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Abstract—This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommen-
dations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a
taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial
items, and spatial ratings for spatial items. LARS* exploits user rating locations through user partitioning, a technique that influences
recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing
recommendation quality. LARS* exploits item locations using travel penalty, a technique that favors recommendation candidates closer
in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS* can apply these techniques
separately, or together, depending on the type of location-based rating available. Experimental evidence using large-scale real-world
data from both the Foursquare location-based social network and the MovieLens movie recommendation system reveals that LARS* is
efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.
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1 INTRODUCTION

RECOMMENDERsystems make use of community opinions
to help users identify useful items from a consider-

ably large search space (e.g., Amazon inventory [1], Netflix
movies1). The technique used by many of these systems is
collaborative filtering (CF) [2], which analyzes past commu-
nity opinions to find correlations of similar users and itemsto
suggestk personalized items (e.g., movies) to a querying user
u. Community opinions are expressed through explicit ratings
represented by the triple (user, rating, item) that represents a
userproviding a numericrating for an item.

Currently, myriad applications can producelocation-based
ratings that embed user and/or item locations. For example,
location-based social networks (e.g., Foursquare2 and Face-
book Places [3]) allow users to “check-in” at spatial destina-
tions (e.g., restaurants) and rate their visit, thus are capable of
associating both user and item locations with ratings. Suchrat-
ings motivate an interesting new paradigm oflocation-aware
recommendations, whereby the recommender system exploits
the spatial aspect of ratings when producing recommendations.
Existing recommendation techniques [4] assume ratings are
represented by the (user, rating, item) triple, thus are ill-
equipped to produce location-aware recommendations.

In this paper, we propose LARS*, a novel location-
aware recommender system built specifically to produce high-
quality location-based recommendations in an efficient man-
ner. LARS* produces recommendations using a taxonomy of
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1. Netflix: http://www.netflix.com
2. Foursquare: http://foursquare.com
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Fig. 1. Preference locality in location-based ratings.

three types of location-based ratings within a single frame-
work: (1) Spatial ratings for non-spatial items, represented as
a four-tuple (user, ulocation, rating, item), whereulocation
represents a user location, for example, a user located at
home rating a book; (2) non-spatial ratings for spatial items,
represented as a four-tuple (user, rating, item, ilocation),
where ilocation represents an item location, for example, a
user with unknown location rating a restaurant; (3) spatial
ratings for spatial items, represented as a five-tuple (user,
ulocation, rating, item, ilocation), for example, a user at
his/her office rating a restaurant visited for lunch. Traditional
rating triples can be classified as non-spatial ratings for non-
spatial items and do not fit this taxonomy.

1.1 Motivation: A Study of Location-Based Ratings

The motivation for our work comes from analysis of two real-
world location-based rating datasets: (1) a subset of the well-
known MovieLens dataset [5] containing approximately 87K
movie ratings associated with user zip codes (i.e., spatialrat-
ings for non-spatial items) and (2) data from the Foursquare[6]
location-based social network containing user visit data for 1M
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users to 643K venues across the United States (i.e., spatial
ratings for spatial items). In our analysis we consistently
observed two interesting properties that motivate the needfor
location-aware recommendation techniques.

Preference locality. Preference locality suggests users from
a spatial region (e.g., neighborhood) prefer items (e.g., movies,
destinations) that are manifestly different than items preferred
by users from other, even adjacent, regions. Figure 1(a) lists
the top-4 movie genres using average MovieLens ratings of
users from different U.S. states. While each list is different,
the top genres from Florida differ vastly from the others.
Florida’s list contains three genres (“Fantasy”, “Animation”,
“Musical”) not in the other lists. This difference implies movie
preferences are unique to specific spatial regions, and confirms
previous work from the New York Times [7] that analyzed
Netflix user queues across U.S. zip codes and found similar
differences. Meanwhile, Figure 1(b) summarizes our observa-
tion of preference locality in Foursquare by depicting the visit
destinations for users from threeadjacentMinnesota cities.
Each sample exhibits diverse behavior: users from Falcon
Heights, MN favor venues in St. Paul, MN (17% of visits)
Minneapolis (13%), and Roseville, MN (10%), while users
from Robbinsdale, MN prefer venues in Brooklyn Park, MN
(32%) and Robbinsdale (20%). Preference locality suggests
that recommendations should be influenced by location-based
ratingsspatially closeto the user. The intuition is that localiza-
tion influences recommendation using the unique preferences
found within the spatial region containing the user.

Travel locality. Our second observation is that, when recom-
mended items are spatial, users tend to travel a limited distance
when visiting these venues. We refer to this property as “travel
locality.” In our analysis of Foursquare data, we observed
that 45% of users travel 10 miles or less, while 75% travel
50 miles or less. This observation suggests that spatial items
closer in travel distance to a user should be given precedence
as recommendation candidates. In other words, a recommen-
dation loses efficacy the further a querying user must travel
to visit the destination. Existing recommendation techniques
do not consider travel locality, thus may recommend users
destinations with burdensome travel distances (e.g., a user in
Chicago receiving restaurant recommendations in Seattle).

1.2 Our Contribution: LARS* - A Location-Aware
Recommender System

Like traditional recommender systems, LARS* suggestsk

items personalized for a querying useru. However, LARS*
is distinct in its ability to produce location-aware recommen-
dations usingeachof the three types of location-based rating
within a single framework.

LARS* produces recommendations usingspatial ratings
for non-spatial items, i.e., the tuple (user, ulocation, rating,
item), by employing auser partitioningtechnique that exploits
preference locality. This technique uses an adaptive pyramid
structure to partition ratings by theiruser locationattribute
into spatial regions of varying sizes at different hierarchies.
For a querying user located in a regionR, we apply an
existing collaborative filtering technique that utilizes only the

ratings located inR. The challenge, however, is to determine
whether all regions in the pyramid must be maintained in order
to balance two contradicting factors:scalability and locality.
Maintaining a large number of regions increaseslocality
(i.e., recommendations unique to smaller spatial regions),
yet adversely affects systemscalability because each region
requires storage and maintenance of a collaborative filtering
data structure necessary to produce recommendations (i.e.,
the recommender model). The LARS* pyramid dynamically
adapts to find the right pyramid shape that balances scalability
and recommendation locality.

LARS* produces recommendations usingnon-spatial rat-
ings for spatial items, i.e., the tuple (user, rating, item, iloca-
tion), by usingtravel penalty, a technique that exploits travel
locality. This technique penalizes recommendation candidates
the further they are in travel distance to a querying user. The
challenge here is to avoid computing the travel distance for
all spatial items to produce the list ofk recommendations, as
this will greatly consume system resources. LARS* addresses
this challenge by employing an efficient query processing
framework capable of terminating early once it discovers that
the list of k answers cannot be altered by processing more
recommendation candidates. To produce recommendations us-
ing spatial ratings for spatial items, i.e., the tuple (user,
ulocation, rating, item, ilocation) LARS* employs both the
user partitioningand travel penaltytechniques to address the
user and item locations associated with the ratings. This is
a salient feature of LARS*, as the two techniques can be
used separately, or in concert, depending on the location-based
rating type available in the system.

We experimentally evaluate LARS* using real location-
based ratings from Foursquare [6] and MovieLens [5], along
with a generated user workload of bothsnapshotand con-
tinuous queries. Our experiments show LARS* is scalable
to real large-scale recommendation scenarios. Since we have
access to real data, we also evaluate recommendationquality
by building LARS* with 80% of the spatial ratings and testing
recommendation accuracy with the remaining 20% of the
(withheld) ratings. We find LARS* produces recommendations
that are twice as accurate (i.e., able to better predict user
preferences) compared to traditional collaborative filtering. In
summary, the contributions of this paper are as follows:
• We provide a novel classification of three types of

location-based ratings not supported by existing recom-
mender systems:spatial ratings for non-spatial items,
non-spatial ratings for spatial items, andspatial ratings
for spatial items.

• We propose LARS*, a novel location-aware recom-
mender system capable of using three classes of location-
based ratings. Within LARS*, we propose: (a) auser par-
titioning technique that exploits user locations in a way
that maximizes system scalability while not sacrificing
recommendation locality and (b) atravel penaltytech-
nique that exploits item locations and avoids exhaustively
processing all spatial recommendation candidates.

• LARS* distinguishes itself from LARS [8] in the follow-
ing points: (1) LARS* achieves higher locality gain than
LARS using a better user partitioning data structure and
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algorithm. (2) LARS* exhibits a more flexible tradeoff
between locality and scalability. (3) LARS* provides
a more efficient way to maintain the user partitioning
structure, as opposed to LARS expensive operations.

• We provide experimental evidence that LARS* scales to
large-scale recommendation scenarios and provides better
quality recommendations than traditional approaches.

This paper is organized as follows: Section 2 gives an
overview of LARS*. Sections 4, 5, and 6 cover LARS*
recommendation techniques usingspatial ratings for non-
spatial items, non-spatial ratings for spatial items, andspatial
ratings for spatial items, respectively. Section 7 provides
experimental analysis. Section 8 covers related work, while
Section 9 concludes the paper.

2 LARS* OVERVIEW

This section provides an overview of LARS* by discussing
the query model and the collaborative filtering method.

