CS/MATH 111 Winter 2013 Final Test

- The test is 2 hours and 30 minutes long, starting at **7PM** and ending at **9:30PM**
- There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can't be read won't be credited.
- Before you start:
 - Make sure that your final has all 8 problems
 - Put your name and SID on the front page below and on top of *each* page

Name	SID

problem	1	2	3	4	5	6	7	8	total
score									

Problem 1: (a) For each pseudo-code below, give the *exact formula* for the number of words printed if the input is n (where $n \ge 1$), and then give its asymptotic value (using the Θ -notation.)

Pseudo-code	Formula	Asympt. value
procedure Ahem(n) for $j \leftarrow 1$ to $n + 1$ for $i \leftarrow 1$ to j do print("ahem")		
procedure $\operatorname{Geez}(n)$ if $n = 1$ then print("geez geez") else for $i \leftarrow 1$ to 3 do $\operatorname{Geez}(n-1)$		

(b) For each pseudo-code below, give a recurrence for the asymptotic value for the number of words printed if the input is n (where $n \ge 1$) and then its solution (using the Θ -notation.)

Pseudo-code	Recurrence	Solution
procedure $Oops(n)$ if $n > 2$ then print("oops") Oops(n/3) Oops(n/3)		
procedure $\operatorname{Eeek}(n)$ if $n > 2$ then for $j \leftarrow 1$ to n do print("eeek") for $k \leftarrow 1$ to 4 do $\operatorname{Eeek}(n/2)$		
procedure Whew(n) if $n > 1$ then for $j \leftarrow 1$ to n^2 do print("whew") for $k \leftarrow 1$ to 5 do Whew(n/2)		

Initialization:	
Encryption:	
Decryption:	

Problem 2: (a) Explain how the RSA cryptosystem works.

(b) Below you are given five choices of parameters p, q, e, d of RSA. For each choice tell whether these parameters are correct¹ (write YES/NO). If not, give a brief justification (at most 10 words).

p	q	e	d	correct?	justify if not correct
23	51	18	89		
23	11	33	103		
3	7	5	5		
17	17	3	171		
11	7	13	37		

 $^{1}\mathrm{For}$ correctness it is only required that the decryption function is the inverse of the encryption function.

Problem 3: (a) Give a complete statement of the principle of inclusion-exclusion.

- (b) We have three sets A, B, C that satisfy
 - |A| = |B| = 14 and |C| = 19,
 - $|A \cap B| = |A \cap C| = \frac{3}{14}|A \cup B \cup C|$ and $|B \cap C| = 8$,
 - $|A \cap B \cap C| = 1.$

Determine the cardinality of $A \cup B \cup C$.

Problem 4: (a) Give a complete statement of Fermat's Little Theorem.

(b) Use Fermat's Little Theorem to compute the following values:

 $78^{112} \pmod{113} =$

 $3^{39635} \pmod{31} =$

Problem 5: (a) Give a complete definition of a perfect matching in a bipartite graph.

(b) State Hall's Theorem.

(c) Determine whether the graph below is bipartite and if it is, whether it has a perfect matching. You must give a complete justification for your answer.

Problem 6: (a) Prove or disprove the following statement: "If a graph G has an Euler tour then G also has a Hamiltonian cycle".

(b) Prove or disprove the following statement: "If a bipartite graph G has a Hamiltonian cycle then G has a perfect matching".

Problem 7: Using mathematical induction prove that

$$\sum_{i=0}^{n} 5^{i} = \frac{1}{4} (5^{n+1} - 1).$$

(Only proofs by induction will be accepted.)

Problem 8: We want to tile a $2 \times n$ strip with 1×1 tiles and L-shaped tiles of width and height 2. Here are two examples of such a tiling of a 2×9 strip:

Let A(n) be the number of such tilings. (a) Give a recurrence relation for A(n) and justify it. (b) Solve the recurrence to compute A(n).