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Abstract—This paper proposes LARS*, a location-aware recommender system that uses location-based ratings to produce recommen-
dations. Traditional recommender systems do not consider spatial properties of users nor items; LARS*, on the other hand, supports a
taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial
items, and spatial ratings for spatial items. LARS* exploits user rating locations through user partitioning, a technique that influences
recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing
recommendation quality. LARS* exploits item locations using travel penalty, a technique that favors recommendation candidates closer
in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS* can apply these techniques
separately, or together, depending on the type of location-based rating available. Experimental evidence using large-scale real-world
data from both the Foursquare location-based social network and the MovieLens movie recommendation system reveals that LARS* is
efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.

Index Terms—Recommender System, Spatial, Location, Performance, Efficiency, Scalability, Social.
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collaborative filtering (CF) [2], which analyzes past commu
nity opinions to find correlations of similar users and itetms
suggestk personalized items (e.g., movies) to a querying Usgfg. 1. preference locality in location-based ratings.
u. Community opinions are expressed through explicit rating

represented by the tripleiger, rating, item) that represents a

userproviding a numerigating for anitem three types of location-based ratings within a single frame-
Currently, myriad applications can produleation-based work: (1) Spatial ratings for non-spatial items, represdras
ratings that embed user and/or item locations. For examplg,four-tuple (iser, ulocation rating, item), where ulocation
location-based social networks (e.g., Foursqiaemd Face- represents a user location, for example, a user located at
book Places [3]) allow users to “check-in” at spatial destin home rating a book; (2) non-spatial ratings for spatial &em
tions (e.g., restaurants) and rate their ViSit, thus araln:l&pof represented as a four-tup|e)s@n rating’ item, i|ocation),
associating both user and item locations with ratings. Sath where ilocation represents an item location, for examp|e, a
ings motivate an interesting new paradigmlo¢ation-aware yser with unknown location rating a restaurant; (3) spatial
recommendationsvhereby the recommender system exploitgtings for spatial items, represented as a five-tupigel
the spatial aspect of ratings when producing recommenu&atioylocation rating, item ilocation), for example, a user at
Existing recommendation techniques [4] assume ratings #jig/her office rating a restaurant visited for lunch. Triadial
represented by theuger rating, item) triple, thus are ill- rating triples can be classified as non-spatial ratings €or-n
equipped to produce location-aware recommendations.  spatial items and do not fit this taxonomy.
In this paper, we propose LARS* a novebchtion-
aware .ecommendensstem built specifically to produce high- o ) )
quality location-based recommendations in an efficient-makl Motivation: A Study of Location-Based Ratings
ner. LARS* produces recommendations using a taxonomy phe motivation for our work comes from analysis of two real-
world location-based rating datasets: (1) a subset of tHe we
This work is supported in part by the National Science Fotiodaunder known MovielLens dataset [5] containing approximately 87K
ﬁ:grnotssofltlﬁgg&;zaaé#s-oangss, CNS-0708604, 11S-0982and by a movie ratings associated with user zip codes (i.e., spetal
1. Netflix: http:/Awvww.netflix.com ings for non-spatial items) and (2) data from the Foursq[&jre
2. Foursquare: http://foursquare.com location-based social network containing user visit data v

(a) Movielens preference locality (b) Foursquare preference locality
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users to 643K venues across the United States (i.e., spatiings located inR. The challenge, however, is to determine
ratings for spatial items). In our analysis we consistentlyhether all regions in the pyramid must be maintained in orde
observed two interesting properties that motivate the rieed to balance two contradicting factorscalability and locality.
location-aware recommendation techniques. Maintaining a large number of regions increadesality

Preference locality. Preference locality suggests users fror(i.e., recommendations unique to smaller spatial regjons)
a spatial region (e.g., neighborhood) prefer items (e.gyies, yet adversely affects systestalability because each region
destinations) that are manifestly different than itemdesred requires storage and maintenance of a collaborative fijeri
by users from other, even adjacent, regions. Figure 1(&) lislata structure necessary to produce recommendations (i.e.
the top-4 movie genres using average MovielLens ratings tbe recommender model). The LARS* pyramid dynamically
users from different U.S. states. While each list is différe adapts to find the right pyramid shape that balances sc&abil
the top genres from Florida differ vastly from the othersand recommendation locality.
Florida’s list contains three genres (“Fantasy”, “Aninaaii, LARS* produces recommendations usingn-spatial rat-
“Musical”) not in the other lists. This difference impliesowvie ings for spatial itemsi.e., the tuple {ser, rating, item, iloca-
preferences are unigue to specific spatial regions, andromnfi tion), by usingtravel penalty a technique that exploits travel
previous work from the New York Times [7] that analyzedocality. This technique penalizes recommendation caaidl
Netflix user queues across U.S. zip codes and found simithe further they are in travel distance to a querying usee Th
differences. Meanwhile, Figure 1(b) summarizes our olssernchallenge here is to avoid computing the travel distance for
tion of preference locality in Foursquare by depicting tigtv all spatial items to produce the list éfrecommendations, as
destinations for users from thremljacentMinnesota cities. this will greatly consume system resources. LARS* addiesse
Each sample exhibits diverse behavior: users from Falctlris challenge by employing an efficient query processing
Heights, MN favor venues in St. Paul, MN (17% of visitsframework capable of terminating early once it discover th
Minneapolis (13%), and Roseville, MN (10%), while userthe list of k& answers cannot be altered by processing more
from Robbinsdale, MN prefer venues in Brooklyn Park, MNecommendation candidates. To produce recommendatiens us
(32%) and Robbinsdale (20%). Preference locality suggedig spatial ratings for spatial itemsi.e., the tuple (ser,
that recommendations should be influenced by locationebasdocation rating, item ilocation) LARS* employs both the
ratingsspatially closeo the user. The intuition is that localiza-user partitioningandtravel penaltytechniques to address the
tion influences recommendation using the unique prefeseneser and item locations associated with the ratings. This is
found within the spatial region containing the user. a salient feature of LARS*, as the two techniques can be

Travel locality. Our second observation is that, when reconmised separately, or in concert, depending on the locatised
mended items are spatial, users tend to travel a limitedmtist rating type available in the system.
when visiting these venues. We refer to this property aséira We experimentally evaluate LARS* using real location-
locality.” In our analysis of Foursquare data, we observdised ratings from Foursquare [6] and MovieLens [5], along
that 45% of users travel 10 miles or less, while 75% travilith a generated user workload of bosmapshotand con-
50 miles or less. This observation suggests that spatiasitetinuous queries. Our experiments show LARS* is scalable
closer in travel distance to a user should be given precedet real large-scale recommendation scenarios. Since we hav
as recommendation candidates. In other words, a recommagcess to real data, we also evaluate recommendatiality
dation loses efficacy the further a querying user must trav@y building LARS* with 80% of the spatial ratings and testing
to visit the destination. Existing recommendation teches recommendation accuracy with the remaining 20% of the
do not consider travel locality, thus may recommend use(ithheld) ratings. We find LARS* produces recommendations
destinations with burdensome travel distances (e.g., ainsethat aretwice as accurate (i.e., able to better predict user
Chicago receiving restaurant recommendations in Seattle) preferences) compared to traditional collaborative filgr In
summary, the contributions of this paper are as follows:

« We provide a novel classification of three types of

location-based ratings not supported by existing recom-
mender systemsspatial ratings for non-spatial items

1.2 Our Contribution: LARS* - A Location-Aware
Recommender System

Like traditional recommender systems, LARS* suggests
items personalized for a querying user However, LARS*
is distinct in its ability to produce location-aware recosmm

dations usingeachof the three types of location-based rating

within a single framework.

LARS* produces recommendations usisgatial ratings
for non-spatial itemsi.e., the tuple ser, ulocation rating,
item), by employing auser partitioningtechnique that exploits

preference locality. This technique uses an adaptive pgram

structure to partition ratings by theirser locationattribute
into spatial regions of varying sizes at different hieraesh
For a querying user located in a regidd, we apply an
existing collaborative filtering technique that utilizeslythe

non-spatial ratings for spatial itemsand spatial ratings

for spatial items

We propose LARS*, a novel location-aware recom-
mender system capable of using three classes of location-
based ratings. Within LARS*, we propose: (a)ger par-
titioning technique that exploits user locations in a way
that maximizes system scalability while not sacrificing
recommendation locality and (b) taavel penaltytech-
nique that exploits item locations and avoids exhaustively
processing all spatial recommendation candidates.
LARS* distinguishes itself from LARS [8] in the follow-
ing points: (1) LARS* achieves higher locality gain than
LARS using a better user partitioning data structure and
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Fig. 2. Item-based CF model generation. at least one common rating by the same user (i.e., co-rated

dimensions). Similarity computation is covered below.ngsi
these scores, a model is built that stores for each itent, a
algorithm. (2) LARS* exhibits a more flexible tradeofflist £ of similar items ordered by a similarity scosam(iy,,i,),
between locality and scalability. (3) LARS* providesas depicted in Figure 2(b). Building this model is @)
a more efficient way to maintain the user partitioningrocess [1], wherek? and U are the number of ratings and
structure, as opposed to LARS expensive operations. ysers, respectively. It is common to truncate the model by
« We provide experimental evidence that LARS* scales &oring, for each lisi, only then most similar items with the
large-scale recommendation scenarios and provides befigjhest similarity scores [9]. The value ofis referred to as
quality recommendations than traditional approaches. the model sizeand is usually much less tha|.

