Problem 1: (a) Complete the statement of the Master Theorem by filling in the blanks.

Assume that $a \ge _$, $b > _$, $c > _$ and $d \ge _$, and that T(n) satisfies the recurrence $T(n) = aT(n/b) + cn^d$. Then

$$T(n) = \begin{cases} ---- & \text{if} & ---- \\ ---- & \text{if} & ---- \\ ---- & \text{if} & ---- \end{cases}$$

(b) Give asymptotic solutions for the following recurrences:

$$f(n) = 4f(n/2) + 3n$$

$$f(n) = 4f(n/2) + 5n^2$$

 $f(n) = 4f(n/2) + n^3$

Problem 2: (a) Give the inclusion-exclusion formula for four sets A, B, C, D: $|A \cup B \cup C \cup D| =$

(b) Determine the number of non-negative integer solutions of the equation p+q+r+s = 20 that satisfy $p \ge 4$, $q \ge 3$, $r \ge 7$ and $s \ge 2$.

Problem 3: Determine the *general solution* of the recurrence equation

$$f_n = 5f_{n-1} + 6f_{n-2} + 2^n.$$

(a) Characteristic equation and its solution:

(b) General solution of the homogeneous equation:

(c) Compute particular solution of the inhomogeneous equation:

(d) General solution of the inhomogeneous equation: