## CS/MATH 111 Winter 2011 Final Test

- The test is 2 hours and 30 minutes long, starting at 8:10AM and ending at 10:40AM
- There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can't be read won't be credited.
- **Before** you start:
  - Make sure that your final has all 8 problems
  - Put your name and your student ID on *each* page

## NAME:

**Problem 1:** For each pseudo-code below, tell what is the number of words printed if the input is n. Give a recurrence and then its solution (expressed using the  $\Theta()$  notation.)

| Pseudo-code                                                                                                                                                                                                    | Recurrence and solution |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| procedure $\operatorname{Geez}(n)$<br>if $n > 1$ then<br>print("geez")<br>print("geez")<br>Geez( $2n/3$ )                                                                                                      |                         |
| procedure Caramba $(n)$<br>if $n > 1$ then<br>for $j \leftarrow 1$ to $3n$<br>do print("caramba")<br>Caramba $(n/4)$<br>Caramba $(n/4)$                                                                        |                         |
| procedure $\operatorname{Bummer}(n)$<br>if $n > 1$ then<br>for $j \leftarrow 1$ to $n/2$<br>do print("bummer")<br>$\operatorname{Bummer}(n/3)$<br>$\operatorname{Bummer}(n/3)$<br>$\operatorname{Bummer}(n/3)$ |                         |
| procedure $Darn(n)$<br>if $n > 1$ then<br>for $j \leftarrow 1$ to $n$<br>do print("darn")<br>for $j \leftarrow 1$ to $4$<br>do $Darn(n/2)$                                                                     |                         |

**Problem 2:** Prove by induction that  $1^2 + 2^2 + ... + n^2 = n(n+1)(2n+1)/6$ .

| Initialization: |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
| Encryption:     |  |
|                 |  |
|                 |  |
|                 |  |
| Decryption:     |  |
|                 |  |
|                 |  |
|                 |  |

**Problem 3:** (a) Explain how the RSA cryptosystem works.

(b) Suppose that p = 3, q = 29, and e = 9. Determine d. Compute the encryption of M = 3.

**Problem 4:** We construct recursively binary trees  $T_0, T_1, T_2, ...,$  as follows. Both  $T_0$  and  $T_1$  consist of a single node. For  $n \ge 2$ , to obtain  $T_n$ , we link one copy of  $T_{n-1}$  and three copies of  $T_{n-2}$ , as in the figure below:



Let  $\ell_n$  be the number of leaves in  $T_n$ . For example,  $\ell_0 = 1$ ,  $\ell_1 = 1$ ,  $\ell_2 = 4$ . Give the formula for  $\ell_n$ . Show your work. The solution must consist of the following steps: (i) Set up a recurrence equation. (ii) Determine the characteristic equation and solve it. (iii) Give the general form of the solution. (iv) Compute the final answer.

**Problem 5:** (a) Give a complete statement of Hall's Theorem.

(b) For the two graphs below, tell whether they have a perfect matching or not. Justify your answer: either show the matching (say, by marking its edges in the picture or listing its edges) or use Hall's theorem to prove that it does not exist.



**Problem 6:** Prove that each planar graph can be colored with at most 6 colors.

Problem 7: (a) Give a complete statement of the Inclusion-Exclusion principle.

(b) Things are not going well on Capitol Hill. The special prosecutor indicted  $\mathbf{49}$  congressmen on various charges.

- Among them: 26 congressmen were indicted for bribery, 29 for fraud, and 19 for perjury.
- We further know that: **12** congressmen received indictments for bribery and fraud, **11** congressmen received indictments for bribery and perjury, and **9** congressmen received indictments for fraud and perjury.

Determine how many congressmen were indicted on all three charges? Show your work.

**Problem 8:** Below you are given three relations on a set X. For each, determine whether it is (i) reflexive, (ii) symmetric, (iii) transitive, and (iv) antisymmetric. Then tell whether the relation is an equivalence relation or a partial order. If it is an equivalence relation, determine its equivalence classes. (You don't have to give proofs.)

| (a) $X = \{a, b, c, d\}$ and R is given by the following matrix | ix: |
|-----------------------------------------------------------------|-----|
|-----------------------------------------------------------------|-----|

|   | a | b | с | d |
|---|---|---|---|---|
| a | 1 | 1 | 0 | 0 |
| b | 0 | 1 | 0 | 0 |
| с | 1 | 1 | 1 | 0 |
| d | 1 | 1 | 0 | 1 |

| property      | Y/N |
|---------------|-----|
| reflexive     |     |
| symmetric     |     |
| transitive    |     |
| antisymmetric |     |

(b)  $X = \{1, 2, 3, 4, 5, 6\}$ , and xRy if and only if x = y or  $x^2 + x \le y^2 + y$ .

| property      | Y/N |
|---------------|-----|
| reflexive     |     |
| symmetric     |     |
| transitive    |     |
| antisymmetric |     |

(c)  $X = \{2, 3, 4, 5, 8, 24, 27, 128\}$ , and xRy if and only if x and y have exactly the same prime factors. (For example, 1183 R 637, because  $1183 = 7 \cdot 13^2$ ,  $637 = 7^2 \cdot 13$ .)

| property      | Y/N |
|---------------|-----|
| reflexive     |     |
| symmetric     |     |
| transitive    |     |
| antisymmetric |     |