2.1 LARS* Query Model

Users (or applications) provide LARS* with a user idU ,
numeric limitK, and locationL; LARS* then returnsK rec-
ommended items to the user. LARS* supports bothsnapshot
(i.e., one-time) queries andcontinuousqueries, whereby a user
subscribes to LARS* and receives recommendation updates as
her location changes. The technique LARS* uses to produce
recommendations depends on the type of location-based rating
available in the system. Query processing support for each type
of location-based rating is discussed in Sections 4 to 6.

2.2 Item-Based Collaborative Filtering

LARS* uses item-based collaborative filtering (abbr. CF) as
its primary recommendation technique, chosen due to its
popularity and widespread adoption in commercial systems
(e.g., Amazon [1]). Collaborative filtering (CF) assumes a
set of n users U = {u1, ..., un} and a set ofm items
I = {i1, ..., im}. Each useruj expresses opinions about a
set of itemsIuj

⊆ I. Opinions can be a numeric rating (e.g.,
the Netflix scale of one to five stars), or unary (e.g., Facebook
“check-ins” [3]). Conceptually, ratings are represented as a
matrix with users and items as dimensions, as depicted in
Figure 2(a). Given a querying useru, CF produces a set of
k recommended itemsIr ⊂ I that u is predicted to like the
most.

Phase I: Model Building. This phase computes a similarity
scoresim(ip,iq) for each pair of objectsip and iq that have

ipsim(   ,   ) = .7iq
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Fig. 3. Item-based similarity calculation.

at least one common rating by the same user (i.e., co-rated
dimensions). Similarity computation is covered below. Using
these scores, a model is built that stores for each itemi ∈ I, a
list L of similar items ordered by a similarity scoresim(ip,iq),
as depicted in Figure 2(b). Building this model is anO(R

2

U )
process [1], whereR and U are the number of ratings and
users, respectively. It is common to truncate the model by
storing, for each listL, only then most similar items with the
highest similarity scores [9]. The value ofn is referred to as
the model sizeand is usually much less than|I|.

Phase II: Recommendation Generation. Given a querying
user u, recommendations are produced by computingu’s
predicted ratingP(u,i) for each itemi not rated byu [9]:

P(u,i) =

∑
l∈L sim(i, l) ∗ ru,l
∑

l∈L |sim(i, l)|
(1)

Before this computation, we reduce each similarity listL to
contain only itemsrated by useru. The prediction is the sum
of ru,l, a useru’s rating for a related iteml ∈ L weighted by
sim(i,l), the similarity ofl to candidate itemi, then normalized
by the sum of similarity scores betweeni and l. The user
receives as recommendations the top-k items ranked byP(u,i).

Computing Similarity . To computesim(ip, iq), we repre-
sent each item as a vector in the user-rating space of the rating
matrix. For instance, Figure 3 depicts vectors for itemsip and
iq from the matrix in Figure 2(a). Many similarity functions
have been proposed (e.g., Pearson Correlation, Cosine); we
use the Cosine similarity inLARS*due to its popularity:

sim(ip, iq) =
~ip · ~iq

‖~ip‖‖~iq‖
(2)

This score is calculated using the vectors’ co-rated dimensions,
e.g., the Cosine similarity betweenip and iq in Figure 3
is .7 calculated using the circled co-rated dimensions. Cosine
distance is useful for numeric ratings (e.g., on a scale [1,5]).
For unary ratings, other similarity functions are used (e.g.,
absolute sum [10]).

While we opt to use item-based CF in this paper, no
factors disqualify us from employing other recommendation
techniques. For instance, we could easily employ user-based
CF [4], that uses correlations between users (instead of items).

3 NON-SPATIAL USER RATINGS FOR
NON-SPATIAL ITEMS

The traditional item-based collaborative filtering (CF) method
is a special case of LARS*. CF takes as input the classical
rating triplet (user, rating, item) such that neither the user
location nor the item location are specified. In such case,
LARS* directly employs the traditional model building phase
(Phase-I in section 2) to calculate the similarity scores between
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Fig. 4. Pyramid data structure

all items. Moreover, recommendations are produced to the
users using the recommendation generation phase (Phase-II
in section 2). During the rest of the paper, we explain how
LARS* incorporates either the user spatial location or the item
spatial location to serve location-aware recommendationsto
the system users.

4 SPATIAL USER RATINGS FOR
NON-SPATIAL ITEMS

This section describes how LARS* produces recommendations
using spatial ratings for non-spatial items represented bythe
tuple (user, ulocation, rating, item). The idea is to exploit
preference locality, i.e., the observation that user opinions
are spatially unique (based on analysis in Section 1.1). We
identify three requirements for producing recommendations
using spatial ratings for non-spatial items: (1)Locality: rec-
ommendations should be influenced by those ratings with user
locations spatially close to the querying user location (i.e., in
a spatial neighborhood); (2)Scalability: the recommendation
procedure and data structure should scale up to large number
of users; (3)Influence: system users should have the ability to
control the size of the spatial neighborhood (e.g., city block,
zip code, or county) that influences their recommendations.

LARS* achieves its requirements by employing auser
partitioning technique that maintains an adaptive pyramid
structure, where the shape of the adaptive pyramid is drivenby
the three goals oflocality, scalability, andinfluence. The idea
is to adaptively partition the rating tuples (user, ulocation,
rating, item) into spatial regions based on theulocation
attribute. Then, LARS* produces recommendations using any
existing collaborative filtering method (we use item-based
CF) over the remaining three attributes (user, rating, item)
of only the ratings within the spatial region containing the
querying user. We note that ratings can come from users with
varying tastes, and that our method only forces collaborative
filtering to produce personalized user recommendations based
only on ratings restricted to a specific spatial region. In this
section, we describe the pyramid structure in Section 4.1,
query processing in Section 4.2, and finally data structure
maintenance in Section 4.3.
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4.1 Data Structure

LARS* employs a partialin-memorypyramid structure [11]
(equivalent to a partial quad-tree [12]) as depicted in Figure 4.
The pyramid decomposes the space intoH levels (i.e., pyramid
height). For a given levelh, the space is partitioned into4h

equal area grid cells. For example, at the pyramid root (level
0), one grid cell represents the entire geographic area, level 1
partitions space into four equi-area cells, and so forth. We
represent each cell with a unique identifiercid.

A rating may belong to up toH pyramid cells: one per each
pyramid level starting from the lowest maintained grid cell
containing the embedded user location up to the root level.
To provide a tradeoff between recommendation locality and
system scalability, the pyramid data structure maintains three
types of cells (see figure 4): (1) Recommendation Model Cell
(α-Cell), (2) Statistics Cell (β-Cell), and (3) Empty Cell (γ-
Cell), explained as follows:

Recommendation Model Cell (α-Cell). Eachα-Cell stores
an item-based collaborative filtering model built usingonly the
spatial ratings with user locations contained in the cell’sspatial
region. Note that the root cell (level 0) of the pyramid is anα-
Cell and represents a “traditional” (i.e., non-spatial) item-based
collaborative filtering model. Moreover, eachα-Cell maintains
statistics about all the ratings located within the spatialextents
of the cell. Eachα-Cell Cp maintains a hash table that indexes
all items (by their IDs) that have been rated in this cell, named
Items Ratings Statistics Table. For each indexed itemi in the
Items Ratings Statistics Table, we maintain four parameters;
each parameter represent thenumber of user ratingsto item i

in each of the four children cells (i.e.,C1, C2, C3, andC4) of
cell Cp. An example of the maintained parameters is given in
Figure 5. Assume that cellCp contains ratings for three items
I1, I2, and I3. Figure 5 shows the maintained statistics for
each item in cellCp. For example, for itemI1, the number of
user ratings located in child cellC1, C2, C3, andC4 is equal
to 109, 3200, 14, and 54, respectively. Similarly, the number
of user ratings is calculated for itemsI2 andI3.

Statistics Cell (β-Cell). Like an α-Cell, a β-Cell main-
tains statistics (i.e.,items ratings Statistics Table) about the
user/item ratings that are located within the spatial rangeof
the cell. The only difference between anα-Cell and aβ-Cell
is that a β-Cell does not maintain a collaborative filtering
(CF) model for the user/item ratings lying in its boundaries. In
consequence, aβ-Cell is a light weight cell such that it incurs
less storage than anα-Cell. In favor of system scalability,
LARS* prefers aβ-Cell over anα-Cell to reduce the total
system storage.

Empty Cell (γ-Cell). a γ-Cell is a cell that maintains
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neither the statistics nor the recommendation model for the
ratings lying within its boundaries. aγ-Cell is the most light
weight cell among all cell types as it almost incurs no storage
overhead. Note that anα-Cell can haveα-Cells, β-Cells, or
γ-Cells children. Also, aβ-Cell can haveα-Cells,β-Cells, or
γ-Cells children. However, aγ-Cell cannot have any children.

4.1.1 Pyramid structure intuition
An α-Cell requires the highest storage and maintenance over-
head because it maintains a CF model as well as the user/item
ratings statistics. On the other hand, anα-Cell (as opposed
to β-Cell andγ-Cell) is the only cell that can be leveraged
to answer recommendation queries. A pyramid structure that
only containsα-Cells achieves the highest recommendation
locality, and this is why anα-Cell is considered the highly
ranked cell type in LARS*. aβ-Cell is the secondly ranked
cell type as it only maintains statistics about the user/item
ratings. The storage and maintenance overhead incurred by
a β-Cell is less expensive than anα-Cell. The statistics
maintained at aβ-Cell determines whether the children of that
cell needs to be maintained asα-Cells to serve more localized
recommendation. Finally, aγ-Cell (lowest ranked cell type)
has the least maintenance cost, as neither a CF model nor
statistics are maintained for that cell. Moreover, aγ-Cell is a
leaf cell in the pyramid.