This paper is organized as follows: Section 2 gives anPhase Il: Recommendation GenerationGiven a querying
overview of LARS*. Sections 4, 5, and 6 cover LARS*user u, recommendations are produced by computirig
recommendation techniques usisgatial ratings for non- predicted ratingP, ;) for each itemi not rated byu [9]:
spatial itemsnon-spatial ratings for spatial itema&ndspatial o

. L . - . Sic s sim(i, 1) x 1y
ratings for spatial items respectively. Section 7 provides Pl = lel A ’ (1)
experimental analysis. Section 8 covers related work, evhil ’ > e Isim(i, 1)

Section 9 concludes the paper. Before this computation, we reduce each similarity fisto
contain only itemgated by useru. The prediction is the sum
2 LARS* OVERVIEW of r,;, & useru’s rating for a related itend € £ weighted by
sim(i,l), the similarity ofl to candidate item, then normalized
%y the sum of similarity scores betweénand /. The user
receives as recommendations the fogems ranked by?,, ;).

Computing Similarity . To computesim(i,, i,), we repre-

2.1 LARS* Query Model sent each item as a vector in the user-rating space of thmgyrati
Users (or applications) provide LARS* with a user id, Matrix. For instance, Figure 3 depicts vectors for itegand
numeric limit &, and locationZ; LARS* then returnsk rec- %q from the matrix in Figure 2(a). Many similarity functions
ommended items to the user. LARS* supports betlapshot have been proposed (e.g., Pearson Correlation, Cosine); we
(i.e., one-time) queries armbntinuousjueries, whereby a useruse the Cosine similarity ihbARS*due to its popularity:

This section provides an overview of LARS* by discussin
the query model and the collaborative filtering method.

subscribes to LARS* and receives recommendation updates as i
her location changes. The technique LARS* uses to produce sim(ip, iq) = —S—5— (2
recommendations depends on the type of location-basedjrati ll2p |12

available in the system. Query processing support for ggueh t This score is calculated using the vectors’ co-rated dino@ss
of location-based rating is discussed in Sections 4 to 6. e.g., the Cosine similarity betweeiy and i, in Figure 3
is .7 calculated using the circled co-rated dimensionsirn@os
22 Item-Based Collaborative Filtering distance is us_eful for numgriq ra_tings (e._g., on a scalg))[1,5
. T For unary ratings, other similarity functions are used .(e.g

LARS* uses item-based collaborative filtering (abbr. CF) agysolute sum [10]).
its primary recommendation technique, chosen due to itsyypile we opt to use item-based CF in this paper, no
popularity and widespread adoption in commercial systeMgors disqualify us from employing other recommendation
(e.g., Amazon [1]). Collaborative filtering (CF) assumes @chniques. For instance, we could easily employ userebase
set of n users/ = {uy,..,u,} and a set ofm items cr (4], that uses correlations between users (insteadrojte
Z = {i1,....,im}. Each useru; expresses opinions about a
set of itemsZ,,. C Z. Opinions can be a numeric rating (e.g.
the Netflix scajle of one to five stars), or unary (e.g., Fackbo§ NON-SPATIAL USER RATINGS FOR
“check-ins” [3]). Conceptually, ratings are representesdaa NON-SPATIAL ITEMS
matrix with users and items as dimensions, as depicted Tihe traditional item-based collaborative filtering (CF)thuaal
Figure 2(a). Given a querying user CF produces a set of is a special case of LARS*. CF takes as input the classical
k recommended item$, C Z thatw is predicted to like the rating triplet (ser, rating, item) such that neither the user
most. location nor the item location are specified. In such case,

Phase I: Model Building. This phase computes a similarityLARS* directly employs the traditional model building pleas
scoresim(i,,i,) for each pair of objects, andi, that have (Phase-lin section 2) to calculate the similarity scords/ben
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4.1 Data Structure

N/A N/A

LARS* employs a partiain-memorypyramid structure [11]
(equivalent to a partial quad-tree [12]) as depicted in Fégl
The pyramid decomposes the space ifttevels (i.e., pyramid

) height). For a given leveh, the space is partitioned intt’

Fig. 4. Pyramid data structure equal area grid cells. For example, at the pyramid root (leve
0), one grid cell represents the entire geographic areal lev
partitions space into four equi-area cells, and so forth. We

all items. Moreover, recommendations are produced to thepresent each cell with a unique identifigd.

users using the recommendation generation phase (Phase-A rating may belong to up té pyramid cells: one per each

in section 2). During the rest of the paper, we explain hopyramid level starting from the lowest maintained grid cell

LARS* incorporates either the user spatial location or teeni  containing the embedded user location up to the root level.

spatial location to serve location-aware recommendattonsTo provide a tradeoff between recommendation locality and

’ P
LV

the system users. system scalability, the pyramid data structure maintdimeet

types of cells (see figure 4): (1) Recommendation Model Cell
4 SPATIAL USER RATINGS FOR (a-Cell), (2) Statistics Cell g-Cell), and (3) Empty Cell{-
NON-SPATIAL ITEMS Cell), explained as follows:

This section describes how LARS* produces recommendationdRecommendation Model Cell &-Cell). Eacha-Cell stores
using Spatia| ratings for non-spatia| items represented‘]by an item-based collaborative fllterlng model built UStngythe
tuple (User ulocation rating, item). The idea is to exploit spatial ratings with user locations contained in the ceffatial
preference locality i.e., the observation that user opiniongegion. Note that the root cell (level 0) of the pyramid iscan
are spatially unique (based on analysis in Section 1.1). \W&ll and represents a “traditional” (i.e., non-spati@hitbased
identify three requirements for producing recommendatiofollaborative filtering model. Moreover, eachCell maintains
using spatial ratings for non-spatial items: (1dcality: rec- Statistics about all the ratings located within the spatidénts
ommendations should be influenced by those ratings with ugéithe cell. Eachu-Cell C;, maintains a hash table that indexes
locations spatially close to the querying user locatioe. (in all items (by their IDs) that have been rated in this cell, Bdm
a spatial neighborhood); (Bcalability the recommendation Items Ratings Statistics TablEor each indexed itemin the
procedure and data structure should scale up to large numi@ms Ratings Statistics Tablere maintain four parameters;
of users; (3)nfluence system users should have the ability t&ach parameter represent tember of user ratingto item+
control the size of the spatial neighborhood (e.g., citycklo in each of the four children cells (i.&C1, C3, C3, andCy) of
zip code, or county) that influences their recommendationsCell C,. An example of the maintained parameters is given in
LARS* achieves its requirements by employinguser Figure 5. Assume that cefl, contains ratings for three items
partitioning technique that maintains an adaptive pyramiéi, 2, and I3. Figure 5 shows the maintained statistics for
structure, where the shape of the adaptive pyramid is dtiyeneach item in cell”,. For example, for itenT;, the number of
the three goals dbcality, scalability, andinfluence The idea User ratings located in child celly, Cs, Cs, andCy is equal
is to adaptively partition the rating tuplesiser ulocation to 109, 3200, 14, and 54, respectively. Similarly, the numbe
rating, item) into spatial regions based on theocation Of user ratings is calculated for itenfs and /5.
attribute. Then, LARS* produces recommendations using anyStatistics Cell (5-Cell). Like an «-Cell, a 5-Cell main-
existing collaborative filtering method (we use item-basddins statistics (i.e.items ratings Statistics Tablebout the
CF) over the remaining three attributessér, rating, item) user/item ratings that are located within the spatial raoge
of only the ratings within the spatial region containing théhe cell. The only difference between anCell and as-Cell
guerying user. We note that ratings can come from users wighthat a s-Cell does not maintain a collaborative filtering
varying tastes, and that our method only forces collabagati(CF) model for the user/item ratings lying in its boundaries
filtering to produce personalized user recommendationscbasonsequence, 8-Cell is a light weight cell such that it incurs
only on ratings restricted to a specific spatial region. lis thless storage than an-Cell. In favor of system scalability,
section, we describe the pyramid structure in Section 4l1ARS* prefers aj3-Cell over ana-Cell to reduce the total
query processing in Section 4.2, and finally data structusgstem storage.
maintenance in Section 4.3. Empty Cell (v-Cell). a v-Cell is a cell that maintains
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neither the statistics nor the recommendation model for the LARS LARS

ratings lying within its boundaries. @-Cell is the most light — o Supported Features —

weight cell among all cell types as it almost incurs no sterag 5Cell No Yos

overhead. Note that an-Cell can havex-Cells, 5-Cells, or ~-Cell Yes Yes

~-Cells children. Also, &-Cell can havex-Cells, 5-Cells, or Speculative Split Yes No

~-Cells children. However, a-Cell cannot have any children. | Rafing Staistics No Yes

Performance Factors

4.1.1 Pyramid structure intuition Localty - ~26% higher than LARS
Storage ~5% lower than LARS* -

An a-Cell requires the highest storage and maintenance ovel- maintenance : ~38% lower than LARS

head because it maintains a CF model as well as the user/item
ratings statistics. On the other hand, arCell (as opposed
to 8-Cell and~-Cell) is the only cell that can be leverage
to answer recommendation queries. A pyramid structure that
only containsa-Cells achieves the highest recommendation
locality, and this is why arw-Cell is considered the highly

ranked cell type in LARS*. g-Cell is the secondly ranked ysintained at lower pyramid levels. (2) As opposed to LARS,
ceI.I type as it only maintains statistics about the. usemite ARs* does not perform a speculative splitting operation
ratings. The storage and maintenance overhead incurrediBYjecide whether to maintain more localized CF models.
a f-Cell is less expensive than am-Cell. The statistics oy ever, LARS maintains extra statistics at eacktell and

maintained at g-Cell determines whether the children of thaB-CeII that helps in quickly deciding wether a CF model needs
cell needs to be maintained asCells to serve more localized, pe maintained at a child cell. (3) As it turns out from
recommendation. Finally, g-Cell (lowest ranked cell type) tapje 1, | ARS* achieves higher recommendation localityitha
has the least maintenance cost, as neither a CF model pPaRs That is due to the fact that LARS maintains a CF
statistics are maintained for that cell. Moreover-&ell is @ acommendation model in a cell at pyramid levelif and

leaf cell in the pyramid. only if a CF model, at its parent cell at levél— 1, is also

