Problem 1: For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. (You don't need to give any justification.)

Pseudo-code	Running time
for $i \leftarrow 1$ to $2n$ do for $j \leftarrow 1$ to i do $x \leftarrow 2x + 7$	
$j \leftarrow 1$ while $j < n$ do $x \leftarrow 2x + 7$ $j \leftarrow j + 2$	
for $i \leftarrow 1$ to n do $j \leftarrow 1$ while $j < n$ $x \leftarrow 2x + 7$ $j \leftarrow 3j$	
for $i \leftarrow n/2$ to n do $x \leftarrow 2x + 7$ for $j \leftarrow 1$ to $3n$ do $x \leftarrow 2x + 7$	

Note 1: " \leftarrow " denotes the assignment statement. The scope of and nesting loops is indicated by the indentation.

Problem 2: (a) State Euclid's Algorithm.

(b) Use Euclid's Algorithm to compute the greatest common divisor of 323 and 456. Show your work. (No guessing, you must follow Euclid's algorithm.)

Problem 3: (a) Compute 5^{40} rem 13. Show your work.

(b) Compute $5^{-1} \pmod{11}$. Show your work.