LARS* upgrades (downgrades) a cell to a higher (lower)
cell rank, based on trade-offs between recommendation lo-
cality and system scalability (discussed in Section 4.3). If
recommendation locality is preferred over scalability, more
α-Cells are maintained in the pyramid. On the other hand,
if scalability is favored over locality, moreγ-Cells exist in
the pyramid.β-Cells comes as an intermediary stage between
α-Cells andγ-Cells to further increase the recommendation
locality whereas the system scalability is not quite affected.

We chose to employ a pyramid as it is a “space-partitioning”
structure that is guaranteed to completely cover a given space.
For our purposes, “data-partitioning” structures (e.g., R-trees)
are less ideal than a “space-partitioning” structure for two main
reasons: (1) “data-partitioning” structures index data points,
and hence covers only locations that are inserted in them. In
other words, “data-partitioning” structures are not guaranteed
to completely cover a given space, which is not suitable for
queries issued in arbitrary spatial locations. (2) In contrast
to “data-partitioning” structures (e.g., R-trees [13]), “space
partitioning” structures show better performance for dynamic
memory resident data [14], [15], [16].

4.1.2 LARS* versus LARS
Table 1 compares LARS* against LARS. Like LARS*,
LARS [8] employs a partial pyramid data structure to support
spatial user ratings for non-spatial items. LARS is different
from LARS* in the following aspects: (1) As shown in
Table 1, LARS* maintainsα-Cells, β-Cells, andγ-Cells,
whereas LARS only maintainsα-Cells andγ-Cells. In other
words, LARS either merges or splits a pyramid cell based on
a tradeoff between scalability and recommendation locality.
LARS* employs the same tradeoff and further increases the
recommendation locality by allowing for moreα-Cells to be

LARS LARS*

Supported Features
α-Cell Yes Yes

β-Cell No Yes

γ-Cell Yes Yes

Speculative Split Yes No

Rating Statistics No Yes

Performance Factors
Locality - ≈26% higher than LARS

Storage ≈5% lower than LARS* -

Maintenance - ≈38% lower than LARS

TABLE 1
Comparison between LARS and LARS*. Detailed experimental

evaluation results are provided in section 7.

maintained at lower pyramid levels. (2) As opposed to LARS,
LARS* does not perform a speculative splitting operation
to decide whether to maintain more localized CF models.
However, LARS maintains extra statistics at eachα-Cell and
β-Cell that helps in quickly deciding wether a CF model needs
to be maintained at a child cell. (3) As it turns out from
Table 1, LARS* achieves higher recommendation locality than
LARS. That is due to the fact that LARS maintains a CF
recommendation model in a cell at pyramid levelh if and
only if a CF model, at its parent cell at levelh − 1, is also
maintained. However, LARS* may maintain anα-Cell at level
h even though its parent cell, at levelh−1, does not maintain
a CF model, i.e., the parent cell is aβ-Cell. In LARS*, the
role of aβ-Cell is to keep theuser/item ratings statisticsthat
are used to quickly decide whether the child cells needs to
beγ-Cells orα-Cells. (4) As given in Table 1, LARS* incurs
more storage overhead than LARS which is explained by the
fact that LARS* maintains additional type of cell, i.e.,β-
Cells, whereas LARS only maintainsα-Cells andγ-Cells. In
addition, LARS* may also maintain moreα-Cells than LARS
does in order to increase the recommendation locality. (5) Even
LARS* may maintain moreα-Cells than LARS besides the
extra statistics maintained atβ-Cells, nonetheless LARS*
incurs less maintenance cost. That is due to the fact that
LARS* also reduces the maintenance overhead by avoiding the
expensive speculative splitting operation employed by LARS
maintenance algorithm. Instead, LARS* employs theuser/item
ratings statisticsmaintained at either aβ-Cell or anα-Cell to
quickly decide whether the cell children need to maintain a
CF model (i.e., upgraded toα-Cells), just needs to maintain
the statistics (i.e., becomeβ-Cells), or perhaps downgraded to
γ-Cells.

4.2 Query Processing

Given a recommendation query (as described in Section 2.1)
with user locationL and a limit K, LARS* performs two
query processing steps: (1) The user locationL is used to
find the lowest maintainedα-Cell C in the adaptive pyramid
that containsL. This is done by hashing the user location to
retrieve the cell at the lowest level of the pyramid. If anα-
Cell is not maintained at the lowest level, we return the nearest
maintained ancestorα-Cell. (2) The top-k recommended items
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are generated using the item-based collaborative filteringtech-
nique (covered in Section 2.2) using the model stored atC.
As mentioned earlier, the model inC is built usingonly the
spatial ratings associated with user locations withinC.

In addition to traditional recommendation queries (i.e.,
snapshot queries), LARS* also supports continuous queries
and can account for theinfluencerequirement as follows.

Continuous queries.LARS* evaluates a continuous query
in full once it is issued, and sends recommendations back
to a userU as an initial answer. LARS* then monitors the
movement ofU using her location updates. As long asU does
not cross the boundary of her current grid cell, LARS* does
nothing as the initial answer is still valid. OnceU crosses a cell
boundary, LARS* reevaluates the recommendation query for
the new cell only if the new cell is anα-Cell. In case the new
cell is anα-Cell, LARS* only sends incremental updates [16]
to the last reported answer. Like snapshot queries, if a cellat
level h is not maintained, the query is temporarily transferred
higher in the pyramid to the nearest maintained ancestorα-
Cell. Note that since higher-level cells maintain larger spatial
regions, the continuous query will cross spatial boundaries less
often, reducing the amount of recommendation updates.

Influence level. LARS* addresses theinfluencerequirement
by allowing querying users to specify an optionalinfluence
level (in addition to locationL and limit K) that controls
the size of the spatial neighborhood used to influence their
recommendations. An influence levelI maps to a pyramid
level and acts much like a “zoom” level in Google or Bing
maps (e.g., city block, neighborhood, entire city). The level I
instructs LARS* to process the recommendation query starting
from the grid α-Cell containing the querying user location
at level I, instead of the lowest maintained gridα-Cell (the
default). An influence level of zero forces LARS* to use the
root cell of the pyramid, and thus act as a traditional (non-
spatial) collaborative filtering recommender system.

4.3 Data Structure Maintenance

This section describes building and maintaining the pyramid
data structure. Initially, to build the pyramid, all location-based
ratings currently in the system are used to build acomplete
pyramidof heightH , such that all cells in allH levels areα-
Cells and contain ratings statistics and a collaborative filtering
model. The initial heightH is chosen according to the level
of locality desired, where the cells in the lowest pyramid level
represent the most localized regions. After this initial build,
we invoke acell type maintenancestep that scans all cells
starting from the lowest levelh and downgrades cell types to
either (β-Cell or γ-Cell) if necessary (cell type switching is
discussed in Section 4.5.2). We note that while the original
partial pyramid [11] was concerned with spatial queries over
static data, it did not address pyramid maintenance.

4.4 Main Idea

As time goes by, new users, ratings, and items will be added
to the system. This new data will both increase the size of the
collaborative filtering models maintained in the pyramid cells,
as well as alter recommendations produced from each cell.

Algorithm 1 Pyramid maintenance algorithm
1: /* Called after cellC receivesN% new ratings */
2: Function PyramidMaintenance(Cell C, Level h)
3: /* Step I: Statistics Maintenance*/
4: Maintain cellC statistics
5: /*Step II: Model Rebuild */
6: if (Cell C is anα-Cell) then
7: Rebuild item-based collaborative filtering model for cellC
8: end if
9: /*Step III: Cell Child Quadrant Maintenance */

10: if (C children quadrantq cells areα-Cells) then
11: CheckDownGradeToSCells(q,C) /* covered in Section 4.5.2 */
12: else if (C children quadrantq cells areγ-Cells) then
13: CheckUpGradeToSCells(q,C)
14: else
15: isSwitchedToMcells← CheckUpGradeToMCells(q,C) /* covered in Sec-

tion 4.5.3 */
16: if (isSwitchedToMcells isFalse) then
17: CheckDownGradeToECells(q,C)
18: end if
19: end if
20: return

To account for these changes, LARS* performs maintenance
on a cell-by-cell basis. Maintenance is triggered for a cellC

once it receivesN% new ratings; the percentage is computed
from the number of existing ratings inC. We do this because
an appealing quality of collaborative filtering is that as a
model matures (i.e., more data is used to build the model),
more updates are needed to significantly change the top-k

recommendations produced from it [17]. Thus, maintenance
is needed less often.

We note the following features of pyramid maintenance:
(1) Maintenance can be performed completely offline, i.e.,
LARS* can continue to produce recommendations using the
”old” pyramid cells while part of the pyramid is being updated;
(2) maintenance does not entail rebuilding the whole pyramid
at once, instead, only one cell is rebuilt at a time; (3) main-
tenance is performed only afterN% new ratings are added to
a pyramid cell, meaning maintenance will be amortized over
many operations.