LARS* upgrades (downgrades) a cell to a higher (lowep\sintained. However, LARS* may maintain arCell at level
cell rank, based on trade-offs between recommendation 2ven though its parent cell, at leviel- 1, does not maintain

cality and sy§tem scalab_ility (discussed in Sectiqn 4.8). 1 cF model, i.e., the parent cell is@Cell. In LARS*, the
recommendation locality is preferred over scalability, rn0 516 of 4 3-Cell is to keep theiser/item ratings statisticthat
a-Cells are maintained in the pyramid. On the other hangdes ;564 to quickly decide whether the child cells needs to
if scalability is favored over locality, more-Cells exist in be~-Cells ora-Cells. (4) As given in Table 1, LARS* incurs

the pyramid 5-Cells comes as an intermediary stage betwe@n, e storage overhead than LARS which is explained by the
a-Cells and~-Cells to further increase the recommendatio%1Ct that LARS* maintains additional type of cell, i.e3-

locality whereas the system sc_alabil_ity is not quite aﬁfglct_ Cells, whereas LARS only maintainsCells andy-Cells. In

We chose to employ a pyramid as it is a “space-partitioning yqition, | ARS* may also maintain more-Cells than LARS
structure that is guaranteed to cqmpletely COVer a gVeO&SPdyes in order to increase the recommendation locality. (@nE
For our purposes, “data-partitioning” structures (€.iré®S) | ARs+ may maintain moren-Cells than LARS besides the
are less ideal than a “space-partitioning” structure f@ main o,y statistics maintained at-Cells, nonetheless LARS*
reasons: (1) data-part|t|on|r!g structures-mdex da_\tzmm;) incurs less maintenance cost. That is due to the fact that
and hence covers only. I_oce_mons that are inserted in them.|IRp g+ 4150 reduces the maintenance overhead by avoiding the
other words, data-part|t_|on|ng structures are not g‘_]mad expensive speculative splitting operation employed by BAR
to completely cover a given space, which is not suitable ftaintenance algorithm. Instead, LARS* employs tiser/item
queries issued in arbitrary spatial locations. (2) In G@SHr s statisticsmaintained at either g-Cell or ana-Cell to
to "data-partitioning” structures (e.g., R-trees [13]5pace g icky decide whether the cell children need to maintain a
partitioning _structures show better performance for dyi@ -~k model (i.e., upgraded ta-Cells), just needs to maintain
memory resident data [14], [15], [16]. the statistics (i.e., becom#Cells), or perhaps downgraded to
~-Cells.

TABLE 1
dC:omparison between LARS and LARS*. Detailed experimental
evaluation results are provided in section 7.

4.1.2 LARS*versus LARS

Table 1 compares LARS* against LARS. Like LARS?*, _

LARS [8] employs a partial pyramid data structure to suppoft?2 Query Processing

spatial user ratings for non-spatial items. LARS is différe Given a recommendation query (as described in Section 2.1)
from LARS* in the following aspects: (1) As shown inwith user locationL and a limit K, LARS* performs two
Table 1, LARS* maintainsa-Cells, 5-Cells, and~-Cells, query processing steps: (1) The user locations used to
whereas LARS only maintaing-Cells andvy-Cells. In other find the lowest maintained-Cell C' in the adaptive pyramid
words, LARS either merges or splits a pyramid cell based dimat containsl.. This is done by hashing the user location to
a tradeoff between scalability and recommendation lgcalitretrieve the cell at the lowest level of the pyramid. If an
LARS* employs the same tradeoff and further increases tell is not maintained at the lowest level, we return the estar
recommendation locality by allowing for more-Cells to be maintained ancestar-Cell. (2) The topk recommended items
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are generated using the item-based collaborative filtegog- Algorithm 1 Pyramid maintenance algorithm

nique (covered in Section 2.2) using the model storedat 1: /* Called after cellC' receivesN% new ratings */
. . [ . . : Function PyramidMaintenance(Cell C, Level h)
As mentioned earlier, the model @ is built usingonly the 3 x seep I: statistics Maintenance*/

spatial ratings associated with user locations wiifiin 4: Maintain cell C statistics
" - . . . 5: /*Step Il: Model Rebuild */
In addition to traditional recommendation queries (i.€.,6: i (Cell ¢ is ana-Cell) then

snapshot queries), LARS* also Supports continuous queriegs dRA?buiId item-based collaborative filtering model for céll
. . cendl
and can account for thiafluencerequirement as follows. 9° /*Step ll: Cell Child Quadrant Maintenance */

Continuous queries.LARS* evaluates a continuous query10: if (C children quadrany cells area-Cells)then _
. Lo . k: CheckDownGradeToSCells(g,C) /* covered in Section 4.5.2 */
in full once it is issued, and sends recommendations bagk: eise if(C children quadrang cells arey-Cells) then

to a userU as an initial answer. LARS* then monitors thel3: | CheckUpGradeToSCells(¢,C)
. . . else
movement o/ using her location updates. As Iong @dgoes 1s: isSwitchedToMcells<— CheckUpGradeToMCells(q,C) /* covered in Sec-

not cross the boundary of her current grid cell, LARS* doe tion 4.5.3 */ ,

. Lo . . . : if (isSwitchedToMcells ig-als€) then
nothing as the initial answer is still valid. Ontecrosses a cell 17: CheckDownGradeToECells(g,C)
boundary, LARS* reevaluates the recommendation query f%gf ende_f;d if

I

the new cell only if the new cell is an-Cell. In case the new 20: return
cell is ana-Cell, LARS* only sends incremental updates [16]
to the last reported answer. Like snapshot queries, if aatell

level h is not maintained, the query is temporarily transferrely sccount for these changes, LARS* performs maintenance
higher in the pyramid to the nearest maintained ancestor o g cell-by-cell basis. Maintenance is triggered for a Gl
Cell. Note that since higher-level cells maintain largestsd gnce it receivesV% new ratings; the percentage is computed
regions, the continuous query will cross spatial boundd€ss  from the number of existing ratings ifi. We do this because
often, reducing the amount of recommendation updates. an appealing quality of collaborative filtering is that as a
Influence level LARS* addresses thiefluencerequirement model matures (i.e., more data is used to build the model),
by allowing querying users to specify an optionafluence mgre updates are needed to significantly change thek top-

level (in addition to locationZ and limit K) that controls ecommendations produced from it [17]. Thus, maintenance
the size of the spatial neighborhood used to influence th@irheeded less often.

recommendations. An influence levélmaps to a pyramid e note the following features of pyramid maintenance:
level and acts much like a “zoom” level in Google or Binq1) Maintenance can be performed completely offline, i.e.,
maps (e.g., city block, neighborhood, entire city). TheeleV | ARS* can continue to produce recommendations using the
instructs LARS* to process_the recommend_atlon query s@rti»g|d” pyramid cells while part of the pyramid is being upddte
from the grid a-Cell containing the querying user location2) maintenance does not entail rebuilding the whole pydami
at level I, instead of the lowest maintained gridCell (the 4; once, instead, only one cell is rebuilt at a time; (3) main-
default). An influence level of zero forces LARS* to use th@nance is performed only aftéf% new ratings are added to

root cell of the pyramid, and thus act as a traditional (nNoR: pyramid cell, meaning maintenance will be amortized over
spatial) collaborative filtering recommender system. many operations.

4.3 Data Structure Maintenance 45 Maintenance Algorithm

This section describes building and maintaining the pydami . . . i
data structure. Initially, to build the pyramid, all locati-based Algorlthm 1 provides the pseudocode for the LARS* mainte

ratinas currently in the svstem are used to buildcanplete nance algorithm. The algorithm takes as input a pyramid cell
rarqnidof hei r{tH suchythat all cells in alff levels afea- C and levelh, and includes three main ste®atistics Mainte-

Py gnt4, C N nance Model Rebuildand Cell Child Quadrant Maintenange

Cells and contain ratings statistics and a collaboratiterfiig

model. The initial heightd is chosen according to the IeveIeXplalIneOI below.

