NAME: SID:

Problem 1: For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. (You don't need to give any justification.)

Pseudo-code	Running time
for $i \leftarrow 1$ to $2n$ do for $j \leftarrow 1$ to i do $x \leftarrow 2x + 7$	$\Theta(n^2)$
	$\Theta(n)$
for $i \leftarrow 1$ to n do $j \leftarrow 1$ while $j < n$ $x \leftarrow 2x + 7$ $j \leftarrow 3j$	$\Theta(n \log n)$
for $i \leftarrow n/2$ to n do $x \leftarrow 2x + 7$ for $j \leftarrow 1$ to $3n$ do $x \leftarrow 2x + 7$	$\Theta(n)$

Note 1: " \leftarrow " denotes the assignment statement. The scope of and nesting loops is indicated by the indentation.

Problem 2: (a) State Euclid's Algorithm.

```
function gcd(a, b)

if a = b then return a

if a < b then swap(a, b)

return gcd(a - b, b)
```

(b) Use Euclid's Algorithm to compute the greatest common divisor of 323 and 456. Show your work. (No guessing, you must follow Euclid's algorithm.)

Problem 3: (a) Compute 5^{40} rem 13. Show your work.

$$5^{40} \operatorname{rem} 13 = (5^2)^{20} \operatorname{rem} 13$$

= $25^{20} \operatorname{rem} 13$
= $(-1)^{20} \operatorname{rem} 13$
= 1.

(b) Compute 5^{-1} (mod 11). Show your work. We first find α , β for which $\alpha \cdot 5 + \beta \cdot 11 = 1$. This gives us $\alpha = 9$ and $\beta = -4$. So $5^{-1} = 9 \pmod{11}$.

To verify: $(5 \cdot 9) \text{ rem } 11 = 45 \text{ rem } 11 = 1$.