4.5 Maintenance Algorithm

Algorithm 1 provides the pseudocode for the LARS* mainte-
nance algorithm. The algorithm takes as input a pyramid cell
C and levelh, and includes three main steps:Statistics Mainte-
nance, Model RebuildandCell Child Quadrant Maintenance,
explained below.

Step I: Statistics Maintenance.The first step (line 4) is
to maintain theItems Ratings Statistics Table. The maintained
statistics are necessary for cell type switching decision,espe-
cially when new location-based ratings enter the system. As
the items ratings statistics tableis implemented using a hash
table, then it can be queried and maintained inO(1)) time,
requiringO(|IC |) space such thatIC is the set of all items
rated at cellC and |IC | is the total number of items inIC .

Step II: Model Rebuild. The second step is to rebuild the
item-based collaborative filtering (CF) model for a cellC, as
described in Section 2.2 (line 7). The model is rebuilt at cell
C only if cell C is an α-Cell, otherwise (β-Cell or γ-Cell)
no CF recommendation model is maintained, and hence the
model rebuild step does not apply Rebuilding the CF model
is necessary to allow the model to “evolve” as new location-
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based ratings enter the system (e.g., accounting for new items,
ratings, or users). Given the cost of building the item-based CF
model isO(R

2

U ) (per Section 2.2), the cost of the model rebuild
for a cellC at levelh is (R/4h)2

(U/4h)
= R2

4hU
, assuming ratings and

users are uniformly distributed.
Step III: Cell Child Quadrant Maintenance. LARS*

invokes a maintenance step that may decide whether cell
C child quadrant need to be switched to a different cell
type based on trade-offs betweenscalability and locality. The
algorithm first checks if cellC child quadrantq at levelh+1 is
of typeα-Cell (line 10). If that case holds, LARS* considers
quadrantq cells as candidates to be downgraded toβ-Cells
(calling functionCheckDownGradeToSCellson line 11). We
provide details of theDowngradeα-Cells toβ-Cellsoperation
in Section 4.5.2. On the other hand, ifC have a child quadrant
of type γ-Cells at levelh + 1 (line 12), LARS* considers
upgrading cellC four children cells at levelh + 1 to β-
Cells (calling functionCheckUpGradeToSCellson line 13).
The Updgrade From E toβ-Cells operation is covered in
Section 4.5.4. However, ifC have a child quadrant of typeβ-
Cells at levelh+1 (line 12), LARS* first considers upgrading
cell C four children cells at levelh + 1 from β-Cells toα-
Cells (calling functionCheckUpGradeToMCellson line 15).
If the children cells are not switched toα-Cells, LARS*
then considers downgrading them toγ-Cells (calling function
CheckDownGradeToECellson line 17). Cell Type switching
operations are performed completely in quadrants (i.e., four
equi-area cells with the same parent). We made this decision
for simplicity in maintaining the partial pyramid.

4.5.1 Recommendation Locality
In this section, we explain the notion of locality in recommen-
dation that is essential to understand the cell type switching
(upgrade/downgrade) operations highlighted in thePyramid-
Maintenance algorithm (algorithm 1). We use the following
example to give the intuition behind recommendation locality.
Running Example. Figure 6 depicts a two-levels pyramid in
whichCp is the root cell and its children cells areC1, C2, C3,
andC4. In the example, we assume eight users (U1, U2, ...,
andU8) have rated eight different items (I1, I2, ..., andI8).
Figure 6(b) gives the spatial distributions of usersU1, U2, U3,
U4, U5, U6, U7, andU8 as well as the items that each user
rated.
Intuition. Consider the example given in Figure 6. In cellCp,
usersU2 andU5 that belongs to the child cellC2 have both
rated itemsI2 andI5. In that case, the similarity score between
items I2 and I5 in the item-based collaborative filtering CF
model built at cellC2 is exactly the same as the one in the
CF model built at cellCp. The last phenomenon happened
because items (i.e.,I2 andI5) have been rated by mostly users
located in the same child cell, and hence the recommendation
model at the parent cell will not be different from the model
at the children cells. In this case, if the CF model atC2 is not
maintained, LARS* does not lose recommendation locality at
all.

The opposite case happens when an item is rated by users
located in different pyramid cells (spatially skewed). For
example, itemI4 is rated by usersU2, U4, andU7 in three

Parameter Description

RPc,i The set of user pairs that co-rated itemi in cell c

RSc,i The set of user pairs that co-rated itemi in cell c such that each
pair of users〈u1, u2〉 ∈ Sc,i are not located in the same child
cell of c

LGc,i The degree of locality lost for itemi from downgrading the four
children of cellc to β-Cells, such that0 ≤ LGc,i ≤ 1

LGc The amount of locality lost by downgrading cellc four children
cells toβ-Cells (0 ≤ LGc ≤ 1)

TABLE 2
Summary of Mathematical Notations.

different cells (C2, C3, andC4). In this case,U2, U4, andU7

are spatially skewed. Hence, the similarity score between item
I4 and other items at the children cells is different from the
similarity score calculated at the parent cellCp because not
all users that have rated itemI4 exist in the same child cell.
Based on that, we observe the following:

Observation 1:The more the user/item ratings in a parent
cell C are geographically skewed, the higher the locality
gained from building the item-based CF model at the four
children cells.

The amount of locality gained/lost by maintaining the child
cells of a given pyramid cell depends on whether the CF
models at the child cells are similar to the CF model built at the
parent cell. In other words, LARS* loses locality if the child
cells are not maintained even though the CF model at these
cells produce different recommendations than the CF model at
the parent cell. LARS* leverages Observation 1 to determine
the amount of locality gained/lost due to maintaining an item-
based CF model at the four children. LARS* calculates the
locality loss/gain as follows:
Locality Loss/Gain. Table 2 gives the main mathemati-
cal notions used in calculating the recommendation locality
loss/gain. First, theItem Ratings Pairs Set(RPc,i) is defined
as the set of all possible pairs of users that rated itemi

in cell c. For example, in figure 6(c) the item ratings pairs
set for item I7 in cell Cp (RPCp,I7) has three elements
(i.e.,RPCp,I7={〈U3, U6〉,〈U3, U7〉,〈U6, U7〉}) as only usersU1

and U7 have rated itemI1. Similarly, RPCp,I2 is equal to
{〈U6, U7〉} (i.e., UsersU2 andU5 have rated itemI2).

For each item, we define theSkewed Item Ratings Set
(RSc,i) as the total number of user pairs in cellc that rated
item i such that each pair of users∈ RSc,i do not exist in
the same child cell ofc. For example, in Figure 6(c), the
skewed item ratings set for itemI2 in cell Cp (RSCP ,I2 ) is
∅ as all users that ratedI2, i.e., U2 and U5 are collocated
in the same child cellC2. For I4, the skewed item ratings set
RSCP ,I2={〈U2, U7〉, 〈U2, U4〉, 〈U4, U7〉} as all users that rated
item I2 are located in different child cells,i.e.,U2 at C2, U4

at C4, andU7 at C3.
Given the aforementioned parameters, we calculateItem

Locality Loss (LGc,i) for each item, as follows:
Definition 1: Item Locality Loss (LGc,i)

LGc,i is defined as the degree of locality lost for itemi from
downgrading the four children of cellc to β-Cells, such that
0 ≤ LGc,i ≤ 1.
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Fig. 6. Item Ratings Spatial Distribution Example

LGc,i =
|RSc,i|

|RPc,i|
(3)

The value of both|RSc,i| and |RPc,i| can be easily extracted
using theitems ratings statistics table. Then, we use theLGc,i

values calculated for all items in cellc in order to calculate
the overallCell Locality loss (LGc) from downgrading the
children cells ofc to α-Cells.

Definition 2: Locality Loss (LGc)
LGc is defined as the total locality lost by downgrading cellc

four children cells toβ-Cells (0 ≤ LGc ≤ 1). It is calculated
as the the sum of all items locality loss normalized by the

total number of items|Ic| in cell c.

LGc =

∑
i∈Ic

LGc,i

|Ic|
(4)

The cell locality loss (or gain) is harnessed by LARS* to
determine whether the cell children need to be downgraded
fromα-Cell toβ-Cell rank, upgraded from theγ-Cell toβ-Cell
rank, or downgraded fromβ-Cell to γ-Cell rank. During the
rest of section 4, we explain the cell rank upgrade/downgrade
operations.

4.5.2 Downgrade α-Cells to β-Cells

That operation entails downgrading an entire quadrant of cells
from M-Cells toβ-Cells at levelh with a common parent at
level h − 1. Downgradingα-Cells to β-Cells improves scal-
ability (i.e., storage and computational overhead) of LARS*,
as it reduces storage by discarding the item-based collabo-
rative filtering (CF) models of the the four children cells.
Furthermore, downgradingα-Cells to β-Cells leads to the
following performance improvements: (a)less maintenance
cost, since less CF models are periodically rebuilt, and (b)less
continuous query processing computation, as β-Cells does
not maintain a CF model and if manyβ-Cells cover a large
spatial region, hence, for users crossingβ-Cells boundaries,
we do not need to update the recommendation query answer.
Downgrading children cells fromα-Cells toβ-Cells might hurt
recommendation locality, since no CF models are maintained
at the granularity of the child cells anymore.

