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Abstract—Given data from a variety of sources that share
a number of dimensions, how can we effectively decompose
them jointly into interpretable latent factors? The coupled
tensor decomposition framework captures this idea by jointly
supporting the decomposition of several CP tensors. However,
coupling tends to suffer when one dimension of data is irregular,
i.e., one of the dimensions of the tensor is uneven, such as in the
case of PARAFAC2. In this work, we provide a scalable method
for decomposing coupled CP and PARAFAC2 tensor datasets
through non-negativity-constrained least squares optimization on
a variety of objective functions. We offer the following contri-
butions: (1) Our algorithm can perform coupled factorization
with an active-set, block principal pivoting and least square
optimization method including the Frobenius norm induced
non-negative factorization. (2) C3APTION scales to billions of
non-zero elements in both the data and model. Comprehensive
experiments on large data confirmed that C3APTION is up to
5× faster and 70 − 80% accurate than several baselines. We
present results showing the scalability of this novel implemen-
tation on a billion elements as well as demonstrate the high
level of interpretability in the latent factors produced, implying
that coupling is indeed a promising framework for large-scale,
unsupervised pattern exploration and cluster discovery.

I. INTRODUCTION
With the opportunity to handle large volumes and velocity

of data as a result of recent technical developments, such
as mobile connectivity [25], digital tools [24], biomedical
technology [7] and modern medical testing techniques [11], we
face multi-source and multi-view data [14], [15] sets. Suppose,
for example, that we are given a health care record data, such
as Centers for Medicare and Medicaid (CMS) [11], and we
have information about patient who visited hospital, or who
got what kind of diagnosis in which visit, and when. This
data may be formulated as a three mode PARAFAC2 tensor.
Suppose now that we also have some static features informa-
tion pertaining to the patient, e.g. multi-aspect relation based
on demographic information. This data may be formulated as
a three mode CP tensor. This problem can be formulated as
an example of a coupled factorization, where the two tensors
of a 3-mode (visits, diagnosis, patients) PARAFAC2 and a 3-
mode (patients, patients, aspect) CP tensor share a common
dimension.

In many practical cases, we have multi-aspect information
represented as tensors. Despite its attractiveness, individual
tensor factorization suffers from robustness issues. Applying
coupled tensors and matrices to heterogeneous datasets from
multiple sources has been a topic of interest in many areas.

Figure. 1: Illustration of CAPTION decomposition. Each slice of
Xk represents the different clinical visits for patient k. CP tensor Y
includes the similarity CP tensor based on demographic information
of patients. C3APTION decomposes Xk into three parts: Xk, W =
Sk, and V. CP tensor Y is decomposed into W = Sk, B and C.
Note that latent factor W is shared between both tensors.

Coupled tensor decomposition gives an equivalent represen-
tation of multi-way data by a set of factors and parts of
the factors are shared for coupled data. In literature, fusion
and coupled methods [3], [4], [5], [10], [13] reported so far
ignore the underlying irregular nature of the data in at least
one of the modalities among the data like health care data.
Acar et al. proposed an all-at-once coupled gradients based
optimization approach, called CMTF-OPT [3]. The advanced
version of CMTF-OPT, ACMTF-OPT [4], places additional
constraints on the model to force good performance when
distinguishing between shared and unshared data latent factors.
Many researchers have subsequently made improvements [27],
[2], [19] to CMTF for large-scale data. In [10], paper proposed
fusion or soft coupling of both EEG and fMRI PARAFAC2
data and provides insights on presence of shifts in the ERPs
per subject. Similarly, [13], proposed robust coupling of two
CP tensors via measuring distance between factors. Recently,
Afshar et al. [5] proposed method based on block principle
pivot, namely TASTE, for coupling between PARAFAC2 ten-
sor and matrix and this method provides valuable insights for
phenotyping of electronic health records. But, these prior work
has either focused on a specific type of coupled factorization
(two CP tensors or two PARAFAC2 tensors or tensor-matrix)
or a specific objective function, thus having a limited range
of potential applications where two different format of data is
required.