. . ) g Step |: Statistics Maintenance.The first step (line 4) is
of locality desired, where the cells in the lowest pyramid level Do . L L
. . e 0 maintain thdtems Ratings Statistics Tabl€he maintained
represent the most localized regions. After this initialldyu

. . statistics are necessary for cell type switching deciséspe-
we invoke acell type maintenancstep that scans all cells y yp 9 e

. cially when new location-based ratings enter the system. As
starting from the lowest levél and downgrades cell types to_, . . o . .
. . .25 “theitems ratings statistics tablis implemented using a hash
either (3-Cell or ~-Cell) if necessary (cell type switching is

discussed in Section 4.5.2). We note that while the origintglble’.then it can be queried and mamtametﬂ(ﬂ)) tume,
. . . . . requiring O(|I¢|) space such thak: is the set of all items
partial pyramid [11] was concerned with spatial queriesrove . ) .
static data, it did not address pyramid maintenance rated at cellC’ and|c| 1S the total number Of. items “ﬁc.'
' ' Step II: Model Rebuild. The second step is to rebuild the

) item-based collaborative filtering (CF) model for a o€l as
4.4 Main Idea described in Section 2.2 (line 7). The model is rebuilt at cel
As time goes by, new users, ratings, and items will be addédonly if cell C is an a-Cell, otherwise §-Cell or v-Cell)
to the system. This new data will both increase the size of the CF recommendation model is maintained, and hence the
collaborative filtering models maintained in the pyramitisse model rebuild step does not apply Rebuilding the CF model
as well as alter recommendations produced from each cél.necessary to allow the model to “evolve” as new location-
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based ratings enter the system (e.g., accounting for newsjte L_Parameter | Description . —
ratings, or users). Given the cost of building the item-da3E RPi | The setof user pairs that co-rated iterin cell

. R2 . . RS, The set of user pairs that co-rated itérim cell ¢ such that each
model isO( ) (per Section 2.2), the cost of the model rebuild pair of usersiu1, uz) € Se.; are not located in the same chilg
for a cell C at levelh is %442 :41,?;, assuming ratings and cell of ¢

. . LGe.,; The degree of locality lost for iterhfrom downgrading the four
users are unlformly q‘St”bUted- ) Y children of cellc to 8-Cells, such thad < LG.; <1
Step IlI: Cell Child Quadrant Maintenance. LARS* LG. The amount of locality lost by downgrading celffour children

invokes a maintenance step that may decide whether cell cells to 8-Cells 0 < LG. < 1)
C child quadrant need to be switched to a different cell TABLE 2
type based on trade-offs betwesealability andlocality. The Summary of Mathematical Notations.

algorithm first checks if cell” child quadrant; at levelh+1 is

of type a-Cell (line 10). If that case holds, LARS* considers

guadrantg cells as candidates to be downgradedst€ells

(calling function CheckDownGradeToSCel line 11). We ifferent cells Ca, C3, andCy). In this casels, Uy, andUs
provide details of th®owngraden-Cells tof-Cellsoperation 4ye gpatially skewed. Hence, the similarity score betweeen i

in Section 4.5.2. On the other hand(ifhave a child quadrant ;, ang other items at the children cells is different from the
of type y-Cells at levelh + 1 (line 12), LARS* considers gjmilarity score calculated at the parent c€}} because not
upgrading cellC' four children cells at leveh + 1 t0 5- g ysers that have rated itef exist in the same child cell.
Cells (calling functionCheckUpGradeToSCelisn line 13). gased on that, we observe the following:

ghe .Upd4gr5a2eHFrom E :ﬂoﬂh-Cells Oﬁﬁéationdis CO\;ered N Observation 1:The more the user/item ratings in a parent
ection 4.5.4. However, ave a child quadrant of typé cell C are geographically skewed, the higher the locality

Cells at Ievelh_+1 (line 12), LARS* first considers lJpgr"’ujimggained from building the item-based CF model at the four
cell C four children cells at leveh + 1 from g-Cells to a- children cells

Cells (calling functionCheckUpGradeToMCellsn line 15). The amount of locality gained/lost by maintaining the child

If the children cells are not switched ta-Cells, LARS* cells of a given pyramid cell depends on whether the CF
then considers downgrading them-feCells (calling function models at the child cells are similar to the CF model builhat t

CheckDownGradeToECellsn line 17). Cell Type Swncmngoparent cell. In other words, LARS* loses locality if the chil

ope_ratlons are p(_erformed completely in quadrants_(l.eur f cells are not maintained even though the CF model at these
equi-area cells with the same parent). We made this deCISIcoeﬂls roduce different recommendations than the CF mddel a
for simplicity in maintaining the partial pyramid. P . .
the parent cell. LARS* leverages Observation 1 to determine
the amount of locality gained/lost due to maintaining amie
based CF model at the four children. LARS* calculates the
locality loss/gain as follows:
Locality Loss/Gain. Table 2 gives the main mathemati-
cal notions used in calculating the recommendation lgcalit
loss/gain. First, thétem Ratings Pairs SetRF. ;) is defined
as the set of all possible pairs of users that rated item

4.5.1 Recommendation Locality

In this section, we explain the notion of locality in recommme
dation that is essential to understand the cell type switchi
(upgrade/downgrade) operations highlighted in Eygamid-
Maintenance algorithm (algorithm 1). We use the following
example to give the intuition behind recommendation lagali
Running Example. Figure 6 depicts a two-levels pyramid in e i i _
which C,, is the root cell and its children cells a&, Cs, Cs, in cell ¢ For exf':\mple, in figure 6(c) the item ratings pairs
and C,. In the example, we assume eight usdrs, (Us, ... ;et for item I in cell C, (RPc, 1) has three elements
and Usg) have rated eight different itemdy( I, ..., andlg). (ie., RP, 1, ={(Us, Us) (Us, Ur),(Us, Ur)}) as only users/y
Figure 6(b) gives the spatial distributions of usglis Us, U5, and Uz have rated item/,. Similarly, RPc, 1, is equal to
Uy, Us, Us, Ur, and Us as well as the items that each uset(Us: Un)} (i-e., UsersUz andUs have rated itenty).
rated. For each item, we define th8kewed Item Ratings Set
Intuition. Consider the example given in Figure 6. In ag)), (RS5c,:) as the total number of user pairs in celthat rated
usersU, and Us that belongs to the child cell’; have both itém @ such that each pair of usees RS.; do not exist in
rated itemsl, and/s. In that case, the similarity score betweef’® same child cell of. For example, in Figure 6(c), the
items I, and I5 in the item-based collaborative filtering CFSkewed item ratings set for itety in cell C, (RSc,,1,) is
model built at cellC; is exactly the same as the one in thé as all users that rated, i.e., U, and Us are collocated
CF model built at cellC,. The last phenomenon happeneé the same child cell’;. For I, the skewed item ratings set
because items (i.ely andIs) have been rated by mostly userd?Scr.1={ (U2, Uz), (Uz, Us), (Us, U7)} as all users that rated
located in the same child cell, and hence the recommendatiin /2 are located in different child cells,i.ell; at Cz, Uy
model at the parent cell will not be different from the modeit Ca, andUz at C's.
at the children cells. In this case, if the CF modelatis not ~ Given the aforementioned parameters, we calcultmm
maintained, LARS* does not lose recommendation locality &pcality Loss (G.. ;) for each item, as follows:
all. Definition 1: Item Locality Loss (LG, ;)

The opposite case happens when an item is rated by uské€s. ; is defined as the degree of locality lost for itérfrom
located in different pyramid cells (spatially skewed). Fodowngrading the four children of ceflto g-Cells, such that
example, itemly is rated by userd/,, Us, andU; in three 0 < LG.; <1.
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(a) Two-Levels Pyramid

C; Model
Item1 item2 Score
ui->i1 11 17 0.8
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u7->11
2
C, Model
u2->12 Iteml | item2 | Score
u2->14 - 12 5 | 05 C, Model
CZ u2->1I5 12 14 0.3 Iteml | item2 | Score
S 14 5 | 04 1 17 | 08
M/ 11 16 0.5
C 12 15 0.5
p U3->13) C; Model 2 | | o3
us->17 Item1 item2 Score 14 I5 0.4
C3 u7->14 - 13 17 0.8
uz->17 13 14 0.4
\\U7->18 / 13 18 0.1
32 > :g C, Model
U4 -> |8 Item1 item2 Score
C4 U6 -> 13 - 13 14 0.6
U6 ->17 13 17 0.7
\ U4 ->16 13 18 0.3

(b) Ratings Distribution and Recommendation Models

Item IRP; | IRS,| LG,
11 1 0 0.0
12 1 0 0.0
13 1 1 1.0
14 3 3 1.0
15 1 0 0.0
16 3 2 0.666
17 6 2 0.166
18 1 1 1.0

Cell Locality Gain (LG ;) 0.48

(c) Locality Loss/Gain at;,

Fig. 6. Item Ratings Spatial Distribution Example

|RS, ;|

LGC i =
" |RP.l

®3)

total number of itemsI.| in cell c.
LGC _ Zielc LGC"i

||

The cell locality loss (or gain) is harnessed by LARS* to
determine whether the cell children need to be downgraded
from a-Cell to 5-Cell rank, upgraded from the-Cell to 3-Cell
rank, or downgraded frorg-Cell to «-Cell rank. During the
rest of section 4, we explain the cell rank upgrade/dowrgrad
operations.

(4)

4.5.2 Downgrade «a-Cells to 5-Cells

That operation entails downgrading an entire quadrant ks ce
from M-Cells to 5-Cells at levelh with a common parent at
level h — 1. Downgradinga-Cells to 5-Cells improves scal-
ability (i.e., storage and computational overhead) of LARS
as it reduces storage by discarding the item-based collabo-
rative filtering (CF) models of the the four children cells.
Furthermore, downgrading-Cells to 5-Cells leads to the
following performance improvements: (#ss maintenance
cost since less CF models are periodically rebuilt, andéb}
continuous query processing computatias S-Cells does

not maintain a CF model and if mans-Cells cover a large
spatial region, hence, for users crossjfigells boundaries,

we do not need to update the recommendation query answer.
Downgrading children cells from-Cells tog-Cells might hurt
recommendation locality, since no CF models are maintained
at the granularity of the child cells anymore.

