CS/MATH 111 Winter 2013 Final Test

- The test is 2 hours and 30 minutes long, starting at 7PM and ending at 9:30PM
- There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can't be read won't be credited.
- Before you start:
- Make sure that your final has all 8 problems
- Put your name and SID on the front page below and on top of each page

Name	SID

problem	1	2	3	4	5	6	7	8	total
score									

Problem 1: (a) For each pseudo-code below, give the exact formula for the number of words printed if the input is n (where $n \geq 1$), and then give its asymptotic value (using the Θ-notation.)

Pseudo-code	Formula	Asympt. value
procedure Ahem (n) for $j \leftarrow 1$ to $n+1$ for $i \leftarrow 1$ to j do print(" ahem")		
procedure Geez (n)		
if $n=1$ then		
print("geez geez")		
else \quad		
for $i \leftarrow 1$ to 3 do		
$\operatorname{Geez}(n-1)$		

(b) For each pseudo-code below, give a recurrence for the asymptotic value for the number of words printed if the input is n (where $n \geq 1$) and then its solution (using the Θ-notation.)

Pseudo-code	Recurrence	Solution
procedure $\operatorname{Oops}(n)$ if $n>2$ then print("oops") Oops($n / 3$) Oops ($n / 3$)		
```procedure Eeek(n) if }n>2\mathrm{ then for }j\leftarrow1\mathrm{ to } do print("eeek") for }k\leftarrow1\mathrm{ to 4 do Eeek(n/2)```		
```procedure Whew(n) if n>1 then for }j\leftarrow1\mathrm{ to }\mp@subsup{n}{}{2 do print("whew") for }k\leftarrow1\mathrm{ to } do Whew(n/2)```		

NAME:

SID:

Problem 2: (a) Explain how the RSA cryptosystem works.

Initialization:	
Encryption:	
Decryption:	

(b) Below you are given five choices of parameters p, q, e, d of RSA. For each choice tell whether these parameters are correct ${ }^{1}$ (write YES/NO). If not, give a brief justification (at most 10 words).

p	q	e	d	correct?	justify if not correct
23	51	18	89		
23	11	33	103		
3	7	5	5		
17	17	3	171		
11	7	13	37		

[^0]NAME: SID:

Problem 3: (a) Give a complete statement of the principle of inclusion-exclusion.
(b) We have three sets A, B, C that satisfy

- $|A|=|B|=14$ and $|C|=19$,
- $|A \cap B|=|A \cap C|=\frac{3}{14}|A \cup B \cup C|$ and $|B \cap C|=8$,
- $|A \cap B \cap C|=1$.

Determine the cardinality of $A \cup B \cup C$.

NAME:
SID:

Problem 4: (a) Give a complete statement of Fermat's Little Theorem.
(b) Use Fermat's Little Theorem to compute the following values:
$78^{112}(\bmod 113)=$
$3^{39635}(\bmod 31)=$

Problem 5: (a) Give a complete definition of a perfect matching in a bipartite graph.
(b) State Hall's Theorem.
(c) Determine whether the graph below is bipartite and if it is, whether it has a perfect matching. You must give a complete justification for your answer.

Problem 6: (a) Prove or disprove the following statement: "If a graph G has an Euler tour then G also has a Hamiltonian cycle".
(b) Prove or disprove the following statement: "If a bipartite graph G has a Hamiltonian cycle then G has a perfect matching".

Problem 7: Using mathematical induction prove that

$$
\sum_{i=0}^{n} 5^{i}=\frac{1}{4}\left(5^{n+1}-1\right)
$$

(Only proofs by induction will be accepted.)

NAME: SID:

Problem 8: We want to tile a $2 \times n$ strip with 1×1 tiles and L-shaped tiles of width and height 2 . Here are two examples of such a tiling of a 2×9 strip:

Let $A(n)$ be the number of such tilings. (a) Give a recurrence relation for $A(n)$ and justify it. (b) Solve the recurrence to compute $A(n)$.

[^0]: ${ }^{1}$ For correctness it is only required that the decryption function is the inverse of the encryption function.