To handle the these limitations and inspired by the work



by Afshar et al. [5], we proposed a scalable method namely
C3APTION that couple CP and PARAFAC2 tensor which
incorporates non-negative constraints with multiple update
settings of latent factors as shown in figure 1. We demonstrate,
with synthetic and real data, the advantage of the proposed
method over baseline methods in terms of accuracy and
computation time. A preliminary version of this work appeared
in [12] as a short paper. In this paper, we extend those
preliminary results by (i) providing a detailed description of
all proposed methods to handle limitations of previous work,
(ii) provide thorough experimentation on synthetic and real
data, (iii) provide detailed case studies in real data using our
proposed method, and (iv) we conduct a scalability analysis,
demonstrating that our proposed method can scale up to
billions of non-zero elements in data and 5× faster and 70-
80% accurate than any state-of-art method. Our contributions
are summarized as follows:
• Novel and Scalable Algorithm: We propose
C3APTION, a method of coupling the CP and
PARAFAC2 tensor with various optimization update
rules with non-negative constraint. Our proposed method
is efficient, scalable and provides stable decompositions
than baselines.

• Fast and Accurate Algorithm: Our proposed fitting
algorithm is up to 5× faster than the state of the art
baseline. At the same time, C3APTION preserves model
accuracy better than baselines while maintaining inter-
pretability.

• Experimental Evaluation: we show experimental results
on both synthetic and real datasets.

To promote reproducibility, we make our MATLAB imple-
mentation publicly available at link1.

II. PRELIMINARIES AND BACKGROUND

A tensor [22] is a higher order generalization of a matrix.
An N -mode2 tensor X ∈ RI1×I1···×IN is the outer product of
N vectors, as given in equation 1,

X = a1 ◦ a2 · · · ◦ aN (1)

essentially indexed by N variables i.e. (a1,a2 . . . ,aN ). Table
I contains the symbols used throughout the paper.

TABLE I: Symbols and definitions

Symbol Definition
X,X,x, x Tensor, Matrix, vector, scalar

X(:, i)/ X(i, :) Spans the entire ith column/row of X (same for tensors)
diag(X) Diagonal of matrix X

Xk kth frontal slice of tensor X
{Xk} the set of Xk
∗,⊗,� Hadamard, Kronecker and Khatri-Rao product

A. Tensor and its Decomposition

Here we briefly provide insights on: (1) CP Decomposition
and (2) PARAFAC2 Decomposition.

1http://www.cs.ucr.edu/∼egujr001/ucr/madlab/src/caption code.zip
2Notice that the literature (and thereby this paper) uses the above terms as

well as ”order” interchangeably.

1) CP decomposition: The CP decomposition [6], [9], [17]
of a N -mode tensor X ∈ RI1×I1···×IN with Rank R is defined
as the sum of outer product rank-1 components:

X =

R∑
r=1

a
(r)
1 ◦ a

(r)
2 · · · ◦ a

(r)
N (2)

Given a three-mode tensor X ∈ RI×J×K , using the CP
decomposition, the tensor is decomposed into a sum of rank-
one tensors, i.e., a sum of outer products of three vectors and
in order to compute the decomposition, we need to solve the
following problem which minimizes the sum-of-squares of the
residuals:

min
A,B,C

‖X−
∑
r

A(:, r) ◦B(:, r) ◦C(:, r)‖2F (3)

where A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R.
2) PARAFAC2 Decomposition: PARAFAC2 model [18]

differs from CP/PARAFAC [6], [9], [17] where a low-rank
trilinear model is not required. The CP decomposition applies
the same factors across all the different modes, whereas
PARAFAC2 allows for non-linearities such that variation
across the values and/or the size of one mode as shown in
Fig 1. PARAFAC2 can be written w.r.t. the frontal slices of
the tensor X as:

Xk = UkSkV
T (4)

where k = 1, . . . ,K, Uk ∈ RIk×R, Sk = diag(W (k, :)) ∈
RR×R is diagonal and V ∈ RJ×R. Given the above modeling,
the standard algorithm to solve PARAFAC2 for data X tackles
the following optimization problem:

min
{Uk},{Sk},V

K∑
k=1

‖Xk −UkSkV
T ‖2F (5)

subject to Uk = QkH, QT
kQk = I, and Sk is diagonal. The

Uk decomposed into two matrices, Qk that has orthonormal
columns and H which is invariant regardless of k.

The Equ (5) in form of orthogonal form can be re-written
as :

L = argmin
Q

1

2
||Xk −QkHSkV

T ||F2 ∀k

subject to QkQ
T
k = Ir

(6)

To solve Eq (6), most common method is Alternating
Least Square (ALS) that updates Qk by fixing other factor
matrices i.e H,Sk, and V. The orthogonal coupling matrix
Qk can be obtained by Singular Value decomposition (SVD)
of (HWVTXT

k ) = [Pn,Σn,Z
T
n ]. With QT

k = PnZ
T
n fixed,

the rest of factors can be obtained as:

L = argmin
H,Sk,V

1

2
||QT

kXk −HSkV
T ||F2 s.t.QkQ

T
k = Ir

argmin
H,Sk,V

1

2
||Y −HSkV

T ||F2
(7)

The Eq. (7) is equivalent of solving CP decomposition of Y
using ALS method.

http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/caption_code.zip


III. PROPOSED METHOD: C3APTION
A generalized CP and PARAFAC2 approach is appealing

from several perspectives including the ability to use different
aspect or information of data, improved interpretability of
decomposed factors, and more reliable and robust results.
We propose C3APTION, a scalable and coupled CP and
PARAFAC2 model, to impose non-negativity constraints on
the factors.