At cell Cp, in order to determine whether to downgrade
a quadrantq cells to β-Cells (i.e., functionCheckDown-
GradeToSCellson line 11 in Algorithm 1), we calculate
two percentage values: (1)locality loss (see equation 4),
the amount of locality lost by (potentially) downgrading the
children cells toβ-Cells, and (2)scalability gain, the amount
of scalability gained by (potentially) downgrading the children
cells to β-Cells. Details of calculating these percentages are
covered next. When deciding to downgrade cells toβ-Cells,
we define a system parameterM, a real number in the
range [0,1] that defines a tradeoff between scalability gainand
locality loss. LARS* downgrades a quadrantq cells toβ-Cells
(i.e., discards quadrantq) if:

(1 −M) ∗ scalability gain > M∗ locality loss (5)

A smaller M value implies gaining scalability is important
and the system is willing to lose a large amount of locality
for small gains in scalability. Conversely, a largerM value
implies scalability is not a concern, and the amount of locality
lost must be small in order to allow forβ-Cells downgrade.
At the extremes, settingM=0 (i.e., always switch toβ-Cell)
implies LARS* will function as a traditional CF recommender
system, while settingM=1 causes LARS* pyramid cells to
all be α-Cells, i.e., LARS* will employ a complete pyramid
structure maintaining a recommendation model at all cells at
all levels.

Calculating Locality Loss. To calculate the locality loss
at a cell Cp, LARS* leverages theItem Ratings Statistics
Tablemaintained in that cell. First, LARS* calculates the item
locality lossLGCp,i for each itemi in the cellCp. Therefore,
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LARS* aggregates the item locality loss values calculated for
each itemi ∈ Cp, to finally deduce the global cell locality
lossLGCp

.
Calculating scalability gain. Scalability gain is measured

in storage and computation savings. We measure scalability
gain by summing the recommendation model sizes for each
of the downgraded (i.e., child) cells (abbr.sizem), and divide
this value by the sum ofsizem and the recommendation
model size of the parent cell. We refer to this percentage
as thestorage gain. We also quantifycomputationsavings
using storage gain as a surrogate measurement, as computation
is considered a direct function of the amount of data in the
system.

Cost. using theItems Ratings Statistics Tablemaintained
at cell Cp, the locality loss at cellCp can be calculated in
O(|ICp

|) time such that|ICp
| represents the total number of

items in Cp. As scalability gain can be calculated inO(1)
time, then the total time cost of theDowngrade Toβ-Cells
operation isO(|ICp

|).
Example. For the example given in Figure 6(c), the

locality loss of downgrading cellCp four children cells
{C1, C2, C3, C4} to β-Cells is calculated as follows: First,
we retrieve the locality lossLGCp,i for each item i ∈
{I1, I2, I3, I4, I5, I6, I7, I8}, from the maintained statistics
at cell Cp. As given in figure 6(c),LGCp,I1 , LGCp,I2 ,
LGCp,I3 , LGCp,I4 , LGCp,I5 , LGCp,I6 , LGCp,I7 , andLGCp,I8

are equal to 0.0, 0.0, 1.0, 1.0, 0.0, 0.666, 0.166, and 1.0,
respectively. Then, we calculate the overall locality lossat
Cp (using equation 4),LGCp

by summing all the locality
loss values of all items and dividing the sum by the total
number of items. Hence, the scalability loss is equal to
( 0.0+0.0+1.0+1.0+0.0+1.0+0.666+1.0

8 ) = 0.48 = 48%. To calcu-
late scalability gain, assume the sum of the model sizes for
cells C1 to C4 and CP is 4GB, and the sum of the model
sizes for cellsC1 to C4 is 2GB. Then, thescalability gainis
2
4=50%. AssumingM=0.7, then(0.3 × 50) < (0.7 × 48),
meaning that LARS* will not downgrade cellsC1, C2, C3,
C4 to β-Cells.

4.5.3 Upgrade β-Cells to α-Cells
Upgradingβ-Cells toα-Cells operation entails upgrading the
cell type of a cell child quadrant at pyramid levelh under
a cell at levelh − 1, to α-Cells. Upgrading β-Cells to α-
Cells operation improves locality in LARS*, as it leads to
maintaining a CF model at the children cells that represent
more granular spatial regions capable of producing recommen-
dations unique to the smaller, more “local”, spatial regions. On
the other hand, upgrading cells toα-Cells hurts scalability by
requiring storage and maintenance of more item-based collab-
orative filtering models. The upgrade toα-Cells operation also
negatively affects continuous query processing, since it creates
more granularα-Cells causing user locations to crossα-Cell
boundaries more often, triggering recommendation updates.

To determine whether to upgrade a cellCP (quadrant
q) four children cells toα-Cells (i.e., functionCheckUp-
GradeToMCellson line 15 of Algorithm 1). Two percentages
are calculated:locality gainandscalability loss. These values
are the opposite of those calculated for theUpgrade toβ-Cells

operation. LARS* change cellCP child quadrantq to α-Cells
only if the following condition holds:

M∗ locality gain > (1−M) ∗ scalability loss (6)

This equation represents the opposite criteria of that presented
for Upgrade toβ-Cells operation in Equation 5.

Calculating locality gain. To calculate the locality gain,
LARS* does not need to speculatively build the CF model at
the four children cells. The locality gain is calculated thesame
way the locality loss is calculated in equation 4.

Calculating scalability loss. We calculatescalability loss
by estimating the storage necessary to maintain the children
cells. Recall from Section 2.2 that the maximum size of an
item-based CF model is approximatelyn|I|, wheren is the
model size. We can multiplyn|I| by the number of bytes
needed to store an item in a CF model to find an upper-bound
storage size of each potentiallyUpgradeded toα-Cell cell.
The sum of these four estimated sizes (abbr.sizes) divided
by the sum of the size of the existing parent cell andsizes
represents thescalability lossmetric.

Cost. Similar to theCheckDownGradeToSCellsoperation,
scalability loss is calculate inO(1) and locality gain can be
calculated inO(|ICp

|) time. Then, the total time cost of the
CheckUpGradeToMCellsoperation isO(|ICp

|).
Example. Consider the example given in Figure 6(c). As-

sume the cellCp is anα-Cell and its four childrenC1, C2, C3,
andC4 are β-Cells. Thelocality gain (LGCp

) is calculated
using equation 4 to be 0.48 (i.e., 48%) as depicted in the
table in Figure 6(c). Further, assume that we estimate the
extra storage overhead for upgradinging the children cellsto
α-Cells (i.e.,storage loss) to be 50%. AssumingM=0.7, then
(0.7 × 48) > (0.3 × 50), meaning that LARS* will decide
to upgradeCP four children cells toα-Cells aslocality gain
is significantly higher thanscalability loss.

4.5.4 Downgrade β-Cells to γ-Cells and Vice Versa

Downgradingβ-Cells toγ-Cells operation entails downgrad-
ing the cell type of a cell child quadrant at pyramid level
h under a cell at levelh − 1, to γ-Cells (i.e., empty cells).
Downgrading the child quadrant type toγ-Cells means that the
maintained statistics are no more maintained in the children
cell, which definitely reduces the overhead of maintaining the
Item Ratings Statistics Tableat these cells. Even thoughγ-
Cells incurs no maintenance overhead, however they reduce
the amount of recommendation locality that LARS* provides.

The decision of downgrading fromβ-Cells to γ-Cells is
taken based on a system parameter, namedMAX SLEVELS.
It is defined as the maximum number of consecutive
pyramid levels in which descendant cells can beβ-Cells.
MAX SLEVELScan take any value between zero and the total
height of the pyramid. A high value ofMAX SLEVELSresults
in maintaining moreβ-Cells and lessγ-Cells in the pyramid.
For example, in Figure 4,MAX SLEVELSis set to two, and
this is why if two consecutive pyramid levels areβ-Cells,
the third levelβ-Cells are autotmatically downgraded toγ-
Cells. For eachβ-Cell C, a counter, calledS-Levels Counter,
is maintained. The S-Levels Counter stores of the total number
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of consecutive levels in the direct ancestry of cellC such that
all these levels containsβ-Cells.

At a β-Cell C, if the cell children areβ-Cells, then we
compare theS-Levels Counterat the child cells with the
MAX SLEVELSparameter. Note that the counter counts only
the consecutive S-Levels, so if some levels in the chain are
α-Cells the counter is reset to zero at theα-Cells levels. IfS-
Levels Counteris greater than or equal toMAX SLEVELS,
then the children cells ofC are downgraded toγ-Cells.
Otherwise, cellC children cells are not downgraded toγ-
Cells. Similarly, LARS* also makes use of the sameS-Levels
Counterto decide whether to upgradeγ-Cells toβ-Cells.

5 NON-SPATIAL USER RATINGS FOR
SPATIAL ITEMS

This section describes how LARS* produces recommendations
using non-spatial ratings for spatial items represented bythe
tuple (user, rating, item, ilocation). The idea is to exploittravel
locality, i.e., the observation that users limit their choice of
spatial venues based on travel distance (based on analysis in
Section 1.1). Traditional (non-spatial) recommendation tech-
niques may produce recommendations with burdensome travel
distances (e.g., hundreds of miles away). LARS* produces
recommendations within reasonable travel distances by using
travel penalty, a technique that penalizes the recommendation
rank of items the further in travel distance they are from a
querying user.Travel penaltymay incur expensive computa-
tional overhead by calculating travel distance to each item.
Thus, LARS* employs an efficient query processing technique
capable ofearly terminationto produce the recommendations
without calculating the travel distance to all items. Section 5.1
describes the query processing framework while Section 5.2
describes travel distance computation.

