SID:

Problem 1: We have two shapes of dominoes, 1×1 squares and 2×1 rectangles. Each domino can be of one of two colors (in the figure below, dark grey or light grey.) Determine the number of ways to fully cover a $n \times 1$ rectangle with such dominoes. Dominoes cannot overlap and have to be contained in the rectangle.

For example, for $n=3$, we get the following coverings:

A complete solution must consist of the following steps:
(a) Set up a recurrence equation.
(b) Give its characteristic polynomial and compute the roots.
(c) Give the general form of the solution.
(d) Determine the final solution.

The recurrence is

$$
\begin{aligned}
a_{n} & =2 a_{n-1}+2 a_{n-2} \\
a_{0} & =1 \\
a_{1} & =2
\end{aligned}
$$

The solution is:

$$
a_{n}=\frac{3+\sqrt{3}}{6}(1+\sqrt{3})^{n}+\frac{3-\sqrt{3}}{6}(1-\sqrt{3})^{n}
$$

Problem 2: Find x that satisfies the following congruences (use the Chinese Remainder Theorem.) Show your work.

$$
\begin{aligned}
x & \equiv 1 \\
x & (\bmod 11) \\
x & \equiv 3 \\
x & (\bmod 4) \\
x & (\bmod 13)
\end{aligned}
$$

We have $M=11 \cdot 4 \cdot 13=572$. Compute the M_{i} and y_{i} :

	a_{i}	m_{i}	M_{i}	y_{i}
1	1	11	52	7
2	3	4	143	3
3	7	13	44	8

$$
\begin{aligned}
x & =(1 \cdot 52 \cdot 7+3 \cdot 143 \cdot 3+7 \cdot 44 \cdot 8) \bmod 572 \\
& =(364+1287+2464) \bmod 572 \\
& =111 .
\end{aligned}
$$

Problem 3: For the graphs below, determine the minium number of colors necessary to color them. Give an appropriate coloring (use numbers $1,2,3, \ldots$ for colors) and prove that there is no coloring with fewer colors. (Hint: identify subgraphs for which the number of colors is easy to determine.)

G_{1} can be colored with 3 colors (easy to find). It also requires three colors because it contains a cycle of length 5 (odd.)
G_{2} can be easily colored with 4 colors. It also requires 4 colors, for it contains K_{4} (vertices $1,4,5,6$.)

Problem 4: Use the Θ-notation to determine the rate of growth of the following functions:

Function	big- Θ estimate
$5 n^{2}+\log ^{5} n$	$\Theta\left(n^{2}\right)$
$n^{100}+2^{n}$	$\Theta\left(2^{n}\right)$
$2^{2 n}+3^{n}$	$\Theta\left(2^{2 n}\right)$
$n \log n+n^{2} /(\log n)$	$\Theta\left(n^{2} / \log n\right)$
$\sqrt{n}+3 \log ^{5} n$	$\Theta(\sqrt{n})$

SID:

Problem 5: Recall that $\phi(n)$ denotes the Euler function, that is the number of positive integers smaller than n that are relatively prime to n. Determine the value of $\phi(1445)$. Hint: Use the factorization of 1445 and the inclusionexclusion principle. Show your work.

Factoring, we get $1445=5 \cdot 289=5 \cdot 17^{2}$. Among the numbers $1,2, \ldots, 1445$, there are $1445 / 5=289$ multiples of $5,1445 / 17=85$ multiples of 17 , and $1445 / 85=17$ that are multiples of both. So

$$
\phi(n)=1445-289-85+17=1088 .
$$

Problem 6: (a) State Kuratowski's theorem.
(b) For each graph below, determine whether it is planar or not. If a graph is planar, show a planar embedding. If a graph is not planar, prove it. (You can use Euler's inequality, Kuratowski's theorem, or a direct argument.)

G_{1} is planar, you can pull the edges $(1,6)(1,5)$ outside. G_{2} is not planar, as it contains a subgraph homeomorphic to $K_{3,3}$: one partition is $\{1,3,5\}$ and the other $\{2,4,6\}$. (Remove edges $(2,6),(1,5),(4,6)$, to see it better.)

Problem 7: Prove (by induction) that a binary tree of height h has at most 2^{h} leaves.

The proof is by induction. In the base case, for $h=0$, we have $1=2^{0}$ leaf, so the theorem holds.

Suppose the theorem holds up to height h. We show that it also holds for height $h+1$. Take any tree T of height $h+1$, and remove all leaves. Call the new tree T^{\prime}. Since T^{\prime} is of height h, by the induction assumption it has at most 2^{h} leaves. But each leaf of T^{\prime} has at most two children in T (which are leaves in T), so the number of leaves in T is at most $2 \cdot 2^{h}=2^{h+1}$.

Problem 8: Let X be the set of pairs $\left(x_{1}, x_{2}\right)$ of integers, where $x_{1} \in$ $\{0,1\}$ and $x_{2} \in\{0,1,2\}$. Define relation R on X, where $\left(x_{1}, x_{2}\right) R\left(y_{1}, y_{2}\right)$ iff $x_{1}^{2}+x_{2}^{2} \equiv y_{1}^{2}+y_{2}^{2}(\bmod 3)$. Give the matrix of R, determine if R is an equivalence relation, and if so, give its equivalence classes.

The matrix of R :

	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(0,0)$	1	0	0	0	0	0
$(0,1)$	0	1	1	1	0	0
$(0,2)$	0	1	1	1	0	0
$(1,0)$	0	1	1	1	0	0
$(1,1)$	0	0	0	0	1	1
$(1,2)$	0	0	0	0	1	1

From the matrix, R is reflexive, symmetric and transitive, so it is an equivalence relation. Its equivelence classes are $\{(0,0)\},\{(0,1),(0,2),(1,0)\}$, $\{(1,1),(1,2)\}$.