A. General Framework for C3APTION
Given PARAFAC2 tensor X and CP tensor Y coupled in

its 3rd mode, this section proposes three different settings
of the coupled tensor decomposition C3APTION in order to
factorize the multi-aspect graph or tensor into its constituent
community-revealing factors. We focus on a third-order tensor
X ∈ RIk×J (∀k ∈ [1,K]) and Y ∈ RK×L×M for our problem
and its loss function formulation is given by:

LS = argmin
Qk,Uk,H,V,Sk,B,C

1

2
||Xk −UkSkV

T ||2F+

λ

2
||Y −W(C�B)T]||2F +

K∑
k=1

(µk

2
||Uk −QkH||2F

)
s. t. QT

k Qk = I,Uk ≥ 0,Sk ≥ 0,

W(k, 0) = diag(Sk),B ≥ 0,C ≥ 0 ∀k ∈ [1,K]

(8)

For PARAFAC2, we re-write the first part LS1 of mini-
mization of LS function in terms of Qk as Trace(XT

kXk) +
Trace(VSkH

TQT
kQkHSkV

T )−2∗Trace(XT
kQkHSkV

T ).
The first and second terms are constant and by rearranging the
rest, it is equivalent to

LS1 = argmin
Qk,Uk,H,V,Sk

1

2
||QT

k Xk −HSkV
T ||2F

s. t. QT
k Qk = I,Uk ≥ 0,Sk ≥ 0, ∀k ∈ [1,K]

(9)

Thus, the constrained coupled tensor decomposition objective
LS is of the form:

LS = argmin
Qk,Uk,H,V,Sk,B,C

1

2
||X −HSkV

T ||2F+

λ

2
||Y −W(C�B)T]||2F +

K∑
k=1

(µk

2
||Uk −QkH||2F

)
s. t. X (:, :, k) = QT

k Xk,Q
T
k Qk = I,Uk ≥ 0,Sk ≥ 0,

W(k, 0) = diag(Sk),B ≥ 0,C ≥ 0 ∀k ∈ [1,K]
(10)

B. Inference of Factors
We propose 3 types of algorithms to solve coupling namely

C3APTION-ASET (unconstrained version), C3APTION-
BPP (constrained), and C3APTION-ALS (constrained). First
two methods are natural extension of [5] tensor coupling.
Equation 10 is non-convex, our method utilizes instances of the
non-negativity constrained least squares (NNLS) framework
to divide problem into sub-problems. We use optimization
method block principal pivoting for C3APTION-BPP [21],
active set of Lawson and Hanson [20] for C3APTION-ASET
and least square method for C3APTION-ALS to solve each
sub-problem. Next, we summarize the solution for each latent
factor.

1) Factor Qk update: Consider first the update of fac-
tor Qk obtained after fixing other factor matrices. For
C3APTION-ASET and C3APTION-BPP, we update the Qk

by minimizing Equ. 8 using following method:

argmin
Qk

µk
2
||Uk −QkH||2F s.t. QT

kQk = I

argmin
Qk

µk(Tr(QkHHTQT
k − 2QkHUT

k + UkU
T
k )) = 0

Using Tr(ABC) = Tr(CAB) property, we can re-write
Tr(QkHHTQT

k ) = Tr(QT
kQkHHT ). As QT

kQk = I, we
can reformulate above equation w.r.t. Qk as follows :

argmin
Qk

µkQkHUT
k s.t. QT

kQk = I

[Qk] = SV D[µkHUT
k ] s.t. QT

kQk = I (11)

For C3APTION-ALS, this factor is computed using the
simple SVD as:

[Qk] =SV D[H× diag(W(k, :))× (Xk ×V)T ] (12)

Note that each Qk can contain negative values.
2) Factor H update: We update H by fixing V, W and

Qk. We set derivative the loss LS w.r.t. H ( Equ. 8, note that
part 1 and part 2 are constant) to zero to find local minima as
follows:

δLS
δH

=

∑K
k=1

µk

2 Tr((Uk −QkH)(Uk −QkH)T )

δH
= 0

δ(

K∑
k=1

µkTr(QkHHTQT
k − 2QkHUT

k + UkU
T
k ))/δH = 0

K∑
k=1

µkQ
T
kQkH−

K∑
k=1

µkQ
T
kUk = 0

as QT
kQk = I, the update rule for latent factor H is given

below:

For C3APTION-ASET: H =

∑K
k=1 Q

T
k Uk∑K

k=1 µk

For C3APTION-BPP: H =

∑K
k=1 Q

T
k Uk∑K

k=1 µk

s. t. H ≥ 0

(13)

For C3APTION-ALS, we set µk = 0 and derive update rule
from Equ. 10 as follows:

H =
(XV) ∗WT

(VTV ∗WTW)
s. t. H ≥ 0 (14)



3) Factor Sk or W update: This mode of the PARAFAC2
tensor is coupled with CP tensor. The objective function 8
with respect to W can be rewritten as:

argmin
Sk

1

2
||Xk−UkSkV

T ||2F+
λ

2
||Y−W(C�B)T]||2F (15)

For C3APTION-ASET Equation 15 can be rewritten as:

argmin
Sk

1

2
||
[ (V �Uk)√

λ(C�B)

]
W(k, :)T −

[ vec(Xk)√
λvec(Y(k, :, :))

]
||2F

(16)
For C3APTION-BPP, Equation 16 can be computed such

that W(k, :) ≥ 0. The Khatri-rao product operation is expen-
sive that can be replaced by element-wise (hadamard) product
and matrix to tensor product can be replaced by slice wise dot
product with factor matrices [23].

For C3APTION-ALS, we update Sk or W as:

Sk =
(UT

kUk ∗VTV) + (
√
λ(CTC ∗BTB)

diag(UT
kXkV) + diag(BTY(k, :, :)C)

W(k, :) = diag(Sk) s. t. W(k, :) ≥ 0,∀k ∈ [1,K]

(17)

4) Factor V update: We solve Equation 8 with respect to
V as given below:

argmin
V

1

2
||Xk −UkSkV

T ||2F (18)

For C3APTION-ASET, Equ. (18) can be formulated as:

V(:, k) =
XT
k

SkUT
k

(19)

For C3APTION-BPP, Equ. (19) can be easily updated
such that by V ≥ 0.

For C3APTION-ALS, we update V as given below:

V =
(X TH) ∗WT

(HTH ∗WTW)
s. t. V ≥ 0 (20)

5) Factor B or C update: Finally, factor matrices B and C
represents the participation of CP tensor for user similarities.
We solve Equation 8 w.r.t B as given below:

argmin
B

1

2
||Y −B(C�W)T ||2F s. t. B ≥ 0 (21)

which can be easily updated via all-set method [] for
C3APTION-ASET and via block principal pivoting [] for
C3APTION −BPP .

For C3APTION-ALS, we update B as given below:

B =
MTTKRP(Y,C,W)

(CTC ∗WTW)
s. t. B ≥ 0 (22)

Similarly, we update C as:

C =
MTTKRP(Y,B,W)

(BTB ∗WTW)
s. t. C ≥ 0 (23)

6) Factor Uk update: For C3APTION-ALS, this factor is
computed using the simple multiplication Uk = Qk ∗H. For
C3APTION-ASET and C3APTION-BPP ( where Uk ≥ 0),
the objective function with respect to Uk can be solved as:

argmin
Uk

1

2
||
[(VSk)√

µkI

]
UT
k −

[
XT
k√

µkH
TQT

k

]
||2F (24)

Dataset Statistics (K: Thousands M: Millions)
[Imax, J,K] [K, L, M] R #nnz

SYN-I [500, 1K, 5K] [5K, 5K, 500] 40 [0.5B, 1.5B]
SYN-II [1K, 1K, 10K] [10K, 10K, 1K] 40 [1.4B, 3.9B]
SYN-III [1K, 5K, 50K] [50K, 50K, 1K] 10 [6B, 9B]

Collaboration [25, 10, 11K] [11, 11K, 5] 5 − 50 [1M, 1.2M ]
Movielens [121, 4K, 6K] [6K, 6K, 5] 5 − 50 [1M, 4.5M ]

Adobe [1K, 1K, 31K] [31K, 31K, 5] 5 − 50 [1.7M, 6.3]
CMS [250, 1K, 98K] [98K, 98K, 5] 5 − 50 [9.6M, 9.7M ]

TABLE II: Details for the datasets.

