CS/MATH 111 SPRING 2011 Final Test

- The test is 2 hours and 30 minutes long, starting at 8:10AM and ending at 10:40AM - There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can't be read won't be credited.
- Before you start:
- Make sure that your final has all 8 problems
- Put your name and your student ID on each page

NAME:
SID:

Problem 1: (a) State the Master Theorem for solving divide-and-conquer recurrence equations.
(b) Give (asymptotic) solution to the recurrence equations below.

$T(n)=9 T(n / 3)+2 n^{3}$	
$T(n)=3 T(n / 4)+5 n$	
$T(n)=4 T(n / 2)+3 n^{2}$	
$T(n)=4 T(n / 2)+3$	
$T(n)=T(n / 3)+5$	

Problem 2: Prove that $1+3+5+\ldots+(2 n-1)=n^{2}$ for any integer $n \geq 1$. (The expression on the left-hand-side is the sum of the first n odd natural numbers.) You can use mathematical induction or any other proof method.

Problem 3: In the RSA, suppose that Bob's public key is $P_{B}=(91,5)$. (a) Determine d, the secret exponent. Show your work. (b) Suppose that Bob receives ciphertext $C=3$. Decrypt C. Show your work.

NAME:

SID:

Problem 4: We have four types of blocks: A, U, B B , T T. Let Q_{n} denote the number of different words of length n that can be formed from these blocks. For example, for $n=3$ there are 16 words:
so $Q_{3}=16$. Give a formula for Q_{n}. You must give a complete derivation: First give a recurrence equation and justify it, and then solve it. Show your work, all steps.

Problem 5: (a) Give a complete statement of Hall's Theorem.
(b) Give a complete statement of Kuratowski's Theorem.

Problem 6: Kevin is planning a 32-day trip to Scandinavia. He wants to spend at least 3 days in Finland, then between 7 and 14 days in Sweden, and later between 6 and 11 days in Norway. Compute the number of possible itineraries for his trip.

Problem 7: We are given four elements a, b, c, d such that $a<b$ and $c<d$. Give a decision tree that sorts these elements and has depth at most 3. (You can think about this problem as merging two sorted pairs of elements into one sorted sequence.)

Problem 8: Recall that any planar graph with at least three vertices satisfies $m \leq 3 n-6$ (where m, n denote the numbers of edges and vertices). Use this inequality to prove that each planar graph has a vertex of degree at most 5 .