At cell Cp, in order to determine whether to downgrade
a quadrantg cells to -Cells (i.e., functionCheckDown-
GradeToSCellson line 11 in Algorithm 1), we calculate
two percentage values: (Ipcality_loss (see equation 4),
the amount of locality lost by (potentially) downgradingeth
children cells tos-Cells, and (2)scalability_gain, the amount
of scalability gained by (potentially) downgrading theldhén
cells to 5-Cells. Details of calculating these percentages are
covered next. When deciding to downgrade cellgstQells,
we define a system parametév(, a real number in the
range [0,1] that defines a tradeoff between scalability gaih
locality loss. LARS* downgrades a quadrantells tos-Cells
(i.e., discards quadran) if:

(1 = M) * scalability_gain > M * locality_loss  (5)

A smaller M value implies gaining scalability is important
and the system is willing to lose a large amount of locality
for small gains in scalability. Conversely, a largét value
implies scalability is not a concern, and the amount of libgal
lost must be small in order to allow fg#-Cells downgrade.
At the extremes, setting4=0 (i.e., always switch tg3-Cell)

The value of both RS, ;| and|RP. ;| can be easily extractedimplies LARS* will function as a traditional CF recommender

using theitems ratings statistics tabl@hen, we use thé G, ;

system, while setting\i=1 causes LARS* pyramid cells to

values calculated for all items in cellin order to calculate all be a-Cells, i.e., LARS* will employ a complete pyramid
the overallCell Locality loss {G.) from downgrading the structure maintaining a recommendation model at all cdlls a

children cells ofc to a-Cells.
Definition 2: Locality Loss (LG.)

all levels.
Calculating Locality Loss. To calculate the locality loss

LG, is defined as the total locality lost by downgrading eell at a cell C,, LARS* leverages thdtem Ratings Statistics
four children cells ta5-Cells 0 < LG. < 1). It is calculated Tablemaintained in that cell. First, LARS* calculates the item

as the the sum of all items locality loss normalized by thHecality lossLG¢

for each item in the cellC,,. Therefore,

Pt
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LARS* aggregates the item locality loss values calculated foperation. LARS* change cell's child quadrant to a-Cells
each itemi € C,, to finally deduce the global cell locality only if the following condition holds:
loss LG, . ) , .

Calculating scalability gain. Scalability gain is measured M * locality_gain > (1 — M) « scalability_loss  (6)

in storage and computation savings. We measure scalabil".tﬁ(is equation represents the opposite criteria of tha
gain by summing the recommendation model sizes for eagh Upgrade toB-Cells operation in Equation 5

of the downgraded (i.e., child) cells (abbrze,,), and divide Calculating locality gain. To calculate the locality gain,

this valge by the sum okize,, and the recommendatlonLARS* does not need to speculatively build the CF model at
model size of the parent cell. We refer to this percenta%-:-

as thestoragegain. We also quantifycomputationsavings e four children cells. The locality gain is calculated Haene
gegain. q P 9 ay the locality loss is calculated in equation 4.

using storage gain as a surrogate measurement, as cora utali . - .
9 9e g g n Calculating scalability loss. We calculatescalability loss

is considered a direct function of the amount of data in the T C .
system. y estimating the storage necessary to maintain the childre

. . - A cells. Recall from Section 2.2 that the maximum size of an
Cost using theltems Ratings Statistics Tablaaintained . . . :
. . item-based CF model is approximatelyl|, wheren is the
at cell C,, the locality loss at cell’,, can be calculated in

O(|I¢c,|) time such thati- | represents the total number omedel size. We can mgltlplyz|I| by the n_umber of bytes
. P A . needed to store an item in a CF model to find an upper-bound
items in C,. As scalability gain can be calculated @®(1)

. . _ storage size of each potentiallypgradeded toa-Cell cell.
gr;:r’a:ir:;ni;g% ItgtT)l time cost of thBowngrade Tos-Cells The sum of these four estimated sizes (ablbte,) divided

Example. For the example given in Figure 6(c), theby the sum of the size of the existing parent cell arnde,

. ) . represents thecalability lossmetric.
locality loss of downgrading cellC, four children cells - .
{C1,Cs,Cs,Cy} to B-Cells is calcufated as follows: First, Cost Similar to theCheckDownGradeToSCeltsperation,

we retrieve the locality lossLGe ; for each itemi scalability loss is calculate i®(1) and locality gain can be
(I, I, I, Iu, I5, I, Ir, I}, from tﬁé maintained statisticscalcmated inO(|1c,|) time. Th_en, _the total time cost of the
at cell C,. As given in figure 6(c),LGc, 1,, LGc, 1., CheckUpGradeToMCelleperanon 'SO.(|ICP.|)' :
LGe 1. LGe 1. LGe 1. LGe 1. LGe 1. andLGe. | Example. Consider the example given in Figure 6(c). As-
are g’q‘a'al 00 ‘(‘) 0.0 p’l"’(') 10 6'0 0 GPSGZS 0.166 gn%l 1gyme the celC), is ana-Cell and its four childrer;, Cs, Cs,
respectively. Then, we calculate the overall locality l@gs anq Cy are @-Cells. Thelocahty.galn (LGc,) is cqlculat_ed
C, (using equation 4)LGc, by summing all the locality using _equgtlon 4 to be 0.48 (i.e., 48%) as dep|ct§d in the
loss values of all items and dividing the sum by the totéf‘ble in Figure 6(c). Further, assume that we_esumate the
number of items. Hence, the scalability loss is equal fura sto_rage overhead for upgradinging the children dells
(0:0:+0.041.041.0+0.0+1.040.666+1.0Y = .48 = 48%. To calcu- «-Cells (i.e.,storage lospto be 50%. Assuming\1=0.7, then

5 . . . . i
late scalability gain, assume the sum of the model sizes {(Qr? x 48) > (0.3 x _50)' meaning that LARS* W'_” dec!de
cells C; to Cy and Cp is 4GB, and the sum of the model.tO qurgdecp fqur children cells_ _tm-CeIIs aslocality gain
sizes for cellsC; to C is 2GB. Then, thescalability gainis 'S Significantly higher thascalability loss
2=50%. AssumingM=0.7, then(0.3 x 50) < (0.7 x 48),
meaning that LARS* will not downgrade cells;, Cs, Cs,

4.5.4 Downgrade §-Cells to y-Cells and Vice Versa

C, to g-Cells. Downgradingg-Cells to~-Cells operation entails downgrad-
ing the cell type of a cell child quadrant at pyramid level
4.5.3 Upgrade p-Cells to a-Cells h under a cell at leveh — 1, to y-Cells (i.e., empty cells).

Upgrading 3-Cells to a-Cells operation entails upgrading theDowngrading the child quadrant type4eCells means that the
cell type of a cell child quadrant at pyramid levelunder maintained statistics are no more maintained in the childre
a cell at levelh — 1, to a-Cells. Upgrading 3-Cells to o~ cell, which definitely reduces the overhead of maintainimgy t
Cells operation improves locality in LARS*, as it leads toltem Ratings Statistics Tablat these cells. Even though
maintaining a CF model at the children cells that represe@ells incurs no maintenance overhead, however they reduce
more granular spatial regions capable of producing recamméhe amount of recommendation locality that LARS* provides.
dations unique to the smaller, more “local”, spatial regiad@n The decision of downgrading from3-Cells to y-Cells is
the other hand, upgrading cells @eCells hurts scalability by taken based on a system parameter, naM&X SLEVELS
requiring storage and maintenance of more item-basedbeollét is defined as the maximum number of consecutive
orative filtering models. The upgradedeCells operation also pyramid levels in which descendant cells can peCells.
negatively affects continuous query processing, sinceeites MAX_SLEVELSan take any value between zero and the total
more granula-Cells causing user locations to crassCell height of the pyramid. A high value 8IAX_SLEVELSesults
boundaries more often, triggering recommendation updatesn maintaining more3-Cells and lesg/-Cells in the pyramid.
To determine whether to upgrade a céll> (quadrant For example, in Figure 4AX_SLEVELSSs set to two, and
q) four children cells toa-Cells (i.e., functionCheckUp- this is why if two consecutive pyramid levels afeCells,
GradeToMCellson line 15 of Algorithm 1). Two percentagesthe third level 5-Cells are autotmatically downgraded te
are calculatedocality_gain andscalability loss These values Cells. For eactp-Cell C, a counter, called-Levels Counter
are the opposite of those calculated for Wyggrade tos-Cells is maintained. The S-Levels Counter stores of the total rmrmb
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of consecutive levels in the direct ancestry of ¢&lsuch that Algorithm 2 Travel Penalty Algorithm for Spatial ltems

all these levels contain@-CeIIs. 1: Function LARS*_Spatialltems(User U, Location L, Limit K)
. . 2: /* Populate a listR with a set of K items*/
At a g-Cell C, if the cell children ares-Cells, then we 3 R<_p¢

compare theS-Levels Counteiat the child cells with the 4: for (K it;ra;t?onS):iho o it the next lowest (ravel ly (@wo8.2)
: 1 <— Retrieve the item wi e next lowest travel penalty .
MAX_SLEVELSDaramEter- Note that the counter counts OnIyG: Inserts into R ordered byRecScore(U, i) computed by Equation 7

the consecutive S-Levels, so if some levels in the chain aré end for I
. : LowestRecScore + RecScore of the k'™ object in R
a-Cells the counter is reset to zero at theCells levels. IfS-  o: jRetrieve items one by one in order of their penalty value */

Levels Countelis greater than or equal tMAX SLEVELS  10: while there are more items to proceds _
th th hild I C d ded tov-Cell 1: i < Retrieve the next item in order of penalty score (Sectior) 5.2
en € chilaren cells o are aowngraae oy-Cells. 12: MaxPossibleScore < MAX_RATING - i.penalty

Otherwise, cellC children cells are not downgraded t¢ = 13:  if MazPossibleScore < LowestRecScore then