IV. EXPERIMENTS AND ANALYSIS

In this section we extensively evaluate the performance
of C3APTION on multiple synthetic and real datasets, and
compare its performance with state-of-the-art approaches. We
focus on answering the following:

Q1. Does C3APTION preserve accuracy while being fast
to compute and helps in Identifiability of latent factors?

Q2. How does C3APTION scale for increasing number of
users (K)?

Q4. How can we use C3APTION for real-world utility?

A. Dataset

We provide the datasets used for evaluation in Table II. Rank
determination in the experiments is performed with the aid of
the Core Consistency Diagnostic method [8], [26].

Synthetic Data: In order to fully explore the performance
of C3APTION, in our experiments we generate synthetic
tensor with varying density. Those tensors are created from
a known set of randomly generated factors, so that we have
full control over the ground truth of the full decomposition.
The specifications of synthetic datasets are given in Table II.

Real Data: In order to truly evaluate the effectiveness
of C3APTION, we test its performance against four real
datasets that have been used in the literature. Those datasets
are summarized in Table III and details are below.

• Collaboration Data[1]: It is co-authorship network
(where two authors are connected if they publish at
least one paper together) of 11, 176 authors over years
1990-2015 for International Conference on Data Mining
(ICDM), International Conference on Machine Learning
(ICML), Knowledge Discovery and Data Mining (KDD)
conference.

• Movielens[16]: MovieLens-1M dataset is widely used
in recent literature. For this dataset, we created tensor
as year-by-movie-by-user i.e each year of ratings corre-
sponds to a certain observation for each user’s activity.

• Adobe: Adobe dataset is sequential data and it consists
of tutorial sequence of anonymous 7 million users. We
selected users (31K) who watched at least unique 15
tutorials. We created PARAFAC2 tensor as sequence-by-
tutorial-by-user [max 1k × 1k × 31k] and CP tensor
as user-by-user-by-similarity. We have semi synthetic
ground truth values for this dataset and we assigned each
user to class based on the type of tutorial watched.

• CMS [11]: This dataset is synthetically created by Cen-
ters for Medicare and Medicaid (CMS) by using 5%
of real medicare data and includes 98K beneficiaries.



Dataset Metric SCD [10] RCTF [13] TASTE [5] C-BPP C-ASET C-ALS

SYN-I
RMSE 0.43(0.055) 0.38(0.068) 0.21(0.041) 0.20(0.068) 0.26(0.032) 0.18 (0.026)
NMI 0.45(0.010) 0.49(0.074) 0.78(0.021) 0.79(0.019) 0.65(0.012) 0.92 (0.034)

Time (mins) 490.01(14.07) 548.32(16.36) 357.23(34.59) 336.43(11.59) 348.56(56.43) 301.87 (34.43)

SYN-II
RMSE

[[OoM]] [[OoM]]
0.30(0.023) 0.29(0.013) 0.36(0.092) 0.25 (0.065)

NMI 0.65(0.044) 0.68(0.023) 0.61(0.049) 0.75 (0.063)
Time (mins) 2109.11(89.75) 2021.48(56.35) 2090.41(134.67) 1689.68 (101.23)

SYN-III
RMSE

[[OoM]] [[OoM]]
0.35(0.022) 0.38(0.035) 0.43(0.056) 0.32 (0.081)

NMI 0.72(0.069) 0.70(0.013) 0.65(0.086) 0.76 (0.081)
Time (mins) 2387.56(72.85) 2304.68(89.63) 2360.41(112.34) 1959.68 (91.23)

TABLE III: Performance of C3APTION in terms of RMSE, NMI and CPU Time (mins) for synthetic data. Numbers where our proposed
method outperforms other baselines are bolded. For each dataset, we report the standard deviation between two parentheses along with
average score. Remarkably, C3APTION-ALS better preserve accuracy which ultimately, improves task performance.

We created PARAFAC2 tensor as visits-by-diagnosis-by-
patient and CP tensor as user-by-user-by-similarity.

We create CP tensor using well known similarity methods such
that cosine similarity, Jaccard similarty, LSH hasing [28], ABC
hashing[28], K-mean and Edit distance.

B. Baselines

Here we briefly present the state-of-the-art baselines we
used for comparison. Note that for each baseline we use the
reported parameters that yielded the best performance in the
respective publications.All comparisons were carried out over
10 iterations each, and each number reported is an average
with a standard deviation attached to it. We compared the
following algorithms for coupling CP and PARAFAC2 tensors.

• TASTE [5]: This method based on block principle pivot
for coupling between PARAFAC2 tensor and matrix. We
run algorithm for all slices of CP tensor Y.

