Problem 1: Determine the numerical values of the expressions below:

$$
\begin{aligned}
1+2+\ldots+100 & =5050 \\
\operatorname{gcd}(198,242) & =22 \\
163 \text { rem } 15 & =13 \\
\binom{15}{4} & =1365 \\
\sum_{i=0}^{\infty}(1 / 3)^{i} & =\frac{3}{2}
\end{aligned}
$$

Reminders:

- $\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b
- a rem b is the remainder of a modulo b (often also denoted $a \bmod b$)

Problem 2: (10 points). Let X and Y be two finite sets with cardinalities $|X|=n$ and $|Y|=m$. Complete the following sentences.
(a) X has 2^{n} subsets.
(b) $X \times Y$ has $n \cdot m$ elements.
(c) The number of permutations of Y is m !.
(d) There are m^{k} length- k sequences of elements from Y (with repetitions allowed).
(e) X has $\binom{n}{k} k$-element subsets (for $\left.0 \leq k \leq n\right)$.

Problem 3: For each of the statements below, tell whether it is true or false.
Note: to discourage guessing, the answers will be graded as follows: correct $=+2$, no answer $=0$, incorrect $=-1$.

statement	T / F
$\exists x \in \mathbb{R}: x^{2}+x=2$	T
$\exists x \in \mathbb{R}: x^{2}+x=-2$	F
$\forall x \in \mathbb{R}:\left(x^{2}>4\right) \Longrightarrow(x>2)$	F
$\forall x \in \mathbb{R} \exists y \in \mathbb{R}: x y^{2}+x=1$	F
$\exists x \in \mathbb{R} \forall y \in \mathbb{R}: x y^{2}+2^{x}=1$	T

Reminders:

- \mathbb{R} denotes the set of real numbers.
- \forall denotes the universal quantifier ("for all") and \exists denotes the existential quantifier ("there exists").

