Problem 1: For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. (You don't need to give any justification.)

Pseudo-code	Running time
for $i \leftarrow 1$ to $2 n$ do for $j \leftarrow 1$ to i do $x \leftarrow 2 x+7$	
$\begin{aligned} & j \leftarrow 1 \\ & \text { while } j<n \text { do } \\ & \qquad \begin{aligned} & x \leftarrow 2 x+7 \\ & j \leftarrow j+2 \end{aligned} \end{aligned}$	
$\text { for } \begin{aligned} & i \leftarrow 1 \text { to } n \text { do } \\ & j \leftarrow 1 \\ & \text { while } j<n \\ & x \leftarrow 2 x+7 \\ & j \leftarrow 3 j \end{aligned}$	
$\text { for } \begin{aligned} & i \leftarrow n / 2 \text { to } n \text { do } \\ x & \leftarrow 2 x+7 \\ \text { for } & j \leftarrow 1 \text { to } 3 n \text { do } \\ x & \leftarrow 2 x+7 \end{aligned}$	

Note 1: " \leftarrow " denotes the assignment statement. The scope of and nesting loops is indicated by the indentation.

Problem 2: (a) State Euclid's Algorithm.
(b) Use Euclid's Algorithm to compute the greatest common divisor of 323 and 456. Show your work. (No guessing, you must follow Euclid's algorithm.)

Problem 3: (a) Compute 5^{40} rem 13. Show your work.
(b) Compute $5^{-1}(\bmod 11)$. Show your work.