5.1 Query Processing

Query processing for spatial items using thetravel penalty
technique employs a single system-wide item-based collabo-
rative filtering model to generate the top-k recommendations
by ranking each spatial itemi for a querying useru based on
RecScore(u, i), computed as:

RecScore(u, i) = P (u, i)− TravelPenalty(u, i) (7)

P (u, i) is the standard item-based CF predicted rating of item
i for user u (see Section 2.2).TravelPenalty(u, i) is the
road network travel distance betweenu and i normalized to
the same value range as the rating scale (e.g., [0, 5]).

When processing recommendations, we aim to avoid cal-
culating Equation 7 forall candidate items to find the top-k

recommendations, which can become quite expensive given
the need to compute travel distances. To avoid such computa-
tion, we evaluate items in monotonically increasing order of
travel penalty (i.e., travel distance), enabling us to use early
termination principles from top-k query processing [18], [19],
[20]. We now present the main idea of our query processing
algorithm and in the next section discuss how to compute
travel penalties in an increasing order of travel distance.

Algorithm 2 Travel Penalty Algorithm for Spatial Items
1: Function LARS* SpatialItems(User U , Location L, Limit K)
2: /* Populate a listR with a set ofK items*/
3: R ← φ
4: for (K iterations)do
5: i ← Retrieve the item with the next lowest travel penalty (Section 5.2)
6: Insert i into R ordered byRecScore(U, i) computed by Equation 7
7: end for
8: LowestRecScore← RecScore of thekth object inR
9: /*Retrieve items one by one in order of their penalty value */

10: while there are more items to processdo
11: i ← Retrieve the next item in order of penalty score (Section 5.2)
12: MaxPossibleScore ← MAX RATING - i.penalty
13: if MaxPossibleScore ≤ LowestRecScore then
14: return R /* early termination - end query processing */
15: end if
16: RecScore(U, i) ← P (U, i) - i.penalty /* Equation 7 */
17: if RecScore(U, i) > LowestRecScore then
18: Insert i into R ordered byRecScore(U, i)
19: LowestRecScore← RecScore of thekth object inR
20: end if
21: end while
22: return R

Algorithm 2 provides the pseudo code of our query pro-
cessing algorithm that takes a querying user idU , a location
L, and a limit K as input, and returns the listR of top-k
recommended items. The algorithm starts by running ak-
nearest-neighbor algorithm to populate the listR with k items
with lowest travel penalty;R is sorted by the recommendation
score computed using Equation 7. This initial part is concluded
by setting the lowest recommendation score value (LowestRec-
Score) as theRecScoreof the kth item in R (Lines 3 to 8).
Then, the algorithm starts to retrieve items one by one in
the order of their penalty score. This can be done using an
incrementalk-nearest-neighbor algorithm, as will be described
in the next section. For each itemi, we calculate themaximum
possiblerecommendation score thati can have by subtracting
the travel penalty ofi from MAX RATING, the maximum
possible rating value in the system, e.g., 5 (Line 12). Ifi

cannot make it into the list of top-k recommended items with
this maximum possible score, we immediately terminate the al-
gorithm by returningR as the top-k recommendations without
computing the recommendation score (and travel distance) for
more items (Lines 13 to 15). The rationale here is that since
we are retrieving items in increasing order of their penalty
and calculating the maximum score that any remaining item
can have, then there is no chance that any unprocessed item
can beat the lowest recommendation score inR. If the early
termination case does not arise, we continue to compute the
score for each itemi using Equation 7, inserti intoR sorted by
its score (removing thekth item if necessary), and adjust the
lowest recommendation value accordingly (Lines 16 to 20).

Travel penaltyrequires very little maintenance. The only
maintenance necessary is to occasionally rebuild the single
system-wide item-based collaborative filtering model in order
to account for new location-based ratings that enter the system.
Following the reasoning discussed in Section 4.3, we rebuild
the model after receivingN% new ratings.

5.2 Incremental Travel Penalty Computation

This section gives an overview of two methods we imple-
mented in LARS* to incrementally retrieve items one by one
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ordered by their travel penalty. The two methods exhibit a
trade-off between query processing efficiency and penalty ac-
curacy: (1) anonline method that provides exact travel penal-
ties but is expensive to compute, and (2) anoffline heuristic
method that is less exact but efficient in penalty retrieval.
Both methods can be employed interchangeably in Line 11
of Algorithm 2.

5.2.1 Incremental KNN: An Exact Online Method
To calculate an exact travel penalty for a useru to item i,
we employ an incrementalk-nearest-neighbor (KNN) tech-
nique [21], [22], [23]. Given a user locationl, incremental
KNN algorithms return, on each invocation, the next item
i nearest tou with regard to travel distanced. In our case,
we normalize distanced to the ratings scale to get the travel
penalty in Equation 7. Incremental KNN techniques exist for
both Euclidean distance [22] and (road) network distance [21],
[23]. The advantage of using Incremental KNN techniques is
that they provide anexacttravel distances between a querying
user’s location and each recommendation candidate item. The
disadvantage is that distances must be computedonline at
query runtime, which can be expensive. For instance, the run-
time complexity of retrieving a single item using incremental
KNN in Euclidean space is [22]:O(k+ logN ), whereN and
k are the number of total items and items retrieved so far,
respectively.

5.2.2 Penalty Grid: A Heuristic Offline Method
A more efficient, yet less accurate method to retrieve travel
penalties incrementally is to use a pre-computedpenalty grid.
The idea is to partition space using ann× n grid. Each grid
cell c is of equal size and contains all items whose location
falls within the spatial region defined byc. Each cellc contains
a penalty list that stores the pre-computed penalty values for
traveling from anywhere withinc to all othern2−1 destination
cells in the grid; this means all items within a destination grid
cell share thesamepenalty value. The penalty list forc is
sorted by penalty value and always storesc (itself) as the first
item with a penalty of zero. To retrieve items incrementally, all
items within the cell containing the querying user are returned
one-by-one (in any order) since they have no penalty. After
these items are exhausted, items contained in the next cell in
the penalty list are returned, and so forth until Algorithm 2
terminates early or processes all items.

To populate the penalty grid, we must calculate the penalty
value for traveling from each cell to every other cell in the
grid. We assume items and users are constrained to a road
network, however, we can also use Euclidean space without
consequence. To calculate the penalty from a single source cell
c to a destination celld, we first find the average distance to
travel from anywhere withinc to all item destinations withind.
To do this, we generate ananchor pointp within c that both
(1) lies on the road network segment withinc and (2) lies
as close as possible to the center ofc. With these criteria,p
serves as an approximate average “starting point” for traveling
from c to d. We then calculate the shortest path distance
from p to all items contained ind on the road network (any
shortest path algorithm can be used). Finally, we average all

calculated shortest path distances fromc to d. As a final step,
we normalize the average distance fromc to d to fall within
the rating value range. Normalization is necessary as the rating
domain is usually small (e.g., zero to five), while distance is
measured in miles or kilometers and can have large values that
heavily influence Equation 7. We repeat this entire process for
each cell to all other cells to populate the entire penalty grid.

When new items are added to the system, their presence in
a cell d can alter the average distance value used in penalty
calculation for each source cellc. Thus, we recalculate penalty
scores in the penalty grid afterN new items enter the system.
We assume spatial items are relatively static, e.g., restaurants
do not change location often. Thus, it is unlikelyexistingitems
will change cell locations and in turn alter penalty scores.

6 SPATIAL USER RATINGS FOR
SPATIAL ITEMS

This section describes how LARS* produces recommendations
using spatial ratings for spatial items represented by the tuple
(user, ulocation, rating, item, ilocation). A salient feature of
LARS* is that both theuser partitioningand travel penalty
techniques can be used together with very little change to
produce recommendations using spatial user ratings for spatial
items. The data structures and maintenance techniques remain
exactly the same as discussed in Sections 4 and 5; only the
query processing framework requires a slight modification.
Query processing uses Algorithm 2 to produce recommen-
dations. However, the only difference is that the item-based
collaborative filtering prediction scoreP (u, i) used in the rec-
ommendation score calculation (Line 16 in Algorithm 2) is
generated using the (localized) collaborative filtering model
from the partial pyramid cell that contains the querying user,
instead of the system-wide collaborative filtering model aswas
used in Section 5.

7 EXPERIMENTS

This section provides experimental evaluation of LARS* based
on an actual system implementation using C++ and STL. We
compare LARS* with the standard item-based collaborative
filtering technique along with several variations of LARS*.
We also compare LARS* to LARS [8]. Experiments are based
on three data sets:
Foursquare: a real data set consisting ofspatial user ratings
for spatial itemsderived from Foursquare user histories. We
crawled Foursquare and collected data for 1,010,192 users and
642,990 venues across the United States. Foursquare does not
publish each “check-in” for a user, however, we were able to
collect the following pieces of data: (1) user tips for a venue,
(2) the venues for which the user is the mayor, and (3) the
completed to-do list items for a user. In addition, we extracted
each user’s friend list.

