moreover, a defense mechanism specialized
against a particular kind of attack could be easily defeated by
new attacks which are optimized against its strategy. There-
fore, designing a defense technique that captures a universal
pattern across various attacks is highly desirable since this will
allow to defend against most of the adversarial attacks.

SHIELD, proposed by Das et al. [1], is a real-time defense
framework that performs JPEG compression with random
levels over local patches of images to eliminate imperceptible
perturbations, which mostly appear in the high-frequency
spectrum of images. In this paper, we propose a tensor
decomposition approach to compute a low-rank approximation
of images that significantly discards high-rank perturbations.
However, SHIELD considers images in isolation and ignores
the correlation of images when facing adversarial attacks.

Our contributions are as follows:
• Defense through the lens of factorization: We propose

a novel defense against adversarial attacks on images
that utilizes tensor decomposition to reconstruct a low-
approximation of perturbed images before feeding them
to the deep network for classification. Without any re-
training of the model, our method can significantly miti-
gate adversarial attacks.

• Efficient and effective method: Representing images
with tensor allows processing images in batches as a 4-
mode tensor, which is able to capture the latent structure
of perturbations from multiple images rather than a single
image and leads to more performance improvements.

II. RELATED WORK

A. Adversarial Attacks

We focus on defending against adversarial attacks on deep
learning methods for the task of image classification. Here, we
briefly outline some of the most popular attacks on images.

Given a classifier C, the goal of an adversarial attack is
to modify an instance x to a perturbed instance x′ such
that C(x) ̸= C(x′), while keeping the distance ∥x − x′∥
between perturbed and clean instance small [14]. By ∥.∥ we
denote some norm to express the strength of the perturbations.
The popular choices are Euclidean distance (l2 norm) and



Fig. 1: System Overview: low-rank tensor approximation of
images to “vaccinate” the network against perturbations. (the
term “vaccinate” was first used by Das et al. [1] to refer to
models equipped with a defense mechanism.)

Chebyshev distance (l∞ norm). Here, we discuss some popular
attacks against which we evaluate our proposed method.

Fast Gradient Sign Method (FGSM)[7]: FGSM is a fast
method to compute perturbations that is based on computing
first-order gradients. FGSM generates adversarial images by
introducing a perturbation as follows:

x′ = x+ ϵ sgn(∇Jx(θ, x, y)) (1)

where ϵ is a user-defined threshold that determines the strength
of the perturbations and controls its magnitude per pixel. θ is
the parameter of the model, y is the true label of the instance
x, and J is the cost of training the neural network.

Iterative Fast Gradient Sign Method (I-FGSM)[15]: I-
FGSM is the iterative version of the FGSM. In each iteration
i, I-FGSM clips the pixel values to remain within the l∞
neighborhood of the corresponding values from a “clean”
instance x:

x′
i = x′

i−1 + α sgn(∇Jx′
i−1

(θ, x′
i−1, y)) (2)

Projected Gradient Descent (PGD)[16]: PGD is one of
the strongest gradient-based attacks [16] Given a clean image
x, PGD aims to find a small perturbation δ ∈ S to generate
the perturbed instance x′ = x+ δ. PGD starts from a random
perturbation and iteratively updates the perturbation:

δi = ΠS [δi−1 + τ sgn(∇xL(x+ δi−1, y))] (3)

where τ is a fixed step size. ΠS projects the perturbation onto
set S , set of allowed perturbations in the ϵ neighborhood the
“clean” instance x.

B. Defense Against Adversarial Attacks

Defense mechanisms against adversaries fall into two main
categories [14]. The first group of methods aim to train the
classifier on adversarial examples to make it robust against
them [17], [7], [18]. This approach requires extensive training
on various adversarial examples. The second group of defenses
try to remove perturbations from the adversarial example by
performing some transformation [1], [19], [9], [19], [20].
These transformed examples are then fed to the model, and
the objective is to achieve the same classification as the clean
instance. In this paper, our focus is on the second approach.

SHIELD proposed by Das et al. [1], uses image prepro-
cessing as a defense mechanism to reduce the effect of
perturbations. SHIELD is based on the observation that the
attacks are high-frequency. Thus, eliminating those high-
frequencies (which are not generally visible by the human eye)
will sanitize the image. SHIELD performs Stochastic Local
Quantization (SLQ) as a preprocessing step and subsequently
employs JPEG compression with qualities 20, 40, 60, and 80
on the image, then for each 8×8 block of the image, randomly
selects from one of the compressed images.

Variational Autoencoders (VAEs) [21], [22] have been used
to defend against adversaries on images. In a study by Luo
et. al. [23], they utilize VAE to map high-dimensional images
to a lower-dimensional latent space in which most of the per-
turbation is discarded. Autoencoders [24] are a type of neural
networks that learn a low-dimensional representation of the
data in an unsupervised manner and variational autoencoders
incorporate random sampling in the encoding and decoding
process. The low-rank representation of images learned by the
autoencoder can improve the performance of the deep model
when facing adversarial examples. However, the drawback of
autoencoder defenses is that they need to be trained on the
data, which makes them not suitable for online applications.

In this paper, we preprocess images using tensor decompo-
sition techniques to achieve a low-rank approximation of the
image. We can significantly alleviate the effect of perturbations
without performing any training on the dataset. In a paral-
lel approach, [25] employs singular value decomposition to
compute a low-rank approximation of graph to defend against
adversarial attacks on graphs. However, this paper is the first
to identify and leverage the observation that gradient-based
attacks on deep learning image classifiers are manifested in
high-rank components of a decomposition of the image.

III. PROPOSED METHOD

In this section, we first investigate the characteristics of
adversarial attacks on networks designed for the task of image
classification. Then we propose a tensor-based defense mech-
anism against these attacks, which improves the performance
of the network.

A. Characteristics of Image Perturbations

Assume a trained model C with high accuracy on clean
images is given. Adversarial attacks perform perturbations on
the clean images in a way that they are imperceptible to hu-
mans yet are successful in deceiving the model to misclassify
the perturbed instances. In other words, for a clean image
x and its corresponding perturbed image x′, the goal is to
have: C(x) ̸= C(x′). The adversarial attacks do not preserve
the spectral characteristics of images and add high-frequency
components to images to remain unnoticeable to the human
eyes [1]. Perturbations in the image domain are crafted in a
way that mostly affect the high-frequency spectrum of images.
Therefore, discarding the high-frequency factors of the image
using approaches like compression or low-rank approximation
of images could be successful defenses against these types



of perturbations. Therefore, a mechanism that only keeps the
low-rank components of the image and discards the high-
rank ones can be successful in discarding the perturbations. In
[1], the authors leverage JPEG compression to remove high-
frequency components of the image and alleviate the effect
of perturbations. In this paper, we study the problem from
a “matrix spectrum” point of view (i.e., the singular value
profile and the intrinsic low-rank dimensionality of the data)
and use tensor decomposition techniques to achieve a low-rank
approximation of perturbed images.

B. TensorShield: Tensor-based Defense Mechanism

We briefly explain the concepts and notations used.
A tensor, denoted by X, is a multidimensional matrix. The

order of a tensor is the number of modes/ways and is the
number of indices required to index the tensor [26], [27]. An
RGB image is a three-mode tensor where the first and second
modes correspond to the pixels and the third mode corresponds
to the red, green, and blue channels, i.e. the frontal slices are
red, green, and blue channels of the image. An RGB image
of size W ×H is a 3-mode tensor of size W ×H × 3, where
W and H are the width and height of the image, respectively.

To achieve a low-rank approximation of the perturbed
images, we perform a tensor decomposition technique on the
image and by choosing small values for the rank of the tensor,
we reconstruct a low-rank approximation of the image which is
fed to the deep network. The low-rank approximation of image
discards high-frequency perturbations which can improve the
performance of the network on the perturbed images. However,
traditional tensor decomposition techniques like CP/Parafac
[28] and Tucker[29] are time-consuming and may slow down
the neural network performance which makes our proposed
method impractical for real-time defense. To overcome this
issue, we leverage Tensor-Train decomposition [30] which
scales linearly with respect to the dimension of the tensor
and was especially introduced to address the problem of curse
of dimensionality [30]. This highly-desirable property of the
Tensor-Train allows us to process images in batches that form
a 4-mode tensor and perform the Tensor-Train decomposition
on 4-mode tensors quite fast. For a batch of N images,
the size of the 4-mode tensor will be N × W × H × 3.
Generally, decomposing a 4-mode tensor is slower compared
to a 3-mode one. However, by considering images in batches,
some of the I/O overhead is reduced, that results in almost
the same processing time on the entire dataset. Furthermore,
processing images in batches improves the performance of the
model, because decomposing images in batches extracts latent
structure corresponding to perturbations from multiple images
and captures general characteristics of perturbations.

For a 4-mode tensor, the Tensor-Train decomposition can
be written as follows:

X(i, j, k, l) ≈∑
r1,r2,r3

G1(i, r1)G2(r1, j, r2)G3(r2, k, r3)G4(r3, l) (4)

Fig. 2: Stacking 3-mode images along the third mode.

Another possible representation for the batch of images is to
convert the 4-mode tensor to a 3-mode tensor by stacking the
images along the third mode, i.e., stacking RGB channels and
the result tensor will be of dimension W ×H × 3 ∗N . Fig. 2
illustrates a 3-mode stacked tensor of N images. There are
other ways to convert a 4-mode tensor into a 3-mode one.
For instance, another way is to flatten the RGB image into a
matrix with three columns corresponding to the channels of
the image. With this representation, the final tensor will be of
size W ∗H×3×N . One disadvantage of this representation is
that flattening the image ignores the spatial relationship of the
pixels. Moreover, with this vectorized representation, the first
dimension is much bigger than the other two dimensions and
requires a larger value of rank to get a reasonable approxima-
tion of the image, and larger ranks make the decomposition
slower. For these reasons, we do not consider the vectorized
representation in our study. In the experimental evaluations
that follow, we will examine different representation including
a single image versus batches of images and 3-mode tensors
versus 4-mode tensors.

IV. EXPERIMENTAL EVALUATION

In this section, we show how the proposed method can
successfully remove adversarial perturbations and we compare
our results to SHIELD (SLQ). According to [31], original
SHIELD evaluations have gained benefit from central cropping
of images in their evaluations, whereas the perturbations were
generated with cropping being off. In all our evaluations, we
disable the central cropping.

A. Experiment Setup

We performed experiments on the validation set of the
ImageNet dataset, which includes 50,000 images from 1,000
classes [32]. All experiments are performed on the ResNet-v2
50 model [2] from the TF-Slim module of TensorFlow [33].
The adversarial attacks are from the CleverHans package 1

[34]. We performed the experiments on a machine with one
NVIDIA Titan Xp (12 GB) GPU. We used TensorLy 2 library
in Python to perform tensor decomposition techniques [35].

B. Parameter Tuning

In our evaluations, we express different configurations in the
form of a list as [tensor decomposition, tensor representation,
batch size, rank] and we investigate the accuracy and runtime
of the ResNet-v2 50 on 1000 images from the ImageNet

1https://github.com/tensorflow/cleverhans
2https://github.com/tensorly/tensorly



Fig. 3: Accuracy (A) and runtime (B) of ResNet-v2 50
over 1000 images attacked by FGSM (ϵ = 4). Tensor-Train
decomposition is applied on a single image (batch size 1) or
4-mode tensor of batches of size 5, 10, 20, and 50 to defend
against FGSM perturbations.