L. 14: return R /* early termination - end query processing */
Cells. Similarly, LARS* also makes use of the sa®devels 15.  engif Y aeve 9
Counterto decide whether to upgradeCells to 5-Cells. 161 RecScore(U, i) « P(U,4) - i.penalty /* Equation 7 */
17: if RecScore(U,4) > LowestRecScore then
18: Inserts into R ordered byRecScore(U, 1)
5 NON'SPAT'AL USER RATINGS FOR 19: LowestRecScore +— RecScore of the kt" object in R
20: end if
SPATIAL ITEMS 21: end while
22: return R

This section describes how LARS* produces recommendations
using non-spatial ratings for spatial items representedhby

tuple (user, rating, item, ilocation). The idea is to explotiravel Algorithm 2 provides the pseudo code of our query pro-

locality, i.e., the observation that users limit their choice Oéessing algorithm that takes a querying usef/ida location
spatial venues based on travel distance (based on anatysis i and a limit & as input, and returns the list of top-k
Section 1.1). Traditional (non-spatial) recommendatiecht récgnmmended items Thé algorithm starts by running-a
nigues may produce recommendations with burdensome tr . . . .
distances (e.g., hundreds of miles away). LARS* produ?{g rest-neighbor algorithm to populate the Rstvith & items

! . . With lowest travel penaltyR is sorted by the recommendation
recommendations within reasonable travel distances b)gusgscore computed using Equation 7. This initial part is codeti

travel pepaltya technique _that penali;es the recommendati% setting the lowest recommendation score valimvestRec-
rank of items the further in travel distance they are from cord as theRecScoreof the k% item in R (Lines 3 to 8).

querying userTravel penaltymay incur expensive Computa'Then, the algorithm starts to retrieve items one by one in

tional overhead by calculating travel distance to each .ite e order of their penalty score. This can be done using an
Thus, LARS* employs an efficient query processing techniqtilﬁ y

L : crementalk-nearest-neighbor algorithm, as will be described
capable ofearly terminationto produce the recommendat|0n§n

. . . - the next section. For each iteipwe calculate thenaximum
without calculating the travel distance to all items. Satth.1

q ibes th ing f K while Secti § ssiblerecommendation score thatan have by subtracting
escribes the query processing framework while Section travel penalty ofi from MAX_RATING the maximum
describes travel distance computation.

possible rating value in the system, e.g., 5 (Line 12); If
. cannot make it into the list of top-recommended items with
5.1 Query Processing this maximum possible score, we immediately terminate khe a
Query processing for spatial items using tiiavel penalty gorithm by returningr as the topk recommendations without
technique employs a single system-wide item-based collam@mputing the recommendation score (and travel distamce) f
rative filtering model to generate the téprecommendations more items (Lines 13 to 15). The rationale here is that since
by ranking each spatial itemfor a querying uset: based on we are retrieving items in increasing order of their penalty
RecScore(u, i), computed as: and calculating the maximum score that any remaining item
can have, then there is no chance that any unprocessed item
can beat the lowest recommendation scord?inlf the early
termination case does not arise, we continue to compute the
P(u,1) is the standard item-based CF predicted rating of itegcore for each itemiusing Equation 7, inseftinto R sorted by
i for useru (see Section 2.2)I'ravel Penalty(u,i) is the its score (removing thé'" item if necessary), and adjust the
road network travel distance betweenand: normalized to lowest recommendation value accordingly (Lines 16 to 20).
the same value range as the rating scale (e.g., [0, 5]). Travel penaltyrequires very little maintenance. The only
When processing recommendations, we aim to avoid cafaintenance necessary is to occasionally rebuild the esingl
culating Equation 7 fomll candidate items to find the tdp- system-wide item-based collaborative filtering model idesr
recommendations, which can become quite expensive giweraccount for new location-based ratings that enter thiesys
the need to compute travel distances. To avoid such compuFatlowing the reasoning discussed in Section 4.3, we rdbuil
tion, we evaluate items in monotonically increasing order ¢he model after receivingi% new ratings.
travel penalty (i.e., travel distance), enabling us to usdye
termination principles from tog-query processing [18], [19],
[20]. We now present the main idea of our query processiﬁg2
algorithm and in the next section discuss how to compuldis section gives an overview of two methods we imple-
travel penalties in an increasing order of travel distance. mented in LARS* to incrementally retrieve items one by one

RecScore(u,i) = P(u,i) — Travel Penalty(u,i)  (7)

Incremental Travel Penalty Computation
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ordered by their travel penalty. The two methods exhibit @alculated shortest path distances frono d. As a final step,
trade-off between query processing efficiency and penaltly ave normalize the average distance frento d to fall within
curacy: (1) aronline method that provides exact travel penalthe rating value range. Normalization is necessary as tirgra
ties but is expensive to compute, and (2) @fline heuristic domain is usually small (e.g., zero to five), while distange i
method that is less exact but efficient in penalty retrievaheasured in miles or kilometers and can have large valués tha
Both methods can be employed interchangeably in Line hkavily influence Equation 7. We repeat this entire process f

of Algorithm 2. each cell to all other cells to populate the entire penalig.gr
_ When new items are added to the system, their presence in
5.2.1 Incremental KNN: An Exact Online Method a cell d can alter the average distance value used in penalty

To calculate an exact travel penalty for a useto item 4, calculation for each source cell Thus, we recalculate penalty
we employ an incrementat-nearest-neighbor (KNN) tech- scores in the penalty grid aftéf new items enter the system.
nique [21], [22], [23]. Given a user locatioh) incremental We assume spatial items are relatively static, e.g., remtés
KNN algorithms return, on each invocation, the next iterdo not change location often. Thus, it is unlikelistingitems

¢ nearest tou with regard to travel distancé. In our case, will change cell locations and in turn alter penalty scores.
we normalize distancé to the ratings scale to get the travel

penalty in Equation 7. Incremental KNN techniques exist f@§ SpATIAL USER RATINGS FOR

both Euclidean distance [22] and (road) network distant® [2 SpaT|AL ITEMS

23]. The advantage of using Incremental KNN techniques is . . . .
[23] v 9 Using u ;’;s section describes how LARS* produces recommendations

ing spatial ratings for spatial items represented by upket
(user, ulocation rating, item, ilocation). A salient feature of
RS* is that both theuser partitioningand travel penalty
techniques can be used together with very little change to
produce recommendations using spatial user ratings faoiaspa
Arrems. The data structures and maintenance techniquesnrema
exactlythe same as discussed in Sections 4 and 5; only the
qguery processing framework requires a slight modification.

5.2.2 Penalty Grid: A Heuristic Offline Method Query processing uses Algorithm 2 to produce recommen-

A more efficient, yet less accurate method to retrieve trav%?t'ons' I—_Iowgver_, the on_ly _dn‘ference IS that th_e item-tiase
collaborative filtering prediction sco®(u, i) used in the rec-

enalties incrementally is to use a pre-compuyiedalty grid . X i : . .
s y P put Y9 ommendation score calculation (Line 16 in Algorithm 2) is

The idea is to partition space using anx n grid. Each grid . . L=
cell ¢ is of equal size and contains all items whose Iocatio?wenerated using the (localized) collaborative filteringdelo

falls within the spatial region defined layEach celk contains from the partial pyramid cell that contains the queryingruse

a penalty listthat stores the pre-computed penalty values fg?stead of the system-wide collaborative filtering modelas

traveling from anywhere within to all othern?—1 destination used in Section 5.
cells in the grid; this means all items within a destinatioitl g
cell share thesamepenalty value. The penalty list for is 7 EXPERIMENTS
sorted by penalty value and always stord#iself) as the first This section provides experimental evaluation of LARS*dzhs
item with a penalty of zero. To retrieve items incrementally on an actual system implementation using C++ and STL. We
items within the cell containing the querying user are meddr compare LARS* with the standard item-based collaborative
one-by-one (in any order) since they have no penalty. Aftéltering technique along with several variations of LARS*.
these items are exhausted, items contained in the nextncelWe also compare LARS* to LARS [8]. Experiments are based
the penalty list are returned, and so forth until Algorithm 2n three data sets:
terminates early or processes all items. Foursquare: a real data set consisting spatial user ratings

