Problem 1: For each pseudo-code below, tell what is the number of words printed if the input is n. Give a recurrence and then its solution (expressed using the Big-Theta notation.)

Pseudo-code	Recurrence and solution
```procedure Hola(n) if }n>1\mathrm{ then for }j\leftarrow1\mathrm{ to } do print("hola") Hola(n/2) Hola(n/2) Hola(n/2)```	
procedure Ahoy ( $n$ ) if $n>1$ then   for $j \leftarrow 1$ to $n$ do print("ahoy")   Ahoy ( $n / 3$ )   Ahoy ( $n / 3$ )	
```procedure Yo(n) if }n>1\mathrm{ then for }j\leftarrow1\mathrm{ to } do print("yo") Yo(n/2) Yo(n/2)```	
```procedure Cheers(n) if n>1 then print(" cheers") Cheers(n/2)```	

Problem 2: A group of 58 climbers set out to climb three peaks: Lhotse, Makalu, and Annapurna. Each of them managed to climb at least one peak. Among them:

- 40 people climbed Annapurna
- 25 people people climbed Makalu
- 29 people climbed Lhotse
- 15 people climbed Lhotse and Annapurna
- 16 people climbed Lhotse and Makalu
- 18 people climbed Makalu and Annapurna

How many people climbed all three peaks? Show your work. (And, by the way, where are those mountains?)

Problem 3: Find a particular solution of the recurrence $V_{n}=3 V_{n-1}-4 V_{n-2}+3 \cdot 4^{n}$.