Fig. 4: Accuracy (A) and runtime (B) of ResNet-v2 50
over 1000 images attacked by FGSM (ϵ = 4). Tensor-Train
decomposition is applied on a single image (batch size 1) or
3-mode-stacked tensor of batches of size 5, 10, 20, and 50 to
defend against FGSM perturbations.

dataset for different configurations. The possible values for
each part of the configuration list is as follows:

• Tensor decomposition: {Parafac, Tucker, Tensor-Train}
• Tensor repres.: {3-mode, 3-mode-stacked, 4-mode}
• Batch size: {1, 5, 10, 20, 50}
• Rank: varies by choice of repres. and decomposition.
Performing tensor decomposition for a batch of images can

reduce the decomposition overhead compared to decomposing
a single image and accelerates the entire evaluation pro-
cess. Moreover, considering images in batches helps to better
capture the pattern of perturbations from multiple images.
However, the choice of the right batch size is important. A
large batch of images needs larger ranks for decomposition
and could get very slow. Also, in a large batch of images,
the variety of images that are from different classes increases
which deteriorates the performance of the decomposition. To
find the best batch size, we perform a grid search on values
5, 10, 20, and 50. Tensor Train decomposition of a 4-mode
tensor requires setting 3 values for the ranks. The first value
corresponds to compressing the batches, the second value
corresponds to compressing the image pixels, and the third
value corresponds to compressing the RGB channels. We fix
the first rank to the number of batches and the third rank to
the number of channels i.e., 3. For the second rank, we search
within the range 40 to 150. Fig. 3 shows the accuracy and
runtime of the model for different batch sizes for Tensor-Train

decomposition with ranks ranging from 50 to 120 with steps
of 5. The figure also shows how processing single images
(batch size 1) differs from batch sizes greater than 5. In
the case that we are processing single images, the runtime
increases as the rank gets larger, however, as the batch size
increase, the runtime becomes less sensitive to the ranks and
for the batch size 50 it will become almost constant for all the
ranks. Batch size 5 produces the highest accuracy, while batch
size 10 has the lowest runtime. There is a trade-off between
runtime and accuracy. Based on the priorities of the system,
one might sacrifice accuracy for speed. Fig. 4 shows the effect
of different batch sizes on the 3-mode-stacked representation.
Plots for batch sizes 5, 10, and 20 are almost identical in
both accuracy and runtime. Batch size 50 produces the curacy
with the 3-mode-stacked representation. However, the highest
accuracy with the 3-mode-stacked representation is lower than
the highest accuracy achieved using the 4-mode representation.

C. Results

As mentioned in Section III, Tensor-Train performs much
faster than Parafac and Tucker. Therefore, for the Parafac
and Tucker, we only report the result for the configuration
which corresponds to the maximum accuracy as a reference
for comparison against Tensor-Train.

1) Comparing Against SLQ on ImageNet:
We compare the performance of ResNet-v2 50 model when
vaccinated using SLQ and TensorShield methods. PGD,
FGSM, and I-FGSM attacks are used to generate adversarial
examples. Table I summarizes the result. Different configura-
tions of TensorShield are reported in the table.

As illustrated in Table I, Tensor-Train outperforms Tucker
and Parafac with respect to both accuracy and runtime. Tensor-
Train performed on 4-mode tensor has produced the highest
accuracy. As explained earlier, processing images in batches
better captures latent components corresponding to pertur-
bation by leveraging higher-order correlations. Tensor-Train
can be utilized with different tensor representations (3-mode,
3-mode-stacked, or 4-mode) to adjust to needs for higher
accuracy or higher speed. While the 4-mode representation
produces the highest accuracy, the 3-mode single image rep-
resentation can be used to speed up the process, with a small
drop in the accuracy. SLQ is the fastest among all defenses,
but it has the lowest accuracy.

2) Comparing Against VAE on MNIST:
Here, we compare our method against the variational autoen-
coder defense proposed in [23] on the MNIST dataset. Defense
mechanisms based on variational autoencoders require exten-
sive training and hence they are not easily scalable to larger
datasets. Therefore, we compared our method against VAE
defense on the small MNIST dataset. CNN model used for
the image classification has the same architecture as explained
in [23]. The CNN model contains 2 convolutional layers
followed by a fully-connected layer. Both of the convolutional
layers use 5 × 5 filter size with 32 and 64 channels in the
first and second convolutional layers, respectively. After each
convolutional layer, 2 × 2 max-pooling with stride 2 is used.



