CS/MATH111 ASSIGNMENT 4

Problem 1: Give the asymptotic value (using the Θ-notation) for the number of letters that will be printed by the algorithms below. In each algorithm the argument n is a positive integer. Your solution needs to consist of an appropriate recurrence equation and its solution. You also need to give a brief justification for the recurrence.

Part (a)
(i) Algorithm PrintAs (n : integer)
if $n<4$ print("A")
else
PrintAs($(n / 3\rceil)$
$\operatorname{PrintAs}(\lceil n / 3\rceil)$
PrintAs $(\lceil n / 3\rceil)$
PrintAs ($\lceil n / 3\rceil$)
PrintAs ($\lceil n / 3\rceil$)
for $i \leftarrow 1$ to $4 n^{2}$ do $\operatorname{print}(" \mathrm{~A}$ ")
(ii) Algorithm PrintBs (n : integer)
if $n<2$
print("B")
else
for $j \leftarrow 1$ to 8 do $\operatorname{PrintBs}(\lfloor n / 2\rfloor)$
for $i \leftarrow 1$ to $10 n^{3}$ do $\operatorname{print}(" \mathrm{~B} ")$
(iii) Algorithm PrintCs (n : integer)
if $n<3$
print("C")
else
PrintCs($\lceil n / 2\rceil$)
PrintCs($(n / 2\rceil)$
PrintCs($\lceil n / 2\rceil$)
PrintCs($\lceil n / 2\rceil$)
for $i \leftarrow 1$ to 20 do $\operatorname{print}(" \mathrm{C}$ ")

Part (b)
(iv) Algorithm PrintDs (n : integer)
if $n<2$
print("D")
else
for $j \leftarrow 1$ to 4 do $\operatorname{PrintDs}(\lfloor n / 2\rfloor)$
for $i \leftarrow 1$ to $10 n^{k}$ do print("D"),
where k is a nonnegative integer.

Problem 2: Bill is buying his wife a bouquet of carnations, roses, tulips, daises, and lilies. The bouquet will have 28 flowers, with

- at most 6 carnations,
- between 3 and 7 roses,
- between 2 and 11 tulips,
- at least 4 daises, and
- at least 1 lily.

How many different combinations of flowers satisfy these requirements? You need to use the counting method for integer partitions and show your work.

Problem 3: We have three sets P, Q, R with the following properties:
(a) $|P|=3|Q|$ and $|R|=|P|$,
(b) $|P \cap Q|=11,|Q \cap R|=14,|P \cap R|=2|Q|$,
(c) $7 \leq|P \cap Q \cap R| \leq 17$,
(d) $|P \cup Q \cup R|=100$.

Use the inclusion-exclusion principle to determine the number of elements in P. Show your work. (Hint: You may get an equation with two unknowns, but one of them has only a few possible values.)

Submission. To submit the homework, you need to upload the pdf file into ilearn and Gradescope.