To populate the penalty grid, we must calculate the penafyr spatial itemsderived from Foursquare user histories. We
value for traveling from each cell to every other cell in therawled Foursquare and collected data for 1,010,192 users a
grid. We assume items and users are constrained to a réd@,990 venues across the United States. Foursquare dbes no
network, however, we can also use Euclidean space withguiblish each “check-in” for a user, however, we were able to
consequence. To calculate the penalty from a single soette collect the following pieces of data: (1) user tips for a venu
c to a destination celtl, we first find the average distance tq2) the venues for which the user is the mayor, and (3) the
travel from anywhere withii to all item destinations withid. completed to-do list items for a user. In addition, we exeéc
To do this, we generate amchor pointp within ¢ that both each user’s friend list.
() lies on the road network segment withinand (2) lies Extracting location-based ratingsTo extract spatial user
as close as possible to the centercofWith these criteriap ratings for spatial items from the Foursquare data (i.e, th
serves as an approximate average “starting point” for liraye five-tuple (ser, ulocation rating, item, ilocation)), we map
from ¢ to d. We then calculate the shortest path distanaach user visit to a single location-based rating. Tikerand
from p to all items contained inl on the road network (any item attributes are represented by the unique Foursquare user
shortest path algorithm can be used). Finally, we average ahd venue identifier, respectively. We employ the user'sénom

that they provide aexacttravel distances between a queryin
user’s location and each recommendation candidate item.
disadvantage is that distances must be compotdihe at
qguery runtime, which can be expensive. For instance, the r
time complexity of retrieving a single item using increnmant
KNN in Euclidean space is [22]9(k + logN), whereN and
k are the number of total items and items retrieved so f
respectively.
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city in Foursquare as thelocation attribute. Meanwhile, the .| s e
ilocation attribute is the item’s inherent location. We use a glﬁw -
numericrating value range of [1, 3], translated as follows: giz
(a) 3 represents the user is the “mayor” of the venue, (b) Z >
represents that the user left a “tip” at the venue, and (c) Leal
represents the user visited the venue as a completed “to-do” * * *_-° ° ° " ° LT e
list item. Using this scheme, a user may have multiple rating
for a venue, in this case we use the highest rating value.
Data properties Our experimental data consisted of 22,39Big. 7. Quality experiments for varying locality
location-based ratings for 4K users for 2K venues all from
the state of Minnesota, USA. We used this reduced data set
in order to focus our quality experiments ondanserating to one (abbr. LARS*-U), and LARS* with both techniques
sample. Use oflenseratings data has been shown to be a vegnabled and M set to one (abbr. LARS*). Notice that LARS*-
important factor when testing and comparing recommendati® represents the traditional item-based collaborativerifily
quality [17], since use ofparsedata (i.e., having users oraugmented with the travel penalty technique (section ke t
items with very few ratings) tends to cause inaccuracies tine distance between the querying user and the recommended
recommendation techniques. items into account. We do not plot LARS with LARS* as both
MovielLens. a real data set consisting spatial user ratings give the same result for M=1, and the quality experiments
for non-spatial itemstaken from the popular MovieLensare meant to show how locality increases the recommendation
recommender system [5]. The Foursquare and MovieLens dgtzlity.
are used to test recommendation quality. The MovieLens d&aality Metric. To measure quality, we build each recom-
used in our experiments was real movie rating data takerendation method using 80% of the ratings from each data
from the popular MovieLens recommendation system at tlset. Each rating in the withheld 20% represents a Foursquare
University of Minnesota [5]. This data consisted of 87,028enue or MovieLens movie a user is known to like (i.e.,
ratings for 1,668 movies from 814 users. Each rating waated highly). For each rating in this 20%, we request a
associated with the zip code of the user who rated the movéet of k£ ranked recommendatior$ by submitting theuser
thus giving us a real data set of spatial user ratings for naand ulocationassociated witht. We first calculate the quality
spatial items. as the weighted sum of the number of occurrences oftémne
Synthetic. a synthetically generated data set consisting aksociated witht (the higher the better) i5. The weight of
spatial user ratings for spatial items for venues in theestadn item is a value between zero and one that determines how
of Minnesota, USA. The synthetic data set we use in ogfose the rank of this item from its real rank. The quality
experiments is generated to contain 2000 users and 100§, iteof each recommendation method is calculated and compared
and 500,000 ratings. Users and items locations are randorabainst the baseline, i.e., traditional item-based colative
generated over the state of Minnesota, USA. Users’ ratingsfiitering. We finally report the ratio of improvement in qusli
items are assigned random values between zero and five.es&h recommendation method achieves over the baseline. The
this data set contains a number of ratings that is about ywemationale for this metric is that since each withheld rating
five times and five times larger than the foursquare data sepresents a real visit to a venue (or movie a user liked), the
and the Movilens data set, we use such synthetic data setechnique that produces a large number of correctly ranked
test scalability and query efficiency. answers that contain venues (or movies) a user is known to
Unless mentioned otherwise, the default value\dfis 0.3, like is considered of higher quality.
k is 10, the number of pyramid levels is 8, the influence level Figure 7(a) compares the quality improvement of each
is the lowest pyramid level, and MAXSLEVELS is set to technique (over traditional collaborative filtering) foarying
two. The rest of this section evaluates LARS* recommendatitocality (i.e., different levels of the adaptive pyramidjing the
quality (Section 7.1), trade-offs between storage andlilyca Foursquare data. LARS*-T does not use the adaptive pyramid,
(Section 7.4), scalability (Section 7.5), and query pre®s thus has constant quality improvement. However, LARS*-T
efficiency (Section 7.6). As the system stores its datattres shows some quality improvement over traditional collativea
in main memory, all reported time measurements represent fittering. This quality boost is due to that fact that LARS*-
CPU time. T uses atravel penaltytechnique that recommends items
within a feasible distance. Meanwhile, the quality of LARS*
7.1 Recommendation Quality for Varying Pyramid Lev- gnd LARS*-U increases as more localized pyramid cells are
els used to produce recommendation, which verifies thser
These experiments test the recommendation quality improyartitioning is indeed beneficial and necessary for location-
ment that LARS* achieves over the standard (non-spatididsed ratings. Ultimately, LARS* has superior performance
item-based collaborative filtering method using both thdue to the additional use tfivel penalty While travel penalty
Foursquare and MovielLens data. To test the effectivenesspodduces moderate quality gain, it also enables more efficie
our proposed techniques, we test the quality improvementery processing, which we observe later in Section 7.6.
of LARS* with only travel penalty enabled (abbr. LARS*- Figure 7(b) compares the quality improvement of LARS*-U
T), LARS* with only user partitioning enabled and M sebver CF (traditional collaborative filtering) for varyingdality
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Fig. 8. Quality experiments for varying answer sizes
Fig. 9. Quality experiments for varying value of M

using the MovieLens data. Notice that LARS* gives the same
quality improvement as LARS*-U because LARS*-T do not

apply for this dataset since movies are not spatial. Condpare
to CF, the quality improvement achieved by LARS*-U (and
LARS*) increases when it produces movie recommendation
from more localized pyramid cells. This behavior further
verifies thatuser patrtitioningis beneficial in providing quality o 01 02 03 04 05 06 07 08 08 1 02 63 o4 o
recommendations localized to a querying user locationn eve " !
when items are not spatial. Quality decreases (or levelfooff
MovieLens) for both LARS*-U and/or LARS* for lower levels Fig. 10. Effect of M on storage and locality (Synthetic data)
of the adaptive pyramid. This is due tecommendation star-

vation i.e., not having enough ratings to produce meaningful

70,

60

50

GB)

LARS*M=0 —A—
40 LARS*-M=1 —F—
30

locality (%)

Riorage

(a) Storage (b) Locality

recommendations. M. We perform experiments using both the Foursquare and
MovieLens data. Our quality metric is exactly the same as
7.2 Recommendation Quality for Varying k presented previously in Section 7.1.

These experiments test recommendation quality improvemenFigure 9(a) depicts the effect o¥1 on the quality of both
of LARS*, LARS*-U, and LARS*-T for different values of: LARS and LARS* using the Foursquare data set. Notice
(i.e., recommendation answer sizes). We do not plot LARBat we enable both the user partitioning and travel penalty
with LARS* as both gives the same result for M=1, andchniques for both LARS and LARS*. We report quality
the quality experiments are meant to show how the degréémbers using the pyramid height of four and the number
of locality increases the recommendation quality. We penfo Of recommended items of ten. WheMt is equal to zero, both
experiments using both the Foursquare and MovieLens ddtARS and LARS* exhibit the same quality improvement as
Our quality metric is exactly the same as presented preljioug! = 0 represents a traditional collaborative filtering with
in Section 7.1. the travel penalty technique applied. Also, whar is set
Figure 8(a) depicts the effect of the recommendation li=t sito one, both LARS and LARS* achieve the same quality
k on the quality of each technique using the Foursquare déizprovement as a fully maintained pyramid is maintained
set. We report quality numbers using the pyramid height 8f both cases. ForM values between zero and one, the
four (i.e., the level exhibiting the best quality from Secti7.1 quality improvement of both LARS and LARS* increases for
in Figure 7(a)). For all sizes df from one to ten, LARS* and higher values ofM due to the increase in recommendation
LARS*-U consistently exhibit better quality. In fact, LARS locality. LARS* achieves better quality improvement over
consistently achieves better quality over CF forkalLARS*- LARS because LARS* maintains-Cells at lower levels of
T exhibits similar quality to CF for smallet values, but does the pyramid.
better fork values of three and larger. Figure 9(b) depicts the effect oM on the quality of
Figure 8(b) depicts the effect of the recommendation li§0th LARS and LARS* using the Movilens data set. We
size k on the quality of improvement of LARS*-U (and report quality improvement over traditional collaboratifil-
LARS*) over CF using the MovieLens data. Notice thatering using the pyramid height of seven and the number of
LARS* gives the same quality improvement as LARS*Uecommended items set to ten. Similar to Foursquare data
because LARS*-T do not apply for this dataset since moviést, the quality improvement of both LARS and LARS*
are not spatial. This experiment was run using a pyramigcreases for higher values o#t due to the increase in
hight of seven (i.e., the level exhibiting the best quality irfecommendation locality. Fo¥1 values between zero and one,
Figure 7(b)). Again, LARS*-U (and LARS*) consistently LARS* consistently achieves higher quality improvemengiov

exhibits better quality than CF for sizes & from one to LARS as LARS* maintains morew-Cells at more granular
ten. levels of the pyramid structure.

