Problem 1: For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. (You don't need to give any justification.)

Pseudo-code	Running time
$\begin{gathered} \text { for } i \leftarrow 1 \text { to } 2 n \text { do } \\ \text { for } j \leftarrow 1 \text { to } i \text { do } \\ x \leftarrow 2 x+7 \end{gathered}$	$\Theta\left(n^{2}\right)$
$\begin{aligned} & j \leftarrow 1 \\ & \text { while } j<n \text { do } \\ & \qquad x \leftarrow 2 x+7 \\ & \qquad j \leftarrow j+2 \end{aligned}$	$\Theta(n)$
$\text { for } \begin{aligned} & i \leftarrow 1 \text { to } n \text { do } \\ & j \leftarrow 1 \\ & \text { while } j<n \\ & x \leftarrow 2 x+7 \\ & \quad j \leftarrow 3 j \end{aligned}$	$\Theta(n \log n)$
$\begin{aligned} \text { for } & i \leftarrow n / 2 \text { to } n \text { do } \\ & x \leftarrow 2 x+7 \\ \text { for } & j \leftarrow 1 \text { to } 3 n \text { do } \\ & x \leftarrow 2 x+7 \end{aligned}$	$\Theta(n)$

Note 1: " \leftarrow "denotes the assignment statement. The scope of and nesting loops is indicated by the indentation.

Problem 2: (a) State Euclid's Algorithm.
function $\operatorname{gcd}(a, b)$
if $a=b$ then return a
if $a<b$ then $\operatorname{swap}(a, b)$
return $\operatorname{gcd}(a-b, b)$
(b) Use Euclid's Algorithm to compute the greatest common divisor of 323 and 456. Show your work. (No guessing, you must follow Euclid's algorithm.)

$$
\begin{aligned}
323,456 & \rightarrow 323,133 \rightarrow 190,133 \rightarrow 57,133 \\
& \rightarrow 57,76 \rightarrow 57,19 \rightarrow 38,19 \rightarrow 19,19 .
\end{aligned}
$$

Problem 3: (a) Compute 5^{40} rem 13. Show your work.

$$
\begin{aligned}
5^{40} \text { rem } 13 & =\left(5^{2}\right)^{20} \text { rem } 13 \\
& =25^{20} \text { rem } 13 \\
& =(-1)^{20} \text { rem } 13 \\
& =1
\end{aligned}
$$

(b) Compute $5^{-1}(\bmod 11)$. Show your work.

We first find α, β for which $\alpha \cdot 5+\beta \cdot 11=1$. This gives us $\alpha=9$ and $\beta=-4$. So $5^{-1}=9(\bmod 11)$.

To verify: $(5 \cdot 9)$ rem $11=45 \mathrm{rem} 11=1$.