TABLE I: Summary of accuracies and runtime of ResNet-v2 50 on ImageNet validation set against FGSM, I-FGSM, and PGD
adversarial attacks for defenses with different configurations.

Configurations PGD FGSM I-FGSM Runtime
(ϵ = 4) (ϵ = 4) (ϵ = 4) (seconds)

No defense 11.10 18.40 7.49
[Tensor-Train, 4-mode, 5, [5,90,3]] 51.53 43.59 50.46 675
[Tensor-Train, 4-mode, 10, [10,100,3]] 51.01 43.10 49.95 605
[Tensor-Train, 3-mode, 1, 40] 49.75 42.32 48.52 530
[Tucker, 3-mode-stacked, 30, [105,105,90]] 49.37 40.07 48.79 1050
[Parafac, 3-mode, 1, 60] 48.11 41.38 49.75 5500
SLQ 44.60 29.40 38.60 410

Fig. 5: FGSM attack on CNN model for MNIST dataset. For
small and less noticeable perturbations, TensorShield outper-
forms other defenses, however as perturbations get stronger,
VAE outperforms our method. However, VAE requires exten-
sive training which makes it less applicable to large datasets,
whereas TensorShield does not require any training on the
dataset and can be applied on large datasets.

The fully-connected layer has 1024 hidden nodes that uses
Relu activation with a dropout rate of 0.4.

Table II summarizes the performance of different defenses
including TensorShield, VAE, and JPEG compression with
qualities 20,40,60, and 80. For TensorShield we only report the
configuration with the best accuracy which is a 3-mode tensor
containing batches of 5 images (28×28×5). We used Tensor-
Train decomposition with rank 30. Size of MNIST images is
28 × 28 and a tensor including a single image will be a 2-
dimensional array and a tensor composing a batch of N images
will be a 3-mode tensor of size 28×28×N . Fig. 5 shows the
performance of TensorShield and VAE against the FGSM at-
tack. Also different quality of JPEG compression was applied
on images as a preprocessing step to resist against adversaries.
For small, less noticeable perturbations, TensorShield is on
par or better than VAE, but TensorShield has a higher drop
in performance for stronger attacks. Even for strong attacks,
the performance improvement achieved by TensorShield is
significant and due to its scalability, TensorShield is a feasible
option for vaccinating models on large datasets.

3) Introducing Randomness to the Defense Framework:
Incorporating randomness in the defense framework makes the
job of the attacker more difficult to deal with a random strategy
rather than a fixed one. By selecting randomly from a set of

TABLE II: Summary of accuracies of CNN model on MNIST
dataset against PGD, FGSM, and I-FGSM adversarial attacks.
The performance of the model is reported when it is vaccinated
using different defenses including TensorShield, VAE, and
JPEG compression with qualities 20, 40, 60, and 80.

Defense No attack PGD FGSM I-FGSM
(ϵ = 4) (ϵ = 4) (ϵ = 4)

No defense 99.12 97.85 97.80 97.50
JPEG-20 99.12 98.28 98.13 98.20
JPEG-40 99.12 98.35 98.20 98.27
JPEG-60 99.12 98.29 98.17 98.28
JPEG-80 98.11 98.25 98.09 98.10
VAE 98.87 98.30 98.23 98.18
TensorShield 99.12 98.44 98.32 98.31

TABLE III: Accuracies and runtime of ResNet-v2 50 on
ImageNet validation set against PGD, FGSM, and I-FGSM
adversarial attacks with ϵ = 4 vaccinated using Tensor-Train
with 4-mode tensor of batch size 5. Decomposition rank is
randomly selected from a set of possible ranks. No patching
is equivalent to full size image.

