CS/MATH 111 Winter 2013 Final Test

- The test is 2 hours and 30 minutes long, starting at 7PM and ending at 9:30PM
- There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can't be read won't be credited.
- Before you start:
- Make sure that your final has all 8 problems
- Put your name and SID on the front page below and on top of each page

Name	SID

problem	1	2	3	4	5	6	7	8	total
score									

Problem 1: (a) For each pseudo-code below, give the exact formula for the number of words printed if the input is n (where $n \geq 1$), and then give its asymptotic value (using the Θ-notation.)

Pseudo-code	Formula	Asympt. value
procedure Ahem (n) for $j \leftarrow 1$ to $n+1$ for $i \leftarrow 1$ to j do print("ahem")	$T(n)=\sum_{=1}^{n+1} j=(n+1)(n+2) / 2$	$\Theta\left(n^{2}\right)$
procedure Geez (n)		
if $n=1$ then		
print("geez geez")	$T(1)=2$ and $T(n)=3 T(n-1)$. So $T(n)=$	$\Theta\left(3^{n}\right)$
elsefor $i \leftarrow 1$ to 3 do $\operatorname{Geez}(n-1)$	$2 \cdot 3^{n}$.	

(b) For each pseudo-code below, give a recurrence for the asymptotic value for the number of words printed if the input is n (where $n \geq 1$) and then its solution (using the Θ-notation.)

Pseudo-code	Recurrence	Solution
procedure $\operatorname{Oops}(n)$ if $n>2$ then print("oops") Oops($n / 3$) Oops($n / 3$)	$T(n)=2 T(n / 3)+1$	$\Theta\left(n^{\log _{3} 2}\right)$
```procedure Eeek(n) if n>2 then for }j\leftarrow1\mathrm{ to } do print("eeek") for }k\leftarrow1\mathrm{ to 4 do Eeek(n/2)```	$T(n)=4 T(n / 2)+n$	$\Theta\left(n^{2}\right)$
```procedure Whew(n) if n>1 then for }j\leftarrow1\mathrm{ to }\mp@subsup{n}{}{2 do print("whew") for }k\leftarrow1\mathrm{ to } do Whew(n/2)```	$T(n)=5 T(n / 2)+n^{2}$	$\Theta\left(n^{\log 5}\right)$

NAME:

 SID:Problem 2: (a) Explain how the RSA cryptosystem works.

Initialization:	Choose two different primes p and q, and let $n=p q$. Let $\phi(n)=(p-1)(q-1)$. Choose an integer e relatively prime to $\phi(n)$. Let $d=e^{-1}(\bmod \phi(n))$. Public key is $P=(n, e)$. Secret key is $S=d$.
Encryption:	If M is the message then its encryption is $E(M)=$ M^{e} rem n
Decryption:	If C is the ciphertext then its decrypted as $D(C)=$ C^{d} rem n

(b) Below you are given five choices of parameters p, q, e, d of RSA. For each choice tell whether these parameters are correct ${ }^{1}$ (write YES/NO). If not, give a brief justification (at most 10 words).

p	q	e	d	correct?	justify if not correct
23	51	18	89	NO	51 is not prime
23	11	33	103	NO	33 is not relatively prime to $\phi(n)=220$
3	7	5	5	YES	
17	17	3	171	NO	p and q should be different
11	7	13	37	YES	

[^0]
NAME:

SID:

Problem 3: (a) Give a complete statement of the principle of inclusion-exclusion.
Let S_{1}, \ldots, S_{k} be finite sets. Then the cardinality of their union is

$$
\left|\bigcup_{j=1}^{k} S_{j}\right|=\sum_{j=1}^{k}(-1)^{j+1} \sum_{\ell_{1}<\ell_{2}<\ldots<\ell_{j}}\left|\bigcap_{i=1}^{j} S_{\ell_{i}}\right|
$$

(b) We have three sets A, B, C that satisfy

- $|A|=|B|=14$ and $|C|=19$,
- $|A \cap B|=|A \cap C|=\frac{3}{14}|A \cup B \cup C|$ and $|B \cap C|=8$,
- $|A \cap B \cap C|=1$.

Determine the cardinality of $A \cup B \cup C$.
Let $x=|A \cup B \cup C|$. Then, using the inclusion-exclusion formula, we get

$$
x=14+14+19-\frac{3}{14} x-\frac{3}{14} x-8+1
$$

so $x=28$.

NAME:
SID:

Problem 4: (a) Give a complete statement of Fermat's Little Theorem.
If p is a prime number and $a \in\{1,2, \ldots, p-1\}$ then $a^{p-1}=1(\bmod p)$.
(b) Use Fermat's Little Theorem to compute the following values:
$78^{112}(\bmod 113)=1$
$3^{39635}(\bmod 31)=$
Computing modulo 31, we get $3^{39635}=3^{39630} \cdot 3^{5}=3^{5}=243=26$

Problem 5: (a) Give a complete definition of a perfect matching in a bipartite graph.
A set M of edges is called a matching if any two edges in M have different endpoints. A matching M is called perfect if it covers every vertex, that is every vertex is an endpoint of an edge in M.
(b) State Hall's Theorem.

