Problem 1: Use the $\Theta$-notation to determine the rate of growth of the following functions:

| Function | $\Theta$ estimate |
| :--- | :--- |
| $5 n+3 n^{2}+3$ | $\Theta\left(n^{2}\right)$ |
| $17 n+3 n^{2} \log n+1$ | $\Theta\left(n^{2} \log n\right)$ |
| $7 n^{9}+(1.5)^{n}$ | $\Theta\left((1.5)^{n}\right)$ |
| $n^{3} 4^{n}+5^{n}+16 \sqrt{n}$ | $\Theta\left(5^{n}\right)$ |
| $\sqrt{n}+11 \log n$ | $\Theta(\sqrt{n})$ |

Problem 2: (a) State Euclid's Algorithm.
(b) Use Euclid's Algorithm to compute the greatest common divisor of 391 and 299. Show your work.

Solution: We know that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)=\operatorname{gcd}(b, a$ rem $b)$. Note that, using $a$ rem $b$ is more efficient than using $a-b$.

$$
\begin{aligned}
\operatorname{gcd}(391,299) & =\operatorname{gcd}(299,391 \mathrm{rem} 299) \\
& =\operatorname{gcd}(299,92) \\
& =\operatorname{gcd}(92,299 \mathrm{rem} 92) \\
& =\operatorname{gcd}(92,23) \\
& =\operatorname{gcd}(23,92 \mathrm{rem} 23) \\
& =\operatorname{gcd}(23,0) \\
& =23
\end{aligned}
$$

Problem 3: (a) Give the factorization of 1386. Show your work.

## Solution:

$$
\begin{aligned}
1386 & =2 \cdot 693 \\
& =2 \cdot 3 \cdot 231 \\
& =2 \cdot 3 \cdot 3 \cdot 77 \\
& =2 \cdot 3^{2} \cdot 7 \cdot 11
\end{aligned}
$$

(b) Determine $10^{-1}(\bmod 13)$, the inverse of 10 modulo 13 . Show your work.

Solution: We want to find integers $x$ and $y$ that satisfy: $10 \cdot x+13 \cdot y=1$. Since, 10 is relatively prime to 13 , such integers should exist.

$$
\begin{aligned}
10 \cdot x & =10,20,30,40,50,60, \ldots \\
13 \cdot y & =13,26,39,52,65,78, \ldots
\end{aligned}
$$

So, for $x=4$ and $y=-3,10 \cdot x+13 \cdot y=40-39=1$. So, $10^{-1}(\bmod 13)=4$.
Alternatively, since 13 is a prime number, $10^{13-1} \equiv 1(\bmod 13)$ (Fermat's Little Theorem). So, $10^{11} \cdot 10 \equiv 1(\bmod 13)$, meaning the inverse is $10^{11}(\bmod 13)$.

$$
\begin{array}{lllr}
10 & \equiv 10 & & (\bmod 13) \\
10^{2} & \equiv 10^{2} & \equiv 9 & \\
10^{4} \equiv 9^{2} & \equiv 3 & (\bmod 13) \\
10^{8} & \equiv 3^{2} & \equiv 9 & (\bmod 13) \\
10^{10} & \equiv 10^{2} \cdot 10^{8} & \equiv 9 \cdot 9 & \equiv 3 \\
10^{11} & \equiv 10 \cdot 10^{10} & \equiv 10 \cdot 3 & (\bmod 13) \\
(\bmod 13) \\
\hline
\end{array}
$$