• Soft Coupled Decomposition [10]: SCD method is soft
coupling of two PARAFAC2 data.

• Robust Coupled Tensor Factorization [13]: RCTF is
robust coupling of two CP tensors via measuring distance
between factor.

• Our proposed methods:
– C3APTION-ASET: This is solving coupled tensor

factorization via Active set methods with using the
unconstrained least squares optimization.

– C3APTION-BPP: This is solving coupled tensor fac-
torization via block principal pivoting method using the
non negativity-constrained least squares optimization.

– C3APTION-ALS: This is solving coupled tensor
factorization via alternating non-negative least squares
optimization.

C. Evaluation Measures

We evaluate C3APTION and the baselines using three
quantitative criteria: Root Mean Square Error and CPU-Time
(in minutes). Briefly,

• Root Mean Square Error: Performance is evaluated
as the Root Mean Square Error (RMSE) which is a

well known evaluation measure used in coupled tensor
factorization literature. Mathematically,

RMSE =

√√√√∑K
k=1

(
||Xk − X̂k||2

)
+ ||Y − Ŷ||2∑K

k=1(Ik × J) + (K × L×M)
(25)

• CPU time (sec): indicates how much faster does the
decomposition runs as compared to baselines. The av-
erage running time is measured in seconds, and is used
to validate the time efficiency of an algorithm.

• Normalized Mutual Information: Normalized Mutual
Information (NMI) is a good measure for determining
the quality of clustering. Mathematically,

NMI(Y,C) =
2 ∗ I(Y ;C)

[H(Y ) +H(C)]
(26)

where I(Y , C) is mutual information between cluster Y
and C, H(Y ) and H(C) are entropy of cluster and classes.

D. Experimental Result
Q1a. Effectiveness and Run Time
We evaluate performance of the algorithm for community

detection where each node in a graph is assigned to a single
label. In our study, we perform hard clustering over latent
factor matrices.We run each method for 10 different random
initialization and provide the average and standard deviation
of RMSE and CPU Time (min) as shown in Table III.

Synthetic Data: The baseline method SCD and RCTF
unable to decompose SYN-II and SYN-III due to out of mem-
ory during intermediate computations. Our proposed methods
C3APTION-BPP and C3APTION-ASET provide compara-
ble accuracy and runtime when compared to TASTE method.
Overall, C3APTION-ALS achieves significant improvement
on running time and average 3 − 8% RMSE improvement.
Therefore, our approach is the only one that achieves a fast
and accurate solution.

For real dataset we do not have labels, so we provide only
RMSE and CPU Time for these data as discussed below:

Collaboration Data: We observed that C3APTION-ALS
provides the high-quality communities as shown in Table IV.
We see similar behaviour with C3APTION-BPP also. We
select top two communities based on size. Each community
represents a group of scientists with the same research inter-
ests, such as Data Mining community (#3) and Information



Dataset Metric SCD [10] RCTF[13] TASTE [5] C-BPP C-ASET C-ALS

Collaboration RMSE 0.39(0.075) 0.35(0.068) 0.17(0.041) 0.17(0.068) 0.23(0.032) 0.14 (0.026)
Time (mins) 379.01(14.07) 427.88(16.36) 236.93(19.69) 210.43(11.59) 226.43(13.28) 174.31 (11.41)

Movielens
RMSE 0.24(0.021) 0.28(0.020) 0.19(0.082) 0.16(0.012) 0.21(0.093) 0.14 (0.012)

Time (mins) 48.21(3.21) 45.20(2.34) 21.34(1.69) 20.89(4.83) 25.55(2.84) 10.19 (1.36)

Adobe
RMSE 0.29(0.033) 0.35(0.062) 0.28(0.015) 0.22(0.023) 0.26(0.042) 0.20 (0.013)
NMI 0.42(0.05) 0.48(0.09) 0.53(0.02) 0.54(0.01) 0.49(0.06) 0.58 (0.08)

Time (mins) 210.23(11.34) 198.20(16.96) 98.22(10.58) 93.23(23.52) 150.24(25.58) 78.72 (21.74)

CMS RMSE 0.29(0.045) 0.34(0.098) 0.21(0.058) 0.20 (0.052) 0.24(0.021) 0.23(0.037)
Time (mins) 466.23(13.44) 435.34(9.10) 150.24(10.92) 149.24(11.23) 202.24(19.13) 112.33 (11.93)

TABLE IV: Performance of C3APTION in terms of RMSE and CPU Time (mins) for real data decomposed. Numbers where our proposed
method outperforms other baselines are bolded. For each dataset, we report the standard deviation between two parentheses along with
average score. *Note: we have semi-synthetic labels for the Adobe dataset only.
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Figure. 2: Movielens Data exploratory analysis for top movie genre.

