CS/MATH111 ASSIGNMENT 1

due Tuesday, January 22, 11:50PM

Problem 1: Give the exact and asymptotic formula for the number $f(n)$ of letters "Z" printed by Algorithm PrintZs below. Your solution must consist of the following steps:
(a) First express $f(n)$ using a summation notation \sum.
(b) Next, give a closed-form formula for $f(n)$.
(c) Finally, give the asymptotic value of the number of Z's (using the Θ-notation.) Include a brief justification for each step.

Note: If you need any summation formulas for this problem, you are allowed to look them up, and do not need to prove.

```
Algorithm PrintZS ( }n\mathrm{ : integer)
    for }j\leftarrow1\mathrm{ to }2n+3\mathrm{ do
        for }i\leftarrow1\mathrm{ to ( }j+2\mp@subsup{)}{}{2}\mathrm{ do print("Z")
```

Problem 2: Consider a sequence defined recursively as $B_{0}=1, B_{1}=2$, and $B_{n}=B_{n-1}+3 B_{n-2}$ for $n \geq 2$. Prove that $B_{n}=O\left(2.4^{n}\right)$ and $B_{n}=\Omega\left(2.3^{n}\right)$.
Hint: First, prove by induction that $B_{n} \geq \frac{1}{2} \cdot 2.3^{n}$ and $B_{n} \leq 2.4^{n}$ for all $n \geq 0$.
Problem 3: Give the asymptotic values of the following functions, using the Θ-notation:
(a) $\frac{1}{2} n^{5}+\left(n^{3}-n^{2}\right)^{2}+13 n$
(b) $3+\frac{2}{n^{-2}}+\frac{1}{n^{3} \log ^{2} n}$
(c) $n\left(n^{2} \log ^{3} n+9 n^{2} \log ^{5} n\right)+15 n^{4}$
(d) $13 n^{4}+n 2^{n}+n^{3} \log n$
(e) $n 3^{n}+n^{3} 2^{n}$

Justify your answers.
Submission. To submit the homework, you need to upload the pdf file into ilearn and Gradescope by 11:50PM on Tuesday, January 22.

Reminders. Remember that only $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ papers are accepted.