Patch size Ranks PGD FGSM I-FGSM Runtime
(ϵ = 4) (ϵ = 4) (ϵ = 4) (seconds)

[8,8]
[5,3,3]

47.89 41.04 48.26 2550[5,5,3]
[5,7,3]

[50,50]
[5,10,3]

48.35 41.97 48.12 1100[5,20,3]
[5,30,3]

[150,150]

[5,40,3]

50.96 42.12 48.98 765[5,50,3]
[5,60,3]
[5,70,3]

None
[5,70,3]

50.48 42.73 49.68 710[5,90,3]
[5,110,3]

ranks, we can add randomness to the tensor decomposition
process. Another way is to split images into small patches,
similar to local 8× 8 patches from SHIELD, and perform de-
composition of a random rank on each patch and stitch up the
patches to reconstruct a randomized low-rank approximation
of images. In a 4-mode tensor representation, splitting images
into patches creates smaller 4-mode tensors, e.g. splitting
a 4-mode tensor including 5 batches of images with size
300×300×3 into patches of size 50×50 creates 6 tensors of
size 5, 50, 50, 3. Table III shows the results of incorporating



randomness with tensor decomposition. With smaller patch
sizes, the decomposition will have more overhead, hence the
runtime complexity increases.

V. CONCLUSIONS

In this paper, we explored the efficacy of low-rank tensor
decomposition of perturbed images during the preprocessing
step in helping to defend against adversarial attacks. The low-
rank approximation of perturbed images was fed to the deep
network for the task of classification which could significantly
improve the performance of the model. We evaluated our
method against popular adversarial attacks: FGSM, I-FGSM,
and PGD. We also compared our method against two different
defense mechanisms: SLQ and VAE where the former uses
JPEG compression as defense and the latter learns a low-
rank representation of images using variational autoencoders.
We illustrated that considering images in small batches better
captures the latent structure of perturbations and helps to
improve the performance of the model. We also showed
how different configurations of batch sizes and decomposition
ranks, allow to trade-off between accuracy and runtime.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Combat
Capabilities Development Command Army Research Labo-
ratory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA). The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
Combat Capabilities Development Command Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen,
M. E. Kounavis, and D. H. Chau, “Shield: Fast, practical defense and
vaccination for deep learning using jpeg compression,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 196–204.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[6] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[8] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, 2018.

[9] A. N. Bhagoji, D. Cullina, and P. Mittal, “Dimensionality reduction as
a defense against evasion attacks on machine learning classifiers,” arXiv
preprint, 2017.

[10] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv preprint arXiv:1702.04267, 2017.

[11] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016.

[12] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature
denoising for improving adversarial robustness,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 501–509.

[13] B. Luo, Y. Liu, L. Wei, and Q. Xu, “Towards imperceptible and robust
adversarial example attacks against neural networks,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[14] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 9, pp. 2805–2824, 2019.

[15] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[17] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning with a
strong adversary,” arXiv preprint arXiv:1511.03034, 2015.

[18] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[19] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Counter-
ing adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

[20] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the
effect of jpg compression on adversarial images,” arXiv preprint
arXiv:1608.00853, 2016.

[21] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[22] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[23] Y. Luo and H. Pfister, “Adversarial defense of image classification using
a variational auto-encoder,” arXiv preprint arXiv:1812.02891, 2018.

[24] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML workshop on unsupervised and transfer learn-
ing, 2012, pp. 37–49.

[25] N. Entezari, S. Al-Sayouri, A. Darvishzadeh, and E. Papalexakis, “All
you need is low (rank): Defending against adversarial attacks on graphs,”
in 13th ACM International Conference on Web Search and Data Mining
WSDM, 2020.

[26] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, 2009.

[27] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 2, p. 16, 2017.

[28] R. Harshman, “Foundations of the parafac procedure: Models and
conditions for an” explanatory” multimodal factor analysis,” 1970.

[29] L. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[30] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[31] C. Cornelius, “The efficacy of shield under different threat models,”
arXiv preprint arXiv:1902.00541, 2019.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[33] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[34] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,
A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, and
R. Sheatsley, “cleverhans v2. 0.0: an adversarial machine learning
library,” arXiv preprint arXiv:1610.00768, 2016.

[35] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly:
Tensor learning in python,” The Journal of Machine Learning Research,
vol. 20, no. 1, pp. 925–930, 2019.