Retrieval and Web Mining community (#10) in Table V.
Researchers like Jiawei Han and Philip S. Yu, have published
a large number of papers in collaboration with people from
various research communities. These authors considered as
tightly related to the same community in the network. We fur-
ther analyze the outcome of baseline methods and observe that
SCD and RCTF are not able to find few strongly connected
communities and fails to merge the small groups even those
share a strong connection. In terms of RMSE, C3APTION-
ALS, outperformed the baselines as shown in Table IV

Community[#3] Community[#10]
Jiawei Han Rakesh Agrawal
Philip S. Yu Ramakrishnan Srikant

Wei Fan Panayiotis Tsaparas
Charu C. Aggarwal H Lei Zhang

Jimeng Sun Josh Attenberg
Jian Pei Anitha Kannan
Bing Liu Sreenivas Gollapudi

Bhavani M. Thuraisingham Kamal Ali
Longbing Cao Sunandan Chakraborty

Tanya Y. Berger Wolf Rui Cai
Xindong Wu Indu Pal Kaur

TABLE V: Top two communities (based on size) discovered by
C3APTION-ALS on Collaboration Dataset. Selected researchers are
based on top 10 factor values of latent factor.

Movielens Data: We decompose movielens data using R=20
for all methods. Our proposed method C3APTION-ALS
outperformed w.r.t RMSE and computation time. Here, we
explore interesting observations. First, we observe that there
is a rapid growth of sci-fi movies beginning of 1970, a few
months after the first Moon landing. Secondly, we observe
that the rise of popularity of animation movies as shown in
fig 2, the reason could be the advancement of the computer
animation technology which made the development of such
movies much easier. Next, the most of the war/action movies

[19,21,45]

[1,3,7,14,17]

[51,39,90,96]

[245,579,462]

[2,28,81,68]

Fequent Sequence

0

200

400

600

800

1000

1200

#U
se

rs

Figure. 3: Frequent sequence of tutorials watched for top communi-
ties based on size.

were popular around the time of World War II, Vietnam War
and war in Afghanistan and Iraq. Its interesting to observe that
how the cinematography world reflected the viewership of the
real world. Another interesting observation is that most of the
salesman and programmers mostly loved adventurer movies
and lawyers liked most of drama and fantasy movies.

Adobe Data: C3APTION-ALS outperforms the baseline
methods. Remarkably, it surpasses the baselines most when the
data is sparse. In order to present the use of C3APTION to-
wards community detection, we focus our analysis on a subset
of tutorials watched by each community in this dataset. Figure
3 presents the top 5 (based on size) community’s most frequent
tutorial(s) sequence watched. Conceptually, those users share
similar interest in terms of domain knowledge, learning or
interests. We observe from the factors of the CP tensor that
these communities are connected strongly within the group
and have few connections outside the group. Nevertheless,
C3APTION-ALS achieves significantly good performance in
terms of NMI ≈ 0.58 as shown in Table IV.

Q1b. Identifiability Analysis As we know that PARAFAC2
is known for the hardness in terms of optimization. In many
instances, Alternate Least Square (ALS) based algorithms do
not converge to good solutions, although the PARAFAC2 de-
composition theoretically has identifiability. For identifiability
analysis, PARAFAC2 tensor X ∈ R1000×1000×1000 and CP
tensor Y ∈ R1000×1000×500 is constructed with fixed target
rank R = 10. Our aim is to recover latent factors as similar
as possible to original latent factors. To simplify, we discuss
identifiability of latent factor matrix W only. We compute the
dot product for all permutations of columns between original
latent factors (Worg) and latent factors (Wpred) obtained after
decomposition. If the computed dot product is higher than
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Figure. 4: Identifiability analysis with and without coupling of
PARAFAC2. Higher the value, better the identifiability.

the threshold value (80%), the two factors match, and we
consider them as recovered factor. If the dot product between
a column in Worg and with all the columns in Wpred has
a value less than the threshold, we consider it as an non-
recovered factor. The Figure 4 shows that using coupled CP
tensor data alongside PARAFAC2 data could help to alleviate
the above discussed challenge and improve the identifiability
of decomposition.