7.3 Recommendation Quality for Varying M 7.4 Storage Vs. Locality

These experiments compares the quality improvemdrigure 10 depicts the impact of varyidgl on both the storage
achieved by both LARS and LARS* for different values ofand locality in LARS* using the synthetic data set. We plot
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LARS*-M=0 and LARS*-M=1 as constants to delineate the
extreme values oM, i.e., M=0 mirrors traditional collabora-
tive filtering, while M=1 forces LARS* to employ a complete
pyramid. Our metric for locality idocality loss (defined in
Section 4.5.2) when compared to a complete pyramid (i.e.,
M=1). LARS*-M=0 requires the lowest storage overhead, but
exhibits the highest locality loss, while LARS*-M=1 exhibi ° amberot hatngs ¢ 1y O oot Rt SoFar e
no locality loss but requires the most storage. For LARS?, in (a) Storage
creasingM results in increased storage overhead since LARS*

favors switching cells ta-Cells, requiring the maintenance ofFig. 11. Scalability of the adaptive pyramid (Synthetic data)
more pyramid cells each with its own collaborative filtering

model. Each additionat-Cell incurs a high storage overhead ™ iy
over the original data size as an additional collaborative 5

filtering model needs to be maintained. Meanwhile, incraasi
M results in smaller locality loss as LARS* merges less
and maintains more localized cells. The most drastic drop iné
locality loss is between 0 and 0.3, which is why we chose .
M=0.3 as a default. LARS* leads to smaller locality loss T mberotrangsc i P iistnce ey
(~26% less) than LARS because LARS* maintamCells

below 3-Cells which result in higher locality gain. On the
other hand, LARS* exhibits slightly higher storage cosbfo Fig. 12. Query Processing Performance (Synthetic data).
more storage) than LARS due to the fact that LARS* stores

the Item Ratings Statistics Tabjger eachn-Cell and 5-Cell.

LARS*-M=0 —4—
LARS*M=1 —J— 1
LARS —K—
LARS' —@—

Aggregate Maint Time (* 1K sec)

Storage (GB)
S 4 m e s N ®

(b) Maintenance

14
1.2

ponse Time (ms)

0.8

Aggregate Response Time (sec)

(a) Snapshot Queries (b) Continuous Queries

Snapshot queries.Figure 12(a) gives the effect of various
7.5 Scalability number of ratings (10K to 500K) on the average snapshot
uery performance averaged over 500 queries posed at random

Figure 11 depicts the storage and aggregate maintengﬁ)%%tions. LARS* and LARS*-M=1 consistently outperform

overhead required for an increasing number of ratings usin . . * =1 i oli
the synthetic data set. We again plot LARS*-M=0 and LARS*E-Jlﬁ other te(_:hnlques, LARs M=1is slightly better due tco:{e.
mmendations always being produced from the smallest (i.e.

M=1 to indicate the extreme cases for LARS*. Figure 11(a ost localized) CF models. The performance gap between
depicts the impact of increasing the number of ratings fro[nARs* and LARS*-U (and .CF and LARS*-T) shows that

*_\N= i
10K to 500K on storage overhead. LARS*-M=0 requires themploying thetravel penaltytechnique with early termination

lowest amount of storage since it only maintains a single . L
collaborative filtering model. LARS*-M=1 requires the higt gads to better query response time. Similarly, the peréorcs

* *_ i
amount of storage since it requires storage of a collaherat? 2P between LARS™ and LARS™T shows that employing

o ; user partitioningtechnique with its localized (i.e., smaller
filtering model for all cells (in all levels) of a complete P 9 q ( )

pyramid. The storage requirement of LARS* is in between t ceollaboranve filtering model also benefits query procegsin

. . . ARS* performance is slightly better than LARS as LARS*
two extremes since it merges cells to save storage. Figyg 11 . L .
: : . sometimes maintains more localized CF models than LARS
depicts the cumulative computational overhead necessary . . L
L . o : which incurs less query processing time.
maintain the adaptive pyramid initially populated with 00 : . . . .
. 4 : X ontinuous queries. Figure 12(b) provides the continuous
ratings, then updated with 200K ratings (increments of 50 . :
o : query processing performance of the LARS* variants by re-
reported). The trend is similar to the storage experimehére orting the agareqate response time of 500 continUOUSERIETi
LARS* exhibits better performance than LARS*-M=1 due & 9 9greg P I

switching some cells from-Cells to3-Cells. Though LARS*- A continuous query is issued once by a ugdo get an initial
' answer, then the answer is continuously updated a®ves.

M=0 has the best performance in terms of maintenance We report the aggregate response time when varying thel trave
storage overhead, previous experiments show that it has %tn- P gareg P ying

. ) . Istance ofu from 1 to 30 miles using a random walk over
acceptable drawbacks in quality/locality. Compare to LAR o spatial area covered by the ovramid. CE has a constant
LARS* has less maintenance overheae38% less) due to P y Py '

the fact that the maintenance algorithm in LARS* avoids tha- c'Y response time fqr all travgl distances, as it requices
. . - updates since only a single cell is present. However, sitice C
expensive speculative splitting used by LARS.

is unaware of user location change, the consequence is poor
_ recommendation quality (per experiments from Section.7.1)
7.6 Query Processing Performance LARS*-M=1 exhibits the worse performance, as it maintains
Figure 12 depicts snapshot and continuous query procesab-cells on all levels and updates the continuous query
ing performance of LARS, LARS*, LARS*-U (LARS* with whenever the user crosses pyramid cell boundaries. LARS*-U
only user partitioning, LARS*-T (LARS* with only travel has a lower response time than LARS*-M=1 due to switching
penalty, CF (traditional collaborative filtering), and LARS*- cells froma-Cells to 5-Cells: when a cell is not present on a
M=1 (LARS* with a complete pyramid), using the synthetigiven influence level, the query is transferred to its neghbst

data set. ancestor in the pyramid. Since cells higher in the pyramid
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cover larger spatial regions, query updates occur less.oftékely to go in the futureLARS?* conversely, does not attempt
LARS*-T exhibits slightly higher query processing overbeato predict future user movement, as it produces recommenda-
compared to LARS*-U: even though LARS*-T employs thdions influenced by user and/or item locations embedded in
early termination algorithm, it uses a large (system-widepmmunity ratings.
collaborative filtering model to (re)generate recommeiodat ~ The spatial activity recommendation system [32] mines GPS
once users cross boundaries in the penalty grid. LAR$"ajectory data with embedded user-provided tags in omler t
exhibits a better aggregate response time since it emph@ys tletect interesting activities located in a city (e.g., atibits
early termination algorithm using a localized (i.e., smgll and dining near downtown). It uses this data to answer two
collaborative filtering model to produce results while alsquery types: (a) given an activity type, return where in the
switching cells tog-Cells to reduce update frequency. LARS:ity this activity is happening, and (b) given an expliciaspl
has a slightly better performance than LARS* as LARS tendsgion, provide the activities available in this regionisTis a
to merge more cells at higher levels in the pyramid structuneastly different problem than we study in this paper. LARS*
does not mine activities from GPS data for use as suggestions
8 RELATED WORK for a given spatial region. Rather, we apply LARS* to a
Location-based servicesCurrent location-based services emmore traditional recommendation problem that uses commu-
ploy two main methods to provide interesting destinatiams hity opinion histories to produce recommendations.
users. (1) KNN techniques [22] and variants (e.g., aggeegat Geo-measured friend-based collaborative filtering [38} pr
KNN [24]) simply retrieve thek objects nearest to a user andluces recommendations by using only ratings that are from
are completely removed from any notion of upersonaliza- a querying user’s social-network friends that live in thensa
tion. (2) Preference methods such as skylines [25] (and spatidy. This technique only addresses user location embeiided
variants [26]) and location-based tépmethods [27] require ratings. LARS*, on the other hand, addresses three possible
users to expressxplicit preference constraints. Converselytypes of location-based ratings. More importantly, LARS* i
LARS*is the first location-based service to considfaplicit a complete system (not just a recommendation technique)
preferences by using location-based ratings to help us#rat employs efficiency and scalability techniques (e.gr; p
discover new items. tial pyramid structure, early query termination) necegdar
Recent research has proposed the problem of hyper-lodaployment in actual large-scale applications.
place ranking [28]. Given a user location and query string
(e.g., “French restaurant”), hyper-local ranking progidelist
of top-k points of interest influenced by previously Iogge(? CONCLUSION
directional queries (e.g., map direction searches froomtpolLARS*, our proposed location-aware recommender system,
A to point B). While similar in spirit to LARS*, hyper-local tackles a problem untouched by traditional recommender sys
ranking is fundamentally different from our work as it doetems by dealing with three types of location-based ratings:
not personalizeanswers to the querying user, i.e., two useipatial ratings for non-spatial itemsion-spatial ratings for
issuing the same search term from the same location vapatial items and spatial ratings for spatial itemsLARS*
receive exactly the same ranked answer. employs user partitioning and travel penaltytechniques to
Traditional recommenders. A wide array of techniques support spatial ratings and spatial items, respectivebthB
are capable of producing recommendations using non-$pat&chniques can be applied separately or in concert to stippor
ratings for non-spatial items represented as the tripke the various types of location-based ratings. Experimental-
rating, item) (see [4] for a comprehensive survey). We refeysis using real and synthetic data sets show that LARS* is ef-
to these as “traditional” recommendation techniques. THieient, scalable, and provides better quality recommeaodst
closest these approaches come to considering location isthgn techniques used in traditional recommender systems.
incorporating contextual attributes into statisticalameenen-
dation models (e.g., weather, traffic to a destination) .[29REFERENCES
However, _I’IO traditional gpproach has StUdleq epr“CItﬂma [1]I G. Linden et al, “Amazon.com Recommendations: Itenitéoa Collab-
based ratings as done in LARS*. Some existing commercial orative Filtering,” IEEE Internet Computingvol. 7, no. 1, pp. 7680,
applications make cursory use of location when proposing 2003.
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