Problem 1: Let $A=\{1,2,3,4,5,6,7\}$ and $B=\{1,4,8\}$.
(a) List all elements of $\mathcal{P}(B)$ (the power-set of $B$ ).
$\{\emptyset,\{1\},\{4\},\{8\},\{1,4\},\{1,8\},\{4,8\},\{1,4,8\}\}$
(b) List all elements of $A \cap B$.
$\{1,4\}$
(c) In how many ways we can choose a three-element subset of $A$ ?
$\binom{7}{3}$
(d) In how many ways we can list all elements of $A$ ?

7 !
(e) What is the number of functions that map $A$ into $B$ ?
$3^{7}$

In parts (c), (d), (e) it is sufficient to give the correct formula; you do not have to calculate the numerical value.

Problem 2: (a) Solve equation $2 x^{2}-x-2=0$. Show your work.
Using the formulas for the roots, we get $x=\frac{1 \pm \sqrt{17}}{4}$
(b) Solve equation $x^{3}+x^{2}-4 x+2=0$. Compute all roots and show your work.

There are four candidate roots $1,-1,2,-2$. Trying them all, we find that 1 is a root. Factoring, we get $x^{3}+x^{2}-4 x+2=(x-1)\left(x^{2}+2 x-2\right)$, and computing the roots of $x^{2}+2 x-2=0$, we get that all the roots are 1 , $-1 \pm \sqrt{3}$.

Problem 3: Determine the numerical values of the expressions below:

$$
\begin{aligned}
6! & =720 \\
\operatorname{gcd}(117,195) & =39 \\
9+10+\ldots+38+39 & =\frac{39 \cdot 40}{2}-\frac{8 \cdot 9}{2}=744 \\
\binom{15}{3} & =455 \\
\sum_{i=0}^{\infty}(1 / 5)^{i} & =\frac{5}{4}
\end{aligned}
$$