Q2. Scalability We also evaluate the scalability of our
algorithm on synthetic dataset in terms of time needed
for increasing load of input users (K). A PARAFAC2
tensors X ∈ R100×100×[1K−1M ] and CP tensor Y ∈
R[1K−1M ]×[1K−1M ]×5 are decomposed with fixed target rank
R = 40. The time needed by C3APTION increases very
linearly with increase in non-zero elements. Our proposed
method C3APTION-ALS, successfully decomposed the large
coupled tensors in reasonable time as shown in Figure 5(a -
b) and is up to 5× faster than baseline methods. Figure 5(c
- h), we present the RMSE, and the computational time for
the approaches under comparison for ML, Adobe and CMS
data for increasing target rank from 5−50. We remark that all
methods achieve comparable RMSE values for three different
data sets but proposed method C3APTION-ALS is up to
average 2.5× faster than baselines for all data sets. We remark
the favorable scalability properties of C3APTION, rendering
it practical to use for large tensors.

Q3. C3APTION at Work
Centers for Medicare and Medicaid (CMS) data files were

created to allow researchers to gain familiarity using Medicare
claims data while protecting beneficiary privacy. The CMS
data contains multiple files per year. The file contains syn-
thesized data taken from a 5% random sample of Medicare
beneficiaries in 2008 and their claims from 2008 to 2010.
We created CP tensor Y from files that contain demographic
characteristics (sex, race, state etc) of the beneficiary. The
PARAFAC2 tensor Y is created from files that has clinical
variables such as chronic conditions. We decompose CP and
PARAFAC2 tensor jointly with rank R = 40.

Model Interpretation: We propose the following model
interpretation towards the target challenge:
• Diagnosis feature factor: Each column of factor matrix
V represents a cluster and each row indicates a medical
feature. Therefore an entry V(i, j) represents the mem-
bership of medical feature i to the j.

• Irregular dimension factor (visits): The rth column of

Uk presents the evolution of cluster r for all clinical visits
for patient k.

• Coupled factor (patients): The coupled latent factor
W = diag(Sk) and CP latent factor B, indicates the
R communities of the patient.

• Similarity factor: The factor C indicates the importance
of similarities membership which is responsible for cre-
ating clusters.

Findings: In order to illustrate the use of C3APTION towards
clustering, we focus our analysis on a subset of patients
those are classified as medically complex. We observe that
cluster number 32 has most patients with respiratory disease.
These are the patients with high utilization (> 50%), multiple
clinical visits (avg 67) and high severity (death rate 8-10%).
Most of the patients share ICD-9 code 492 (Emphysema),
496 (Chronic airway obstruction) and 511 (Pleurisy). These
codes are characterized by obstruction of airflow that interferes
with normal breathing. It is observed that these conditions
frequently co-exists in real world and are hard to treat. In
Figure 6, we provide time-frame captured by C3APTION-
ALS for patient no. 11426 with chronic airway obstruction. In
the patients heath timeline, it shows that on the first few weeks
visit, there is no sign of obstruction. The subsequent visits
reflects a change in the patients heath with a large number
of diagnosis (day 84). Nevertheless, as shown in figure 5,
C3APTION-ALS achieves significantly good performance in
terms of RMSE ( avg 60% better) and computation time (3×
faster) by leveraging the coupling between CP and PARAFAC2
tensor data. .

V. CONCLUSIONS AND FUTURE WORK

This paper outlined our vision on exploring the coupling
of CP and PARAFAC2 tensor decomposition using various
optimization methods (BPP, ASET and ALS) to improve ac-
curacy of factorization. We propose C3APTION, a framework
that is able to offer interpretable results, and we provide
a experimental analysis on synthetic as well as real world
dataset. Extensive experiments with large synthetic dataset
have demonstrated that the proposed method is capable of
handling larger dataset for coupling for which most of the
baselines are not able to performs due to lack of memory.

Furthermore, this paper outlines a set of interesting future
research directions:
• How can we couple one of auxiliary tensor with irregular

mode of PARAFAC2 tensor to obtain better approxima-
tion?

• What other constraints, other than non-negative, for the
C3APTION are well suited for various application and
have potential to offer more accurate results?

• How can we use coupling for incremental tensor data?
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Figure. 5: Scalability analysis of C3APTION method using synthetic and three real world datasets. (a-b): Scalability analysis of synthetic
data with respect to varying number of users K, where K ranges 103− 106. Stable performance (RMSE) in the range 1K − 50K, for most
methods. Baseline method SCD and RCTF runs out of memory. (c-d): Scalability analysis with respect to Movielens dataset (c-d), Adobe
dataset (e-f) and CMS heath record data (g-h). C3APTION-ALS significantly outperforms the other methods even when data is very sparse.
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Figure. 6: Visualization of time-frame captured of the patient no.
11426 created by C3APTION-ALS on CMS dataset.
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