Extracting location-based ratings. To extract spatial user
ratings for spatial items from the Foursquare data (i.e., the
five-tuple (user, ulocation, rating, item, ilocation)), we map
each user visit to a single location-based rating. Theuserand
item attributes are represented by the unique Foursquare user
and venue identifier, respectively. We employ the user’s home
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city in Foursquare as theulocation attribute. Meanwhile, the
ilocation attribute is the item’s inherent location. We use a
numeric rating value range of [1, 3], translated as follows:
(a) 3 represents the user is the “mayor” of the venue, (b) 2
represents that the user left a “tip” at the venue, and (c) 1
represents the user visited the venue as a completed “to-do”
list item. Using this scheme, a user may have multiple ratings
for a venue, in this case we use the highest rating value.

Data properties. Our experimental data consisted of 22,390
location-based ratings for 4K users for 2K venues all from
the state of Minnesota, USA. We used this reduced data set
in order to focus our quality experiments on adenserating
sample. Use ofdenseratings data has been shown to be a very
important factor when testing and comparing recommendation
quality [17], since use ofsparsedata (i.e., having users or
items with very few ratings) tends to cause inaccuracies in
recommendation techniques.
MovieLens: a real data set consisting ofspatial user ratings
for non-spatial itemstaken from the popular MovieLens
recommender system [5]. The Foursquare and MovieLens data
are used to test recommendation quality. The MovieLens data
used in our experiments was real movie rating data taken
from the popular MovieLens recommendation system at the
University of Minnesota [5]. This data consisted of 87,025
ratings for 1,668 movies from 814 users. Each rating was
associated with the zip code of the user who rated the movie,
thus giving us a real data set of spatial user ratings for non-
spatial items.
Synthetic: a synthetically generated data set consisting of
spatial user ratings for spatial items for venues in the state
of Minnesota, USA. The synthetic data set we use in our
experiments is generated to contain 2000 users and 1000 items,
and 500,000 ratings. Users and items locations are randomly
generated over the state of Minnesota, USA. Users’ ratings to
items are assigned random values between zero and five. As
this data set contains a number of ratings that is about twenty
five times and five times larger than the foursquare data set
and the Movilens data set, we use such synthetic data set to
test scalability and query efficiency.

Unless mentioned otherwise, the default value ofM is 0.3,
k is 10, the number of pyramid levels is 8, the influence level
is the lowest pyramid level, and MAXSLEVELS is set to
two. The rest of this section evaluates LARS* recommendation
quality (Section 7.1), trade-offs between storage and locality
(Section 7.4), scalability (Section 7.5), and query processing
efficiency (Section 7.6). As the system stores its data structures
in main memory, all reported time measurements represent the
CPU time.

7.1 Recommendation Quality for Varying Pyramid Lev-
els
These experiments test the recommendation quality improve-
ment that LARS* achieves over the standard (non-spatial)
item-based collaborative filtering method using both the
Foursquare and MovieLens data. To test the effectiveness of
our proposed techniques, we test the quality improvement
of LARS* with only travel penalty enabled (abbr. LARS*-
T), LARS* with only user partitioning enabled and M set
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Fig. 7. Quality experiments for varying locality

to one (abbr. LARS*-U), and LARS* with both techniques
enabled and M set to one (abbr. LARS*). Notice that LARS*-
T represents the traditional item-based collaborative filtering
augmented with the travel penalty technique (section 5) to take
the distance between the querying user and the recommended
items into account. We do not plot LARS with LARS* as both
give the same result for M=1, and the quality experiments
are meant to show how locality increases the recommendation
quality.
Quality Metric. To measure quality, we build each recom-
mendation method using 80% of the ratings from each data
set. Each rating in the withheld 20% represents a Foursquare
venue or MovieLens movie a user is known to like (i.e.,
rated highly). For each ratingt in this 20%, we request a
set of k ranked recommendationsS by submitting theuser
andulocationassociated witht. We first calculate the quality
as the weighted sum of the number of occurrences of theitem
associated witht (the higher the better) inS. The weight of
an item is a value between zero and one that determines how
close the rank of this item from its real rank. The quality
of each recommendation method is calculated and compared
against the baseline, i.e., traditional item-based collaborative
filtering. We finally report the ratio of improvement in quality
each recommendation method achieves over the baseline. The
rationale for this metric is that since each withheld rating
represents a real visit to a venue (or movie a user liked), the
technique that produces a large number of correctly ranked
answers that contain venues (or movies) a user is known to
like is considered of higher quality.

Figure 7(a) compares the quality improvement of each
technique (over traditional collaborative filtering) for varying
locality (i.e., different levels of the adaptive pyramid) using the
Foursquare data. LARS*-T does not use the adaptive pyramid,
thus has constant quality improvement. However, LARS*-T
shows some quality improvement over traditional collaborative
filtering. This quality boost is due to that fact that LARS*-
T uses atravel penalty technique that recommends items
within a feasible distance. Meanwhile, the quality of LARS*
and LARS*-U increases as more localized pyramid cells are
used to produce recommendation, which verifies thatuser
partitioning is indeed beneficial and necessary for location-
based ratings. Ultimately, LARS* has superior performance
due to the additional use oftravel penalty. While travel penalty
produces moderate quality gain, it also enables more efficient
query processing, which we observe later in Section 7.6.

Figure 7(b) compares the quality improvement of LARS*-U
over CF (traditional collaborative filtering) for varying locality
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Fig. 8. Quality experiments for varying answer sizes

using the MovieLens data. Notice that LARS* gives the same
quality improvement as LARS*-U because LARS*-T do not
apply for this dataset since movies are not spatial. Compared
to CF, the quality improvement achieved by LARS*-U (and
LARS*) increases when it produces movie recommendations
from more localized pyramid cells. This behavior further
verifies thatuser partitioningis beneficial in providing quality
recommendations localized to a querying user location, even
when items are not spatial. Quality decreases (or levels offfor
MovieLens) for both LARS*-U and/or LARS* for lower levels
of the adaptive pyramid. This is due torecommendation star-
vation, i.e., not having enough ratings to produce meaningful
recommendations.

7.2 Recommendation Quality for Varying k

These experiments test recommendation quality improvement
of LARS*, LARS*-U, and LARS*-T for different values ofk
(i.e., recommendation answer sizes). We do not plot LARS
with LARS* as both gives the same result for M=1, and
the quality experiments are meant to show how the degree
of locality increases the recommendation quality. We perform
experiments using both the Foursquare and MovieLens data.
Our quality metric is exactly the same as presented previously
in Section 7.1.

Figure 8(a) depicts the effect of the recommendation list size
k on the quality of each technique using the Foursquare data
set. We report quality numbers using the pyramid height of
four (i.e., the level exhibiting the best quality from Section 7.1
in Figure 7(a)). For all sizes ofk from one to ten, LARS* and
LARS*-U consistently exhibit better quality. In fact, LARS*
consistently achieves better quality over CF for allk. LARS*-
T exhibits similar quality to CF for smallerk values, but does
better fork values of three and larger.

Figure 8(b) depicts the effect of the recommendation list
size k on the quality of improvement of LARS*-U (and
LARS*) over CF using the MovieLens data. Notice that
LARS* gives the same quality improvement as LARS*-U
because LARS*-T do not apply for this dataset since movies
are not spatial. This experiment was run using a pyramid
hight of seven (i.e., the level exhibiting the best quality in
Figure 7(b)). Again, LARS*-U (and LARS*) consistently
exhibits better quality than CF for sizes ofK from one to
ten.

7.3 Recommendation Quality for Varying M

These experiments compares the quality improvement
achieved by both LARS and LARS* for different values of
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Fig. 9. Quality experiments for varying value of M
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Fig. 10. Effect of M on storage and locality (Synthetic data)

M. We perform experiments using both the Foursquare and
MovieLens data. Our quality metric is exactly the same as
presented previously in Section 7.1.

Figure 9(a) depicts the effect ofM on the quality of both
LARS and LARS* using the Foursquare data set. Notice
that we enable both the user partitioning and travel penalty
techniques for both LARS and LARS*. We report quality
numbers using the pyramid height of four and the number
of recommended items of ten. WhenM is equal to zero, both
LARS and LARS* exhibit the same quality improvement as
M = 0 represents a traditional collaborative filtering with
the travel penalty technique applied. Also, whenM is set
to one, both LARS and LARS* achieve the same quality
improvement as a fully maintained pyramid is maintained
in both cases. ForM values between zero and one, the
quality improvement of both LARS and LARS* increases for
higher values ofM due to the increase in recommendation
locality. LARS* achieves better quality improvement over
LARS because LARS* maintainsα-Cells at lower levels of
the pyramid.

Figure 9(b) depicts the effect ofM on the quality of
both LARS and LARS* using the Movilens data set. We
report quality improvement over traditional collaborative fil-
tering using the pyramid height of seven and the number of
recommended items set to ten. Similar to Foursquare data
set, the quality improvement of both LARS and LARS*
increases for higher values ofM due to the increase in
recommendation locality. ForM values between zero and one,
LARS* consistently achieves higher quality improvement over
LARS as LARS* maintains moreα-Cells at more granular
levels of the pyramid structure.