A bipartite graph $G=(U, V, E)$ with $|U|=|V|$ has a perfect matching if and only if for any set $X \subseteq U$ we have $|N(X)| \geq|X|$, where $N(X)$ denotes the set of all neighbors of vertices in X.
(c) Determine whether the graph below is bipartite and if it is, whether it has a perfect matching. You must give a complete justification for your answer.

Bipartite partition: $U=\{a, c, h, j, g, l\}, V=\{b, d, f, e, i, k\}$.
This graph does not have a perfect matching. To see why, let $X=\{a, c, j, h\}$. Then $N(X)=$ $\{b, d, f\}$. So $|N(X)|<|X|$, violating Hall's Theorem.

Problem 6: (a) Prove or disprove the following statement: "If a graph G has an Euler tour then G also has a Hamiltonian cycle".

This is false. One example is a bow-tie graph.

This graph has an Euler tour (because all degrees are even) but it does not have a Hamiltonian cycle, because any cycle that visits all vertices must traverse the middle vertex twice.
(b) Prove or disprove the following statement: "If a bipartite graph G has a Hamiltonian cycle then G has a perfect matching".

This is true. For the proof, suppose that G has a Hamiltonian cycle $H=v_{1} v_{2} \ldots v_{n} v_{1}$. Let M consist of edges $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{5}, v_{6}\right), \ldots,\left(v_{n-1}, v_{n}\right)$, that is every second edge from H. Then every vertex is covered by M and no two edges in M share an endpoint, so M is a perfect matching.

Problem 7: Using mathematical induction prove that

$$
\sum_{i=0}^{n} 5^{i}=\frac{1}{4}\left(5^{n+1}-1\right)
$$

(Only proofs by induction will be accepted.)
We first check the base case. For $n=0$, the left-hand side is $\sum_{i=0}^{0} 5^{i}=5^{0}=1$ and the right-hand side is $\frac{1}{4}\left(5^{0+1}-1\right)=1$, so the equality holds.

Now let $k>0$ and assume that the equation holds for $n=k$, that is

$$
\sum_{i=0}^{k} 5^{i}=\frac{1}{4}\left(5^{k+1}-1\right)
$$

We claim that it also holds for $n=k+1$, that is

$$
\sum_{i=0}^{k+1} 5^{i}=\frac{1}{4}\left(5^{k+2}-1\right)
$$

We derive this equation as follows:

$$
\begin{aligned}
\sum_{i=0}^{k+1} 5^{i} & =\sum_{i=0}^{k} 5^{i}+5^{k+1} \\
& =\frac{1}{4}\left(5^{k+1}-1\right)+5^{k+1} \\
& =\frac{1}{4} \cdot 5^{k+1}-\frac{1}{4}+5^{k+1} \\
& =\left(\frac{1}{4}+1\right) \cdot 5^{k+1}-\frac{1}{4} \\
& =\frac{5}{4} \cdot 5^{k+1}-\frac{1}{4} \\
& =\frac{1}{4} \cdot 5^{k+2}-\frac{1}{4} \\
& =\frac{1}{4}\left(5^{k+2}-1\right),
\end{aligned}
$$

where in the second step we used the inductive assumption, and the remaining steps are just algebra.

Problem 8: We want to tile a $2 \times n$ strip with 1×1 tiles and L-shaped tiles of width and height 2 . Here are two examples of such a tiling of a 2×9 strip:

Let $A(n)$ be the number of such tilings. (a) Give a recurrence relation for $A(n)$ and justify it. (b) Solve the recurrence to compute $A(n)$.

Here are possible endings:

This gives us recurrence

$$
A(n)=A(n-1)+4 A(n-2)+2 A(n-3)
$$

with $A(0)=1, A(1)=1$, and $A(2)=5$.
The characteristic equation is $x^{3}-x^{2}-4 x-2=0$ and its roots are $-1,1-\sqrt{3}$, and $1+\sqrt{3}$. So the general form of the solution is

$$
A(n)=\alpha_{1}(-1)^{n}+\alpha_{2}(1-\sqrt{3})^{n}+\alpha_{3}(1+\sqrt{3})^{n} .
$$

The initial conditions give us

$$
\begin{aligned}
\alpha_{1}+\alpha_{2}+\alpha_{3} & =1 \\
\alpha_{1}(-1)+\alpha_{2}(1-\sqrt{3})+\alpha_{3}(1+\sqrt{3}) & =1 \\
\alpha_{1}+\alpha_{2}(4-2 \sqrt{3})+\alpha_{3}(4+2 \sqrt{3}) & =5
\end{aligned}
$$

Solving, we get $\alpha_{1}=1$, $\alpha_{2}=-1 / \sqrt{3}$ and $\alpha_{3}=1 / \sqrt{3}$. So

$$
A(n)=(-1)^{n}-\frac{1}{\sqrt{3}}(1-\sqrt{3})^{n}+\frac{1}{\sqrt{3}}(1+\sqrt{3})^{n} .
$$

[^0]: ${ }^{1}$ For correctness it is only required that the decryption function is the inverse of the encryption function.

