Problem 1: In the RSA, suppose that Bob chooses $p=3$ and $q=43$. (a) Determine three correct values of the public exponent e. Justify briefly their correctness (at most 20 words.)

Solution: $\phi(n)=(p-1) \cdot(q-1)=2 \times 42=2^{2} \cdot 3 \cdot 7$
We know that e should be relatively prime to $\phi(n)$, i.e., $\operatorname{gcd}(e, \phi(n))$ should be 1 . Numbers 5,11 and 13 satisfy this condition and hence are possible values of e.
(b) For one of the e 's you selected, compute the corresponding secret exponent d. Show your work.

Solution: The secret key, $d=e^{-1}(\bmod \phi(n))$. For $e=5, d=5^{-1}(\bmod 84)=17($ since $17 \times 5=85 \equiv 1(\bmod 84)$.

Problem 2: Solve the recurrence $S_{n}=7 S_{n-1}-10 S_{n-2}$, with initial conditions $S_{0}=1$, $S_{1}=2$.
(a) Characteristic polynomial and its roots:
$x^{2}-7 x+10=0$
or, $(x-2)(x-5)=0$
So, the roots are 2 and 5 .
(b) General form of the solution:
$S_{n}=c_{1} \cdot 2^{n}+c_{2} \cdot 5^{n}$
(c) Initial condition equations and their solution:
$S_{0}=1: c_{1}+c_{2}=1$
$S_{1}=2: 2 \cdot c_{1}+5 \cdot c_{2}=2$
We solve these two equations to get, $c_{1}=1$ and $c_{2}=0$
(d) Final answer:

Plugging in values of c_{1} and c_{2} into the general form of the solution gives:
$S_{n}=2^{n}$