7.4 Storage Vs. Locality

Figure 10 depicts the impact of varyingM on both the storage
and locality in LARS* using the synthetic data set. We plot
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LARS*-M=0 and LARS*-M=1 as constants to delineate the
extreme values ofM, i.e.,M=0 mirrors traditional collabora-
tive filtering, whileM=1 forces LARS* to employ a complete
pyramid. Our metric for locality islocality loss (defined in
Section 4.5.2) when compared to a complete pyramid (i.e.,
M=1). LARS*-M=0 requires the lowest storage overhead, but
exhibits the highest locality loss, while LARS*-M=1 exhibits
no locality loss but requires the most storage. For LARS*, in-
creasingM results in increased storage overhead since LARS*
favors switching cells toα-Cells, requiring the maintenance of
more pyramid cells each with its own collaborative filtering
model. Each additionalα-Cell incurs a high storage overhead
over the original data size as an additional collaborative
filtering model needs to be maintained. Meanwhile, increasing
M results in smaller locality loss as LARS* merges less
and maintains more localized cells. The most drastic drop in
locality loss is between 0 and 0.3, which is why we chose
M=0.3 as a default. LARS* leads to smaller locality loss
(≈26% less) than LARS because LARS* maintainsα-Cells
below β-Cells which result in higher locality gain. On the
other hand, LARS* exhibits slightly higher storage cost (≈5%
more storage) than LARS due to the fact that LARS* stores
the Item Ratings Statistics Tableper eachα-Cell andβ-Cell.

7.5 Scalability

Figure 11 depicts the storage and aggregate maintenance
overhead required for an increasing number of ratings using
the synthetic data set. We again plot LARS*-M=0 and LARS*-
M=1 to indicate the extreme cases for LARS*. Figure 11(a)
depicts the impact of increasing the number of ratings from
10K to 500K on storage overhead. LARS*-M=0 requires the
lowest amount of storage since it only maintains a single
collaborative filtering model. LARS*-M=1 requires the highest
amount of storage since it requires storage of a collaborative
filtering model for all cells (in all levels) of a complete
pyramid. The storage requirement of LARS* is in between the
two extremes since it merges cells to save storage. Figure 11(b)
depicts the cumulative computational overhead necessary to
maintain the adaptive pyramid initially populated with 100K
ratings, then updated with 200K ratings (increments of 50K
reported). The trend is similar to the storage experiment, where
LARS* exhibits better performance than LARS*-M=1 due to
switching some cells fromα-Cells toβ-Cells. Though LARS*-
M=0 has the best performance in terms of maintenance and
storage overhead, previous experiments show that it has un-
acceptable drawbacks in quality/locality. Compare to LARS,
LARS* has less maintenance overhead (≈38% less) due to
the fact that the maintenance algorithm in LARS* avoids the
expensive speculative splitting used by LARS.

7.6 Query Processing Performance

Figure 12 depicts snapshot and continuous query process-
ing performance of LARS, LARS*, LARS*-U (LARS* with
only user partitioning), LARS*-T (LARS* with only travel
penalty), CF (traditional collaborative filtering), and LARS*-
M=1 (LARS* with a complete pyramid), using the synthetic
data set.
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Fig. 12. Query Processing Performance (Synthetic data).

Snapshot queries.Figure 12(a) gives the effect of various
number of ratings (10K to 500K) on the average snapshot
query performance averaged over 500 queries posed at random
locations. LARS* and LARS*-M=1 consistently outperform
all other techniques; LARS*-M=1 is slightly better due to rec-
ommendations always being produced from the smallest (i.e.,
most localized) CF models. The performance gap between
LARS* and LARS*-U (and CF and LARS*-T) shows that
employing thetravel penaltytechnique with early termination
leads to better query response time. Similarly, the performance
gap between LARS* and LARS*-T shows that employing
user partitioning technique with its localized (i.e., smaller)
collaborative filtering model also benefits query processing.
LARS* performance is slightly better than LARS as LARS*
sometimes maintains more localized CF models than LARS
which incurs less query processing time.
Continuous queries. Figure 12(b) provides the continuous
query processing performance of the LARS* variants by re-
porting the aggregate response time of 500 continuous queries.
A continuous query is issued once by a useru to get an initial
answer, then the answer is continuously updated asu moves.
We report the aggregate response time when varying the travel
distance ofu from 1 to 30 miles using a random walk over
the spatial area covered by the pyramid. CF has a constant
query response time for all travel distances, as it requiresno
updates since only a single cell is present. However, since CF
is unaware of user location change, the consequence is poor
recommendation quality (per experiments from Section 7.1).
LARS*-M=1 exhibits the worse performance, as it maintains
all cells on all levels and updates the continuous query
whenever the user crosses pyramid cell boundaries. LARS*-U
has a lower response time than LARS*-M=1 due to switching
cells fromα-Cells toβ-Cells: when a cell is not present on a
given influence level, the query is transferred to its next highest
ancestor in the pyramid. Since cells higher in the pyramid
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cover larger spatial regions, query updates occur less often.
LARS*-T exhibits slightly higher query processing overhead
compared to LARS*-U: even though LARS*-T employs the
early termination algorithm, it uses a large (system-wide)
collaborative filtering model to (re)generate recommendations
once users cross boundaries in the penalty grid. LARS*
exhibits a better aggregate response time since it employs the
early termination algorithm using a localized (i.e., smaller)
collaborative filtering model to produce results while also
switching cells toβ-Cells to reduce update frequency. LARS
has a slightly better performance than LARS* as LARS tends
to merge more cells at higher levels in the pyramid structure.

8 RELATED WORK

Location-based services. Current location-based services em-
ploy two main methods to provide interesting destinations to
users. (1) KNN techniques [22] and variants (e.g., aggregate
KNN [24]) simply retrieve thek objects nearest to a user and
are completely removed from any notion of userpersonaliza-
tion. (2) Preference methods such as skylines [25] (and spatial
variants [26]) and location-based top-k methods [27] require
users to expressexplicit preference constraints. Conversely,
LARS* is the first location-based service to considerimplicit
preferences by using location-based ratings to help users
discover new items.

Recent research has proposed the problem of hyper-local
place ranking [28]. Given a user location and query string
(e.g., “French restaurant”), hyper-local ranking provides a list
of top-k points of interest influenced by previously logged
directional queries (e.g., map direction searches from point
A to point B). While similar in spirit to LARS*, hyper-local
ranking is fundamentally different from our work as it does
not personalizeanswers to the querying user, i.e., two users
issuing the same search term from the same location will
receive exactly the same ranked answer.
Traditional recommenders. A wide array of techniques
are capable of producing recommendations using non-spatial
ratings for non-spatial items represented as the triple (user,
rating, item) (see [4] for a comprehensive survey). We refer
to these as “traditional” recommendation techniques. The
closest these approaches come to considering location is by
incorporating contextual attributes into statistical recommen-
dation models (e.g., weather, traffic to a destination) [29].
However, no traditional approach has studied explicit location-
based ratings as done in LARS*. Some existing commercial
applications make cursory use of location when proposing
interesting items to users. For instance, Netflix displays a
“local favorites” list containing popular movies for a user’s
given city. However, these movies arenot personalized to
each user (e.g., using recommendation techniques); rather,
this list is built using aggregate rental data for a particular
city [30]. LARS*, on the other hand, produces personalized
recommendations influenced by location-based ratings and a
query location.
Location-aware recommenders. The CityVoyager sys-
tem [31] mines a user’s personal GPS trajectory data to
determine her preferred shopping sites, and provides recom-
mendation based on where the system predicts the user is

likely to go in the future.LARS*, conversely, does not attempt
to predict future user movement, as it produces recommenda-
tions influenced by user and/or item locations embedded in
community ratings.

The spatial activity recommendation system [32] mines GPS
trajectory data with embedded user-provided tags in order to
detect interesting activities located in a city (e.g., art exhibits
and dining near downtown). It uses this data to answer two
query types: (a) given an activity type, return where in the
city this activity is happening, and (b) given an explicit spatial
region, provide the activities available in this region. This is a
vastly different problem than we study in this paper. LARS*
does not mine activities from GPS data for use as suggestions
for a given spatial region. Rather, we apply LARS* to a
more traditional recommendation problem that uses commu-
nity opinion histories to produce recommendations.

Geo-measured friend-based collaborative filtering [33] pro-
duces recommendations by using only ratings that are from
a querying user’s social-network friends that live in the same
city. This technique only addresses user location embeddedin
ratings. LARS*, on the other hand, addresses three possible
types of location-based ratings. More importantly, LARS* is
a complete system (not just a recommendation technique)
that employs efficiency and scalability techniques (e.g., par-
tial pyramid structure, early query termination) necessary for
deployment in actual large-scale applications.

9 CONCLUSION

LARS*, our proposed location-aware recommender system,
tackles a problem untouched by traditional recommender sys-
tems by dealing with three types of location-based ratings:
spatial ratings for non-spatial items, non-spatial ratings for
spatial items, and spatial ratings for spatial items. LARS*
employs user partitioning and travel penalty techniques to
support spatial ratings and spatial items, respectively. Both
techniques can be applied separately or in concert to support
the various types of location-based ratings. Experimentalanal-
ysis using real and synthetic data sets show that LARS* is ef-
ficient, scalable, and provides better quality recommendations
than techniques used in traditional recommender systems.
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