
17

Flexible and Extensible Preference Evaluation in Database Systems

JUSTIN J. LEVANDOSKI, Microsoft Research
AHMED ELDAWY and MOHAMED F. MOKBEL, University of Minnesota
MOHAMED E. KHALEFA, Alexandria University

Personalized database systems give users answers tailored to their personal preferences. While numer-
ous preference evaluation methods for databases have been proposed (e.g., skyline, top-k, k-dominance,
k-frequency), the implementation of these methods at the core of a database system is a double-edged sword.
Core implementation provides efficient query processing for arbitrary database queries, however, this ap-
proach is not practical since each existing (and future) preference method requires implementation within
the database engine. To solve this problem, this article introduces FlexPref, a framework for extensible
preference evaluation in database systems. FlexPref, implemented in the query processor, aims to support
a wide array of preference evaluation methods in a single extensible code base. Integration with FlexPref is
simple, involving the registration of only three functions that capture the essence of the preference method.
Once integrated, the preference method “lives” at the core of the database, enabling the efficient execution
of preference queries involving common database operations. This article also provides a query optimization
framework for FlexPref, as well as a theoretical framework that defines the properties a preference method
must exhibit to be implemented in FlexPref. To demonstrate the extensibility of FlexPref, this article also
provides case studies detailing the implementation of seven state-of-the-art preference evaluation meth-
ods within FlexPref. We also experimentally study the strengths and weaknesses of an implementation of
FlexPref in PostgreSQL over a range of single-table and multitable preference queries.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Preference query processing, extensibility

ACM Reference Format:
Levandoski, J. J., Eldawy, A., Mokbel, M. F., and Khalefa, M. E. 2013. Flexible and extensible preference
evaluation in database systems. ACM Trans. Datab. Syst. 38, 3, Article 17 (August 2013), 43 pages.
DOI: http://dx.doi.org/10.1145/2493268

1. INTRODUCTION

Embedding preferences in or on top of databases has helped realize nontriv-
ial applications, ranging from multi-criteria decision-making tools to personalized
databases [Koutrika and Ioannidis 2004]. Preference queries give users interesting
answers by evaluating their personal wishes according to a certain preference method.
In the literature, there exist a large number of preference evaluation methods, in-
cluding top-k [Chaudhuri and Gravano 1999], skylines [Börzsönyi et al. 2001], hy-
brid multiobject methods [Balke and Güntzer 2004], k-dominance [Chan et al. 2006a],

This research was supported in part by the National Science Foundation under grants IIS-0952977 and
IIS-1218168.
Authors’ addresses: J. J. Levandoski (corresponding author), Microsoft Research, Redmond, WA 98052;
email: justin.levandoski@microsoft.com; A. Eldawy and M. F. Mokbel, Department of Computer Science and
Engineering, University of Minnesota, Minneapolis, MN 55455; M. E. Khalefa, Alexandria University, Egypt.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0362-5915/2013/08-ART17 $15.00

DOI: http://dx.doi.org/10.1145/2493268

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:2 J. J. Levandoski et al.

k-frequency [Chan et al. 2006b], ranked skylines [Lee et al. 2009], k-representative
dominance [Lin et al. 2007], distance-based dominance [Tao et al. 2009], ε-skylines [Xia
et al. 2008], and top-k dominance [Yiu and Mamoulis 2007]. In general, the point of
proposing new preference methods is to challenge the notion of “best” answers. Since
the concept of “best” is subjective, there is theoretically no limit to the number of new
preference methods that can be proposed. Given the large number of preference meth-
ods already in existence (with more on the way), a fundamental issue behind each
method is how it can handle arbitrary queries in a DataBase Management System
(DBMS) that may contain selection, aggregation, and/or join operations.

The most common approach for preference evaluation in database systems is the
on-top approach where the preference method is implemented as either a stand-alone
program or a user-defined function. This approach treats the DBMS as a “black box”,
where the preference evaluation method is completely decoupled from the database,
and hence not concerned with internal database operations (e.g., joins) necessary to
retrieve the data (e.g., see Balke and Güntzer [2004], Chan et al. [2006a, 2006b], Lee
et al. [2009], Lin et al. [2007], Tao et al. [2009], Xia et al. [2008], and Yiu and Mamoulis
[2007]). The main advantage of this approach is its simplicity as it only requires
the implementation of the preference evaluation method in a separate code base
outside the core database engine. However, the efficiency of this approach is limited
as it cannot interact with database internal operations in most cases [Reinwald and
Pirahesh 1998; Reinwald et al. 1999]. Furthermore, preference evaluation methods
may be created assuming that data exists in a specific format (e.g., nonstandard
index), unaware of how data is physically stored or retrieved from the database.

A much more efficient approach for preference evaluation in database systems is the
built-in approach that tightly couples preference evaluation with the query processor
by creating customized database operations (e.g., selection, aggregation, and join) for
each preference method. The efficiency of this approach over the on-top approach is
obvious from the extensive work of injecting ranking and top-k queries inside the
database engine for selection queries [Carey and Kossmann 1997; Chaudhuri and
Gravano 1999], join queries [Ilyas et al. 2003], and sorted list access [Fagin et al. 2001;
Ilyas et al. 2002]. However, it is not practical to develop and maintain a database
system that implements each existing (and future) preference method in this manner.
For instance, given the amount of effort needed to implement top-k operations in a
database system [Ilyas et al. 2008], it would be hard to replicate this effort for numerous
other preference methods. Supporting each distinct preference method in this manner
is simply infeasible.

In this article, we present FlexPref, an extensible framework for preference eval-
uation in database systems. FlexPref represents a centrist approach to preference
implementation that combines the simplicity of the on-top approach with the efficiency
of the built-in approach. The simplicity of FlexPref comes from the fact that integrating
a new preference method involves the registration of only three functions that capture
the essence of the preference method. The efficiency of FlexPref comes from the fact
that once a preference method is integrated with the system, it “lives” at the core of
the database engine, enabling the efficient execution of preference queries involving
common database operations.

As depicted in Figure 1, FlexPref is implemented inside the PostgreSQL [PostgreSQL
2013] query processor, and is extensible to arbitrary preference methods. FlexPref
consists of a set of generic relational operators that implement the query processing
steps common to many preference methods. The generic operators themselves do not
evaluate preference semantics; these semantics are injected into the FlexPref operators
through the implementation of only three functions (outside of the database) that are

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:3

Fig. 1. FlexPref architecture.

then registered with FlexPref. These functions are designed to: (a) specify rules for
when a tuple is “preferred” and (b) define rules for how items are added to a current
set of preferred objects. These functions simply define the semantics of a preference
method, not how to process the preference query.

The extensible approach used by FlexPref is quite powerful: it allows a generic
set of relational operators to take on the semantics of several different preference
methods. In other words, FlexPref allows a database to efficiently evaluate several
classes of preference queries (e.g., top-k, skyline) using the same code base. Since adding
a preference method to FlexPref is quite easy (using the extensible functions), it leads to
much less engineering overhead than the built-in approach (creating new operators for
each preference method). In fact, FlexPref requires orders of magnitude less code. For
example, implementing a simple single-table skyline evaluation algorithm from scratch
in PostgreSQL takes an order of 2,000 lines of code, while with FlexPref embedded in
PostgreSQL, skyline implementation is on the order of 300 lines of code.

FlexPref results in efficient execution of preference methods inside the database en-
gine, similar to that of the built-in approach. The main idea of FlexPref is to provide a
set of generic, extensible operators (e.g., single-table access, join) capable of integration
and optimization with existing relational operators in pipelined query plans. Then, any
preference method registered with FlexPref is seamlessly integrated with the FlexPref
framework, that is in turn coupled with the database query processor. As depicted in
Figure 1, it is important to note that only FlexPref touches the query processor while
each new preference method is “plugged into” the framework. FlexPref raises two fun-
damental questions regarding the efficient execution of arbitrary preference queries:
(1) Is FlexPref more efficient than the on-top approach? The answer is yes; coupling
database operators with general preference criteria implies that a query processor can
be optimized to perform early pruning by disregarding data that has no chance of
being in a preferred answer set. Such an optimization is not possible with the on-top
approach. (2) Is FlexPref more efficient than the built-in approach?. The answer, in-
variably, is no. Implementing specialized database operations for a specific preference
method (e.g., top-k join) will always be more efficient than the generalized extensi-
ble case of FlexPref. However, it is impractical to have specialized implementations
for each preference method. We equate this argument to previous research comparing
generalized indexes (e.g., GiST [Hellerstein et al. 1995]) to that of specialized indexes
(e.g., B-tree [Comer 1979], R-Tree [Guttman 1984]).

We demonstrate the functionality of FlexPref through three database operations,
namely, single-table access (i.e., selection), joins, and sorted list access, that are
designed to handle arbitrary preference methods integrated in FlexPref. We provide
query optimization properties for all generic FlexPref operators, focusing on cardinal-
ity estimation, cost estimation, and equivalence and commutation rules for coupling
FlexPref with existing relational operators. Also, we provide a theoretical framework

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:4 J. J. Levandoski et al.

for FlexPref that defines the properties a preference method needs to fulfill in order
to be supported by FlexPref. To showcase the flexibility of FlexPref, we provide case
studies for integrating seven nontrivial, state-of-the-art preference methods within
FlexPref, namely, skyline [Börzsönyi et al. 2001], top-k [Chaudhuri and Gravano
1999], Top-k dominating [Yiu and Mamoulis 2007], K-dominance [Chan et al. 2006a],
K-frequency [Chan et al. 2006b], ε-dominance [Xia et al. 2008], and k-representative
skyline [Lin et al. 2007].

FlexPref has the potential to provide further functionality beyond the operations
discussed in this article, as it lays the groundwork for further nontrivial, extensible
support for preference evaluation in databases, such as uncertain data processing
and indexing. The idea is that any new functionality is implemented only once by
the FlexPref framework, instead of reimplementing it for each preference method. We
experimentally evaluate the strengths and weaknesses of FlexPref, implemented in
the query processing engine of PostgreSQL, through the implementation of several
preference methods. We test our three main FlexPref operators in comparison to the
on-top and built-in approach. In addition, we also experimentally evaluate the benefits
of the FlexPref query optimization techniques.

The rest of this article is organized as follows. Section 2 covers related work.
Section 3 describes the usage of FlexPref. The FlexPref generic functions are described
in Section 4. Section 5 covers preference evaluation in FlexPref through three main
database operations. Query optimization of FlexPref operators is covered in Section 6,
while Section 7 presents a theoretical framework for FlexPref by discussing supported
preference method properties. Seven implementation case studies for FlexPref are
discussed in Section 8. Experimental evaluation of FlexPref is provided in Section 9
while Section 10 concludes this article.

2. RELATED WORK

2.1. Extensible Database Systems

Research in extensible relational database systems started more than two decades
ago [Batory and Mannino 1986; Carey and Haas 1990] spanning academic system
prototypes (e.g., EXODUS [Carey and DeWitt 1987; Carey et al. 1991], Postgres
[Stonebraker et al. 1987; Stonebraker and Rowe 1986], GENESIS [Batory et al. 1988]),
and commercial products (e.g., IBM Starburst [Lohman et al. 1991], Sybase [Olson
et al. 1998], Oracle [Srinivasan et al. 2000]). Based on the extensible database compo-
nents, previous work can be categorized into: (1) extensibility in abstract data types
[Linnemann et al. 1988; Ong et al. 1984; Osborn and Heaven 1986; Stonebraker 1986]
where users can define new data types by specifying name, space allocation, and a set
of functions to operate on the new data types, (2) extensibility in query processing and
optimization [Batory 1986; Graefe 1994; Graefe and DeWitt 1987; Haas et al. 1989;
Kabra and DeWitt 1999; Pirahesh et al. 1992; Waas and Hellerstein 2009] where the
idea is to use an extensible rule-based query optimizer to add user-defined rules, and
(3) extensibility in access methods [Hellerstein et al. 1995; Lynch and Stonebraker
1988; Srinivasan et al. 2000] where the idea is to generalize the execution of several
index structures within one core implementation but allow extensible behavior based
on the indexed data type, for example, data-specific node splitting and merging strate-
gies. Compared to this previous work, our end goal in creating FlexPref is different
in two main respects. (a) FlexPref focuses specifically on extending the database to
handle different preference methods, as opposed to focusing on generic extensibility.
(b) FlexPref is a set of generic database operators, as opposed to a generic exten-
sible query processor, built to abstract the common operations in preference query
processing.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:5

2.2. Preference Methods

Many methods have been proposed for evaluating user preferences over relational
data. The two methods receiving the most attention are skyline [Börzsönyi et al.
2001; Chomicki et al. 2003; Kossmann et al. 2002] and top-k [Chang and Hwang
2002; Chaudhuri and Gravano 1999; Ilyas et al. 2003, 2004]. Other methods have
been proposed that evaluate preference queries in a manner different to skyline and
top-k, aiming to enhance the quality of the answer. Examples of these methods in-
clude, but are not limited to, hybrid multi-objective methods [Balke and Güntzer
2004], k-dominance [Chan et al. 2006a], k-frequency [Chan et al. 2006b], ranked sky-
lines [Lee et al. 2009], k-representative dominance [Lin et al. 2007], distance-based
dominance [Tao et al. 2009], ε-skylines [Xia et al. 2008], and top-k dominance [Yiu and
Mamoulis 2007]. In this article, we do not propose a new preference method. Rather,
the goal of FlexPref is to provide a single generalized, extensible preference evaluation
framework that allows the integration of any of these preference methods inside a
database query processor.

2.3. Preference in Databases

Much work has gone into embedding the notion of preference in database systems from
both the modeling and implementation aspects. The modeling aspect is concerned more
with the theoretical foundation of preference expressions over relational data [Agrawal
and Wimmers 2000; Chomicki 2002, 2003; Kieβling 2002; Koutrika and Ioannidis 2004;
Lacroix and Lavency 1987]. In some cases, the model provides rules that define how
the model translates into traditional SQL queries. For example, query personaliza-
tion [Koutrika and Ioannidis 2004, 2005a, 2005b] models preferences using a relational
graph, where preferred attributes and relations are given a degree of interest score.
Using this graph, SQL queries are injected with the top-k preferences derived from the
graph.

PreferenceSQL [Kieβling 2002; Kieβling and Köstler 2002; Kieβling et al. 2011] is
an extension to standard SQL supporting the Best-Matches-Only (BMO) query model.
PreferenceSQL supports a number of preference operators including Pareto, Prioriti-
zation, Rank, and Dual, which can be combined to support both qualitative and quan-
titative preferences in a single query. The system is implemented as a middleware
layer for easy integration with most database systems and supports query optimiza-
tion (preference algebraic transformations, cost-based selection) as well as high-level
preferences on spatial objects [Wenzel et al. 2012]. FlexPref supports both qualitative
and quantitative preference methods, as well as a hybrid of both. For example, Flex-
Pref supports skyline (qualitative), top-k (quantitative), and top-k domination [Yiu and
Mamoulis 2007] (hybrid). In PreferenceSQL terminology, the FlexPref operators sup-
port Pareto (e.g., skyline) and Rank (e.g., top-k) operations, which is a subset of those
supported by PreferenceSQL since FlexPref is not closed under SV-semantics [Kieβling
2002]. FlexPref differs from PreferenceSQL in that its purpose is to explore novel sys-
tems problems behind embedding generic and extensible preference operators inside
the core database engine.

Other work [Arvanitis and Koutrika 2012] explores embedding preferences in a re-
lational database by extending a relation with score and confidence attributes (called
p-relations). This framework defines a query processing operator that evaluates pref-
erences according to the p-relational model, and also extends traditional operators
(select, project) with p-relation semantics. Other work has explored modeling contex-
tual preferences, where the objective is to evaluate preferences that change based on
a user’s situation [Agrawal et al. 2006; Stefanidis and Pitoura 2008; Stefanidis et al.
2007].

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:6 J. J. Levandoski et al.

2.4. Preference Method Implementation

In terms of preference method implementation, many proposed algorithms are not
designed to integrate with ad hoc relational queries involving joins, aggregation,
etc. [Balke and Güntzer 2004; Chan et al. 2006a, 2006b; Lee et al. 2009; Lin et al.
2007; Tao et al. 2009; Xia et al. 2008; Yiu and Mamoulis 2007]. They are implemented
“outside the box”: completely outside the DBMS or as user-defined functions that sit
on top of a query plan. The closest work to ours investigates integrating preference
evaluation algorithms within a database query processor. To this extent, there has
been work integrating top-k preferences with selection [Chaudhuri and Gravano 1999]
and join queries [Ilyas et al. 2003], and integrating skyline with join queries [Jin et al.
2007, 2010; Raghavan and Rundensteiner 2010] where the state-of-the-art approach
supports progressive results and early termination [Vlachou et al. 2011]. Conversely,
we do not study custom implementations. FlexPref aims to support any preference
method inside the database engine in a general, extensible manner. FlexPref is com-
pletely novel in this regard.

2.5. Extensible Preference Evaluation in Databases

Previous work [Levandoski et al. 2010b, 2010a] explored the creation of an extensible
preference query processing framework for database systems. However, this work
provided no theoretical underpinnings for the extensible framework. Furthermore,
the work did not explore query optimization properties necessary for implementation
in a database system. This article expands on this previous work in the following
dimensions.

(1) We introduce a query optimization framework for extensible preference query pro-
cessing (Section 6). Specifically, we discuss cardinality estimation for generic pref-
erence operators, cost estimation for each generic operator, and finally introduce
equivalence rules for commuting generic preference operators with the select oper-
ator, distributing over joins, and commuting with projection.

(2) We introduce a framework that defines the theoretical properties that a preference
method must fulfill to be supported by a generic and extensible preference query
processing framework (Section 7).

(3) We offer case studies discussing the implementation of two state-of-the-art pref-
erence methods (ε-dominance [Xia et al. 2008] and k-representative skyline [Lin
et al. 2007]) that were not present in previous work.

(4) We expand upon existing case studies introduced in previous work by discussing
how each method supports the new query optimization properties introduced in
Section 6.

(5) We provide new experimental evaluation (Section 9.4) that studies the performance
effects of the new query optimization framework.

3. USING FLEXPREF

In this section, we show how to: (a) register a new preference method in FlexPref, and
(b) how to query a database system, for example, PostgreSQL, that is equipped with
FlexPref.

3.1. Adding a Preference Method to FlexPref

Adding a preference evaluation method to FlexPref requires the implementation of
three functions outside the database engine. The details of these functions are cov-
ered in Section 4. Once implemented, the preference method is registered using a
DefinePreference command, formally as follows.

DefinePreference [Name] WITH [File]

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:7

The name argument is the name of the preference method, while the file argument spec-
ifies the file containing the function implementations. In our system, these functions
are implemented in C for easy compilation into the PostgreSQL engine (implemented
in C). DefinePreference compiles the preference code into our framework. This process
is depicted in Figure 1 for a preference method “MyPref”.

3.2. Querying FlexPref

Once a preference method is registered with FlexPref, it can be used in database queries
immediately. FlexPref requires the extension of the SQL syntax in order to select the
appropriate preference methods and specify their objectives. In this section, we will
first describe the general skeleton of SQL queries in FlexPref, and then describe the
specific arguments for our seven case studies of preference methods.

3.2.1. Query Skeleton. FlexPref adds a Preferring and Using clause to conventional SQL
in order to issue preference queries. A typical query in FlexPref is as follows.

Select [Select Clause]

From [Tables]

Where [Where Clause]

Preferring [Preference Attributes]

Using [method] With [Parameter]

Objectives [Objective]

Here, the method (with objectives) specified in the Using clause is responsible for se-
lecting the preference evaluation method to be applied over the attributes given in the
Preferring clause. Since FlexPref is implemented within the Postgres database, it sup-
ports the SQL 2008 standard, including Postgres-specific features such as extensible
functions and GIS.

By default, the FlexPref is the topmost operator in a preference query. However,
Section 6 discusses relational optimization of the FlexPref framework. Such optimiza-
tion is nontrivial, since the optimization depends on the semantics of the preference
method executing within FlexPref. In this article, we study and experiment with Flex-
Pref integrated alongside the select, project, and join operations. Integrating Flex-
Pref with aggregation and group-by operations is a property of the specific preference
method implemented within FlexPref, and is a topic of future work.

3.2.2. Seven Query Examples. Using the query skeleton of FlexPref, we now give use
case examples for seven state-of-the-art preference methods, namely, skyline [Börzsönyi
et al. 2001], top-k [Chaudhuri and Gravano 1999], top-k dominating [Yiu and Mamoulis
2007], k-dominance [Chan et al. 2006a], and k-frequency [Chan et al. 2006b]. These
preference methods are used throughout the rest of this article to demonstrate the
functionality of FlexPref.

Case Study I: Skyline. The skyline preference method returns objects in a dataset
that are not dominated by (i.e., not strictly worse than) any other object in the data.
An example query using the skyline method is the following.

Select * From Restaurant R Preferring

R.price d1 AND R.dist d2 AND R.rating d3

Using Skyline

With Objectives MIN d1, MIN d2, MAX d3;

This query will evaluate the skyline of restaurant data, where the preference objectives
require minimizing both price and distance attributes, while maximizing rating.

Case Study II: Top-k dominating. The top-k dominating method ranks each object
Q based on how many other objects it dominates, and returns the k objects with the

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:8 J. J. Levandoski et al.

highest score. Given the same preference attributes as the previous query, the Using

clause for top-k dominating is as follows.
Using Top-K-Domination With K=2 Objectives MIN d1, MIN d2, MAX d3;

Here, the Using clause specifies that: (1) K = 2 answers are required and (2) preference
is based on minimizing both price and distance attributes, while maximizing rating.

Case Study III: K-dominance. The k-dominance method redefines the traditional
skyline dominance definition to consider only k-dimensional subspaces, where k is
less than or equal to the total number of preference attributes. The Using clause for
k-dominance is as follows.

Using K-Dominance With K = 2 Objectives MIN d1, MIN d2, MAX d3;

For this case, the minimize/maximize objectives are similar to that of top-k domina-
tion and skylines. However, K specifies the number of dimensions used to check for
dominance, not the number of desired answers.

Case Study IV: K-frequency. The k-frequency method ranks objects based on their
dominance count in all possible dimensional subspaces, and returns the k objects with
the minimal scores. The Using clause for k-dominance is the following.

Using K-Frequency With K = 2 Objectives MIN d1, MIN d2, MAX d3;

The objectives are the same as that of the top-k domination. However, k-frequency
evaluates these objectives in a different manner in order to retrieve the “best” objects.

Case Study V: Top-k. The top-k method scores each object by combining the object’s
attributes using a monotonic ranking function (e.g., summation) that returns a single
real value. The k objects with the best scores are considered preferred objects. The using

clause for the top-k method is as follows.
Using Top-K With K = 2 Objectives MIN F(d1,d2,d3);

In this clause, K = 2 answers are required, while the objective is to minimize an object
score using monotonic ranking function F combining preference attributes d1, d2, and
d3.

Case Study VI: k-representative skyline. The k-representative skyline [Lin et al. 2007]
is based on the same dominance property of the traditional skyline method. However,
this method scores each skyline answer by the number of other objects it dominates, and
returns the k objects with the highest score. The using clause for the k-representative
skyline method is as follows.

Using K-Rep-Skyline With K = 3 Objectives MIN d1, MIN d2, MAX d3;

In this clause, K = 3 answers are required, while the preference objectives are exactly
the same as the skyline case previously discussed.

Case Study VII: Epsilon dominance. The epsilon-dominance (abbr. ε-dominance)
preference method [Xia et al. 2008] alters the concept of traditional skyline domi-
nance to be more flexible. The idea is to increase or decrease the dominance region
of each object in the dataset by a constant ε (details covered in Section 8). The using

clause for the ε-dominance is the following.
Using Epsilon-Dominance With E = 1.5 Objectives MIN d1, MIN d2, MAX d3;

In this clause, E = 1.5 denotes that the dominance region should be increased by a
factor of 1.5, while the preference objectives are minimizing both the price and distance
attributes, while maximizing the rating.

4. FLEXPREF GENERAL FUNCTIONS

This section provides the details of the three general functions necessary to implement
a preference method in FlexPref. To register a certain preference method, for example,
a skyline, the user needs to implement these three functions and populate them in the

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:9

core of FlexPref using the DefinePreference command described in Section 3.1. These
functions are used by the generic FlexPref operators during query processing, which
we describe in Section 5. We also provide seven case studies for how these functions
can be used to implement various preference methods in Section 8.

Before discussing the three functions, we describe two macros that will be used by
our functions and the query processing techniques in Section 5.

—#define DefaultScore. Each object in FlexPref is associated with a score that is in-
ternal to the underlying preference method. It is provided by FlexPref so that the
preference method may track the “quality” of each tuple during execution. Defining
a default score ensures that each object is assigned a value.

—#define IsTransitive. This indicates whether the method is transitive or not. That
is, given objects a, b, and c, if a is qualitatively “better” than b, and b is “better” than
c, then a is always “better” than c. Knowledge of transitivity leads to efficiency, as
FlexPref can discard objects during query execution if transitivity holds.

Three general functions need to be implemented by each preference method to be
registered with FlexPref.

—PairwiseCompare(Object P, Object Q). Given two data objects P and Q, update the
score of P and return 1 if Q can never be a preferred object, −1 if P cannot become a
preferred object, 0 otherwise. Alternatively, return −2 if the preference method does
not rely on pairwise comparison; returning −2 in this case leads to optimizations in
the preference evaluation algorithm.

—IsPreferredObject(Object P, PreferenceSet S). Given a data object P and a set of
preferred objects S, return true if P is a preferred object and can be added to S, false
otherwise.

—AddPreferredToSet(Object P, PreferenceSet S). Given a data object P and a preference
set S, add P to S and remove or rearrange objects from S, if necessary.

These functions break down preference evaluation into a set of modular operations
that need not be aware of database query processor internals. FlexPref abstracts pref-
erence evaluation into two main operations: (1) pairwise comparison of two objects
(PairwiseCompare) and (2) comparison of an object with one ore more objects in the
current preference set (IsPreferredObject). FlexPref also provides a third function,
AddPreferredToSet, to allow the preference method to maintain the order of objects
and cardinality of its running set of preference answers. For example, each prefer-
ence method may keep the set S sorted in a manner advantageous to the execution
of IsPreferredObject. For preference methods that require k answers, AddPreferredToSet
has the ability to add a new object while removing an old object to ensure that only k
objects exist in S.

In practice, implementing each of these functions is quite simple. We implemented
seven state-of-the-art preference methods in FlexPref; none of the functions we imple-
mented exceeded 15 lines of code (details in Sections 8). In later sections, we discuss
additional functions necessary to provide further query processing optimizations.
Section 5.3 discusses an additional function to optimize FlexPref for sorted data.
Meanwhile, Section 6 discusses functions to allow a preference method implemented
in FlexPref to optimize with existing relational operators.

In terms of the scope, FlexPref is able to support a range of qualitative (i.e., sky-
line) and quantitative (e.g., top-k/ranking) preference methods. We defer a detailed
discussion of preference method support to Section 7, where we explore a taxonomy of
theoretical properties that preference methods must meet in order to be supported by
FlexPref.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:10 J. J. Levandoski et al.

5. PREFERENCE EVALUATION IN FLEXPREF

This section explores the details of preference evaluation in FlexPref that uses the three
main functions, PairwiseCompare, IsPreferredObject, and AddpreferredToSet, described in
Section 4. We will first present single-table access, that is, selection queries over a
single table, in FlexPref in Section 5.1. Then, in Section 5.2 we discuss how FlexPref is
optimized to process multitable queries, that is, join queries. Finally, we discuss a query
case when the input is represented as a set of sorted lists (i.e., indexes) in Section 5.3.
Without loss of generality, the examples throughout the rest of this article use numeric
data. However, FlexPref is compatible with methods for preference evaluation over
other data types (e.g., partially ordered domains [Chan et al. 2005]).

5.1. Single-Table Access

Single-table access selects a set of preferred objects from a single-table. For instance,
all the query examples given in Section 3 use single-table access where the objective is
to retrieve the set of preferred restaurants according to the given preference criteria,
where all data is stored in a single table R. We propose a Block-Nested Loop (BNL)
algorithm to execute single-table preference evaluation. We chose a BNL approach
for two main reasons: (1) it is simple and appropriate for a generic framework since
it is known to work for executing a number of diverse preference methods; (2) it is
appropriate for cases when data is not indexed, which is a common case that must be
handled by a database. We discuss further optimizations for index access in Section 5.3.

The main idea is to compare tuples pairwise while incrementally building a preferred
answer set. During execution, a data object P may be found to be dominated (i.e.,
guaranteed never to be a preferred answer). If the underlying preference method is
transitive, P is immediately discarded and not processed further, thus leading to more
efficient execution.

Algorithm 1 outlines the main steps of single-table preference evaluation in Flex-
Pref. Underlined functions and definitions refer to those functions and definitions that
should be implemented separately for each preference method registered with FlexPref,
as described in Section 4. While simple, this single-execution framework is very power-
ful as it can accommodate many different preference evaluation methods. To illustrate,

ALGORITHM 1: Single Table Access in FlexPref
1: Function SingleTableAccess(TableReference T)
2: Preference Set S ← �
3: for each Object P in T do
4: Pscore ← DefaultScore
5: for each Object Q in T do
6: cmp ← PairwiseCompare(P,Q)
7: if cmp = 1 then
8: if Q ∈ S then remove Q from S
9: if IsTransitive then discard Q from T
10: end if
11: if cmp = −1 then
12: if IsTransitive then discard P from T
13: Read next object P (go to line 3)
14: end if
15: if cmp = −2 then exit inner loop (go to line 17)
16: end for
17: if IsPreferredObject(P,S) then AddPreferredToSet(P,S)
18: end for
19: return S

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:11

Section 8 covers the implementation of seven state-of-the-art preference methods in
this framework with execution examples. It is important to note here that Algorithm 1
is generic in the sense that it executes without knowledge of the general preference
function details.

The input to Algorithm 1 is a reference to a single-database table T while the output
is the final set of preferred objects S. The algorithm begins by initializing the preference
set S to empty. Next, we loop over table T in a block-nested fashion. Object P is read
in the outer loop, where definition DefaultScore assigns its initial score, while object Q
is read in the inner loop. Each pair of objects P and Q are compared pairwise using the
generic function PairwiseCompare, where the score of object P is updated accordingly.
If PairwiseCompare returns 1 (i.e., Q can never be a preferred object), and Q currently
exists in the preferred set S, then Q is removed from S. Further, if the preference
method is transitive, Q is discarded from table T mainly for efficiency sake. Due to
transitivity, an object that is dominated by Q is also dominated by P, thus there is no
need to track Q. In the case that the underlying preference method is not transitive,
we must still consider Q as it may invalidate other objects with which it has not yet
been compared. On the other hand, if PairwiseCompare returns −1, then P can never
be a preferred object. If transitivity holds, P is discarded from table T and the next
object in the outer loop is read immediately. The argument here is similar to the case of
removing Q should the underlying preference function be transitive. If PairwiseCompare
returns −2 (i.e., the preference method does not rely on pairwise comparison of objects),
the algorithm breaks out of the inner loop. Finally, if object P is not discarded in the
inner loop, we call IsPreferredObject to verify if P is part of the preference answer. As
we will see in Section 8, this is usually a very simple function that performs an O(1)
check based on the properties of P and S without the need to iterate over S. If this
function returns true, P is added to S. The algorithm concludes by returning S after
the block-nested loop execution finishes.

5.2. Multitable Access

The join operation is one of the most common, and expensive, operations in a DBMS.
Joins are also an integral part of preference queries as well. For example, consider
a query asking about restaurant attributes price, distance, and rating, where price
and distance are stored in the same table while the rating information is stored in a
separate table. In this case a join is necessary to fulfill the preference query. We now
discuss how FlexPref handles join queries in an efficient manner. We do not assume
that input data is sorted or stored in a special indexing structure. In fact, the approach
is applicable to any join method (e.g., hash join, index-nested loop). For presentation
purposes, we discuss the case of a single binary join. However, the concept can be
extended to m-way joins or a tree of binary joins.

Figure 2(a) depicts a naive join-then-evaluate strategy to execute join preference
queries for two tables R and S. The idea is to perform a complete join over the two
input tables followed by a preference evaluation over the join result. This approach is
inefficient, as it does not attempt to optimize the underlying join operator. FlexPref
improves upon this naive execution strategy by using the preference criteria functions
to prune tuples from the join input that are guaranteed not to be in the final answer.
Figure 2(b) gives the FlexPref strategy for handling join queries where pruning is
performed at all join inputs, then, a final preference evaluation is performed after
joining the nonpruned tuples from each table. Pruning enhances join performance for
two main reasons: (a) the amount of data to be joined from input tables is greatly
reduced due to pruning the input data, and (b) the amount of data processed by the
final preference evaluation after the join is reduced based on the multiplying factor of
the join.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:12 J. J. Levandoski et al.

(a) naive join (b) FlexPref join (c) example data

Fig. 2. Join operator.

Algorithm 2 outlines the main steps for join operations in FlexPref where the input
is two tables, R and S, to be joined while the output is the set of preferred objects.
First, R and S are pruned by applying the single-table access algorithm (Algorithm 1)
to each join-key group in both tables.

ALGORITHM 2: Multi-Table Access in FlexPref
1: Function MultiTableAccess(Table R, Table S)
2: Rpruned ← Prune R: apply function SingleTableAccess to each join-key group in R.
3: Spruned ← Prune S: apply SingleTableAccess to each join-key group in S.
4: J ← Join over Rpruned and Spruned using any join method.
5: return SingleTableAccess(J) /* Algorithm 1 */

For example, consider the tables R and S in Figure 2(c). Assuming ID as a join
key, table S contains four groups a, b, c, and d that contain three, three, one, and
one tuple(s), respectively. Also, table R trivially contains four single-tuple groups. In
this case, single-table access would be performed locally over each group in S only, as
R’s groups contain only a single tuple. By doing so, and according to the underlying
preference method, several tuples from each group in S could be pruned, and thus, do
not need to be joined with tuples in R. This main idea is that we guarantee that these
tuples cannot be preferred objects (similar pruning concepts have been proposed in
Chomicki [2003], Hafenrichter and Kieβling [2005], and Endres and Kieβling [2011]).

Pruning in Algorithm 2 works for the following reason. For each local join-key group,
assume we have a set of preferred tuples P and nonpreferred tuples N. We can say that
tuples in P are “better” than tuples in N within each join-key group. Given two tables
R and S, the tuples in each join-key group of S will join with the same tuples in R. If
the pruned tuples N in S are worse than those in P, then tuples in N cannot become
better once joined with the same data as the tuples in P. Thus, the pruned tuples N
can never be part of the preference query answer.

Once the pruning is done locally for each group in tables R and S, the rest of the
entries in both tables, Rpruned and Spruned, are joined together using any join method
(line 4 in Algorithm 2). Finally, FlexPref performs another single-table access over the
entire join result J. This is mainly because the nonpruned tuples form R and S have
not yet been compared against each other. The result of this step is the final result of
the preference query.

To make the pruning concept concrete, we now provide a brief example for both the
skyline and top-k preference methods (examples for more methods can be found in
Section 8). Consider generating the skyline by joining tables R and S in Figure 2(c)
using the predicate R.id = S.id. Focusing on table S, we can safely prune four records
{(a,3,4),(a,4,3)} and {(b,4,2),(b,3,6)} since they are dominated within their join-key
groups by (a,5,5) and (b,8,8), respectively. These pruned records have no chance of

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:13

Fig. 3. Sorted list example.

being skylines when joining with a matching tuple from table R ((a,5,3) and (b,7,2),
respectively). Similarly, consider generating a top-k answer by joining R and S
(R.id = S.id), where k = 2 and we use a monotonic function F(d1,d2,d3,d4) = ∑

(di) to
score each record. In this case we can safely prune (b,4,2) and (a,3,4) (or equivalently
(a,4,3)) from S, since neither are the top-2 records within their join-key groups
according to F(d3,d4). Likewise, since the pruned tuples were not top-2 within their
own join-key group, they will not contribute to the overall top-2 answer if they were to
join with a matching tuple from R.

5.3. Sorted List Access

This section explores how to efficiently perform preference evaluation if each of the
attributes in the PREFERRING clause is available in sorted order. For instance, each
attribute could be stored in a 2-ary table as (id, attribute value) tuples (i.e., a fully
decomposed storage model [Copeland and Khoshafian 1985]), or the attributes could
be indexed by a B-tree. The main idea we explore here is to generate a complete and
correct preference answer after reading only a fraction of the sorted data. This approach
could potentially reduce the I/O overhead compared to query processing over unsorted
or nonindexed data.

Figure 3 gives an example of three attributes stored using the decomposed storage
model, where each table: (a) includes the tuple ID, and (b) is sorted on the attribute
value. Note that sorted lists are also an abstraction of an ordered index, such as a
B-tree. Several techniques have been proposed in the literature to take advantages
of the sorted lists in preference evaluation, for example, top-k [Ilyas et al. 2003] and
skyline [Balke et al. 2004]. This section presents a generic algorithm that exploits
sorted lists for query efficiency that works for any preference method compatible with
FlexPref.

The main idea behind sorted list access in FlexPref is as follows: (1) Tuples are read,
one-by-one, from each list in a round-robin fashion. During this time, we incrementally
create a list P of partial objects. This list stores the id of each tuple read so far, along
with all values of the tuple that have been read. For example, say we read the first
tuple from each list in Figure 3. In this case, P would store two objects: (a,5, ,3) and (b, ,
2,). (2) Round-robin processing ends once a stopping condition is met. This condition is
defined by an extensible function provided by the preference function implementation.
(3) After stopping, all partial tuples in P are “completed” by making a random access
to each sorted list to fill in missing attributes. To complete an object (a,5, ,3), table D2
would be probed to form (a,5,3,3). (4) Finally, we perform a final preference evaluation
over the list P.

To realize this idea and to take advantage of sorted lists, FlexPref requires that each
preference method defines the following function in addition to the three functions
described in Section 4.

—StopSortedEval(Set P, Object O, Object F). Given a set of partial objects P and two
virtual objects O and F, return whether objects currently in P, once completed, are
sufficient to perform preference evaluation.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:14 J. J. Levandoski et al.

The arguments O and F in StopSortedEval are named virtual objects since they store
the last and first values read from each input list, respectively. For example, reading
round-robin twice from each list D1 to D3 in Figure 3 will produce O = (7,3,3) and F =
(5,2,3).

Algorithm 3 outlines the main steps of sorted list preference evaluation in FlexPref
that takes as input a reference to n decomposed relations (Lists), sorted by attribute
value (i.e., sorted lists). Each tuple in a list has two attributes, t.id and t.value; we
assume tuples are combined using t.id. The algorithm also takes as input an integer
CheckInterval, used to throttle the check for a stopping condition after the number
of round-robin list retrievals specified by CheckInterval value. Calling StopSortedEval

after every attribute retrieval may be expensive, so the CheckInterval value is imple-
mented for efficiency reasons. It has no effect on the correctness of the algorithm, since
it is alright to check for the stopping condition less often. Initialization sets a boolean
value stop to false, an integer count to zero, and partial set P along with virtual object
O and F to null (lines 2 to 4). Round-robin processing then starts, and continues until
the boolean stop is set to true by StopSortedEval. A tuple t is read from the current
round-robin input list i, and if it is the first tuple read from i, the ith dimension of
F is set to t.value. Meanwhile the ith dimension of O is also set to t.value (lines 7 to
8). One or multiple tuples are then updated or added to P based on combining t with
previously read tuples based on t.id. If this iteration must check for stopping condi-
tion (i.e., count module CheckInterval equals zero), the boolean stop is set by calling
extensible function StopSortedEval. Otherwise, count is incremented and round-robin
processing continues (lines 9 to 14). After round-robin processing, all objects in P are
then “completed” by making a random access to the necessary lists(s) (lines 16 to 18).
Sorted access processing concludes by performing single-table preference evaluation
over set P using the algorithm outlined in Algorithm 1 (line 19).

ALGORITHM 3: Sorted List Access in FlexPref
1: Function GeneralSortedAccess(Lists[n], CheckInterval)
2: stop ← false; count ← 0
3: Partial Set P ← �
4: ∀i≤n O[i] = �; F[i] = �
5: while stop = false do
6: Read next tuple t from Lists[i] in round-robin order
7: if first value read from List[i] then F[i] = t.val
8: O[i] = t.val
9: Update/Add tuples to P by combining t with existing tuples on t.id
10: if count(modulo)CheckInterval = 0 then
11: stop ← StopSortedEval(P, O, F) ;
12: else
13: increment count
14: end if
15: end while
16: for each incomplete point q ∈ P do
17: ∀ j s.t. j is an incomplete dimension of q, make random access to Lists[j] to complete q
18: end for
19: return SingleTableAccess(P) /* Algorithm 1 */

The method used to build partial objects (line 9) in Algorithm 3) can be implemented
in many ways. For robustness, FlexPref builds partial objects by abstracting the opera-
tion as an m-way symmetric hash join [Wilshut and Apers 1993] between n decomposed
(i.e., 2-ary) relations. The idea behind the symmetric hash join is to store a hash table

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:15

for each input list i. When a tuple t is read from list i, it is hashed to table i using the
value of its join attribute. Tuple t is then used to probe all other hash tables to produce
partial (or full) objects.

In addition, it is possible to use the sorted list algorithm within the pruning step
of the preference join algorithm (Algorithm 2). We can simply replace the calls to
SingleTableAccess in lines 2 and 3 of Algorithm 2 with calls to GeneralSortedAccess.
Of course, this assumes that all attributes in either the left or right join relation are
available in sorted order (e.g., indexed by a B-tree).

6. QUERY OPTIMIZATION WITH FLEXPREF

Query optimization is responsible for the selection of efficient pipelined query execution
plans. In some cases, the difference between a good and bad query plan can result
in an order of magnitude performance difference. In this section, we explore query
optimization techniques for the generic FlexPref operators necessary to integration
with a traditional relational query optimizer. The framework discussed in this section
allows for FlexPref to become a first-class citizen in a database engine, and allows
the query optimizer to consider efficient query plans that contain generic FlexPref
operators coupled with traditional relational operators (i.e., select, project, join). We
first explore cost estimation of FlexPref operators under difference scenarios. Next,
we explore FlexPref support for cardinality estimation. Finally, we explore a number
of relational algebra equivalence rules for FlexPref, studying commutability with the
following standard relational operators: selection, join, and projection.

Since FlexPref is a generic framework, many of the query optimization rules depend
on the semantics of the preference method executing within FlexPref. Many of these
rules are known [Chomicki 2003; Endres and Kieβling 2011; Hafenrichter and Kieβling
2005]. Our goal in this section is not to develop new query optimization rules for each
preference method that could be implemented within FlexPref. Rather, we discuss how
query optimization may be achieved in a relational database system that implements
the FlexPref engine. In many cases, we revisit existing query optimization techniques
and classify which techniques apply to FlexPref.

6.1. Cardinality Estimation

The output cardinality of the FlexPref operator (both single-table and join) depends
completely on the semantics of the preference method executing within FlexPref. For
example, for preference methods capable of producing k results (e.g., top-k, k-frequency,
top-k domination), the cardinality when implemented in the FlexPref operator is obvi-
ously k. However, the answer to a skyline query is not a total order, thus the answers
cannot be “ranked” to produce exactly k results. Therefore, several skyline cardinality
estimation techniques have been developed based on statistical sampling of the input
relations [Chaudhuri et al. 2006; Zhang et al. 2009].

Since output cardinalities are unique to a preference method, FlexPref provides a
plugin function to provide the query optimizer with the output cardinality of a specific
preference method executing within FlexPref. The signature for this function is as
follows.

—EstimateCardinality(InputCard C, [Optional] InputRelation R). Given the input car-
dinality, and optionally a reference to the input relation (if available), return the
expected cardinality of the preference method implemented within the FlexPref
framework.

The input to this function is: (1) the cardinality of the input data. This value can be
the cardinality of a database table, or the estimated cardinality derived by the query
optimizer for an operator that feeds data to the FlexPref operator. (2) If the input to

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:16 J. J. Levandoski et al.

FlexPref is a relational table R (and not a pipeline operator), a reference to R is passed to
the estimation function. This reference is provided in order to accommodate techniques
that benefit from sampling the underlying relation (e.g., skylines [Chaudhuri et al.
2006]). The EstimateCardinality function is invoked as part of the background statistics
collection and caching process common in most database systems. The function does
not need to be invoked after each query. Rather, the database may call the function
once to retrieve and cache initial cardinality statistics, and call it again in the future if
it suspects statistics have changed significantly.

6.2. Cost Estimation

In this section, we provide an analysis of the cost estimates for the three versions of
the FlexPref operator presented in Sections 5.1 through 5.3. Our cost metric is page
I/Os: the most common database cost metric.

6.2.1. Single-Table FlexPref Operator. The single-table FlexPref is implemented as a
block-nested loop algorithm (i.e., Algorithm 1). We assume the input relation T is
stored on N pages, and that B pages are available in each block.

Two factors of the preference method influence the cost estimate of the FlexPref
single-table operator: (1) whether the preference method requires exhaustive pair-
wise comparison (i.e., the plugin function PairwiseCompare does not return −2), and
(2) whether the preference method is transitive. We identify three cases where the
combination of these factors leads to different cost estimates.

Case 1. If the preference method requires exhaustive pairwise comparison and is not
transitive, the cost can be estimated as N(N − B). Essentially, N pages will be read in
the outside loop of Algorithm 1, B pages at a time. The number of pages read in the
inside loop is (N − B), which is the rest of the pages in relation T less the B pages
already in memory (read for the outside loop).

Case 2. If the preference method does not require exhaustive pairwise comparison,
regardless of whether it is transitive, the cost is estimated as N (i.e., a single scan).
Essentially, if a score can be derived for an object without comparing it to each other
object in T , the inside loop of Algorithm 1 is not needed.

Case 3. If the preference method is transitive and requires pairwise comparison, the
cost is estimated as (N − P)(N − (B + P)). The variable P represents the amortized
number of pages that can be discarded during runtime due to preference method’s
transitivity property. In this case, if enough tuples are discarded from in-memory
pages during preference evaluation, these pages can be compacted, meaning less page
reads in subsequent passes of the nested-loop algorithm.

6.2.2. Multiple-Table FlexPref Operator. The cost of the multitable FlexPref operator con-
sists of the sum of three costs: pruning, joining, and the final on-top preference eval-
uation (Section 5.2). Recall that the pruning step consists of applying the single-table
FlexPref operator to each join-key group for both join input tables (Algorithm 2). We
focus on the cost of pruning a single join input table, as the analysis is symmetric for
both inputs. Given a join input consisting of N pages, there are two cases that yield
different I/O costs: (1) If the join-key group is clustered, the cost of pruning is N I/Os,
as pruning can be done in a single pass. This cost assumes the number of pages storing
each join-key group fit in memory, which is very likely. (2) Otherwise, the cost of prun-
ing a join input is the I/O cost of performing a group-by, necessary to group the join-key
attributes. We assume the pruning step is performed on in-memory pages resulting
from the group-by.

To predict the cost of the join operation, we can use any existing cost function for any
standard database join (e.g., Shapiro [1986]), since FlexPref functions regardless of the
join method used. However, the cost function employed will be reliant on the input car-
dinalities in order to yield an accurate estimate. Since the pruning step removes tuples

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:17

from the join input, we must find a reliable estimate for the join input cardinalities.
Given input relations R and S of size N and M pages, respectively, the size (in pages) of
the inputs to the join is (N-PR) and (M-PS), where PR and PS represent the number
of join input pages saved by the pruning operation over R and S, respectively. The size
of PR can be estimated by applying the EstimateCardinality function (described in the
previous section) to the average size of each join-key group for table R in order to yield
an estimated prune cardinality. Subtracting this prune cardinality from the cardinality
of R yields the number of pruned tuples; dividing this number by the database page
size yields the value of PR. Calculating PS is similar.

The cost of the final preference evaluation is the cost of the single-table FlexPref
operation performed after the join. This final cost estimate is necessary, since the final
preference evaluation is nonblocking, thus cannot be performed on-the-fly. This cost
was covered in Section 6.2.1, with the exception that the input size is number of pages
produced by the join operation.

6.2.3. Sorted List FlexPref Operator. The I/O performance of the FlexPref sorted list oper-
ator depends heavily on the stopping condition (implemented in plugin function Stop-
SortedEval), and the correlation of each of the D attributes in the preference query (e.g.,
anticorrelated, correlated, or independent). Modeling an exact cost function based on
these properties is extensive, and outside the scope of this article. However, the aver-
age cost of the sorted list operator is O(N), derived as follows. Given D attributes in a
preference query, the best-case cost is D ∗ 1, meaning a single page is read from each
input relation. Since D is a constant, the best case is O(1). The worse-case cost is D∗ N,
that is, O(N) since all pages must be read from each sorted relation. The average-case
cost is DN

2 , where only half the data is read from each sorted relation.

6.2.4. Cost of Plugin Functions. Given the cost analysis done so far, the primary I/O
overhead for each generic FlexPref operator is dominated by its generic data retrieval
steps. The custom plugin functions for each operator are designed to require only
simple and straightforward operations (e.g., tuple comparison, list insertion) that we
believe lead to negligible I/O overhead. In the rest of this section, we justify this claim,
referring to the nonplugin steps executed by FlexPref as primitive operations, and the
extensible steps as plugin operations.

Based on our previous analysis and our experience implementing existing preference
methods in FlexPref (see Section 8), we believe the plugin operation overhead will be
small compared to the rest of the query processing framework. For instance, consider
the generic functions IsPreferredObject and AddPreferredToSet. For the single-table
FlexPref operator (Algorithm 1), these functions have the potential to incur the most
I/O, since their plugin operations are responsible for maintaining and organizing
data (tuples) in the current preference answer. For preference methods that report
k answers (e.g., top-k, k-frequency), the maximum size of the maintained preference
answer will be k. Since k is likely to be small (compared to the dataset size), the
plugin operations will operate on data (i.e., the answer set) that fits on (at most) a few
memory-bound pages, leading to negligible (if any) I/O costs. Meanwhile, preference
methods that cannot maintain an answer set based on total rank order are less
predictable. Focusing on skylines, given a dataset with d independent dimensions and
a cardinality of n, the expected number of skyline objects is �(lnd−1n/(d− 1)!) [Godfrey
et al. 2005]. However, the skyline size can be considerably larger in the worst
case [Chaudhuri et al. 2006; Godfrey 2004].

Special consideration is required for the sorted list plugin operations of function Stop-
SortedEval. This function operates over a potentially large data structure containing
partial tuples. Since the cardinality of the partial tuple data could reach the size of the
input data, the StopSortedEval function has the potential to incur nontrivial I/O in
this worse case. However, since the call to StopSortedEval can be reduced to every Mth

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:18 J. J. Levandoski et al.

iteration of the sorted list FlexPref algorithm, the I/O overhead of StopSortedEval is
likely to be amortized over the runtime of the sorted list algorithm. Thus, the I/O cost
of the sorted list algorithm will still be dominated by the primitive FlexPref operations.

6.3. Equivalence Rules

Along with cost and cardinality optimization, the last piece of information needed to
optimize preference queries with FlexPref is a set of algebraic equivalence rules. In
this section, we present relational algebra equivalences necessary for the database
to optimize FlexPref in a standard Select-Project-Join (SPJ) query. We first discuss
commuting selection with the FlexPref operator. We then discuss distributing FlexPref
over the join operations. We note that the join distribution rule studied serves a dif-
ferent purpose than the multitable algorithm presented in Section 5.2. The purpose of
join distribution is to study an equivalence that allows us to “push down” the single-
table FlexPref operator before a standard join operation, without having to perform
preference evaluation again on top of the join. Finally, we present rules for commuting
FlexPref with projection.

In the rest of this section, we symbolize the FlexPref operator with the algebraic
notationF�P . The symbol � represents the preference method implemented in FlexPref
(e.g., � = skyline). The symbol P represents the set of preferences specified in our
extended SQL clause Objectives presented in Section 3.2.1. For instance, preference
objectives P for skyline could be min price and min distance.

6.3.1. Commuting Selection with FlexPref. The ability to commute selection with FlexPref
is one of the most important optimizations necessary to efficient preference query
processing. Due to the cost of the FlexPref operator in the average case (covered in
Section 6.2.1), pushing selection can greatly increase query efficiency by data input
into FlexPref. Formally, we study the following equivalence.

σC(F�P (R)) = F�P (σC(R))

Here C is the selection condition, and R represents a single relational input.
Unfortunately, due to the wide variety of preference methods that can be imple-

mented within the FlexPref framework, there is no standard selection commutability
law that applies to FlexPref. In fact, a preference method can fall into one of three
classifications for commutability with the selection operation.

(1) Always commutes.In this class, the semantics of the preference method allow
selection to be placed before or after preference evaluation, regardless of the
selection condition. A prime example of a preference method in this class is
ranking [Li et al. 2005]. Since the rank value of each object is only a function of
the attributes of the object (i.e., the rank does not require comparison to other
objects), ranking commutes with selection regardless of the preference objectives
P or selection condition C.

(2) Conditionally commutes. In this class, selection commutability is conditional upon
the constraints in either the selection predicate C, the preference objectives P,
or a combination of both. An example of a preference method in this class is the
skyline [Börzsönyi et al. 2001] method, where it has been shown that, in order
to commute: (a) the selection condition must be specified over an attribute that
is also a preference objective and (b) the selection condition cannot contradict the
preference objective [Chomicki 2003].

(3) Never commutes. In this class, the semantics of the preference method never allow
commutability with selection. An example of a preference method in this class is
top-k dominance [Yiu and Mamoulis 2007]. Since this method ranks each object
O based on the number of other objects O dominates in relation R, performing

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:19

selection before preference domination can remove important tuples and thus alter
rank values, changing the final preference answer.

In order to correctly optimize preference queries involving any three of these selection
commutability classes, the FlexPref framework extends the query optimizer with a
plugin function that specifies whether the running preference method commutes with
selection. This plugin function is written by the preference method implementer.

—SelectionCommute(Selection condition C, Preference objectives P). Give the selec-
tion condition and preference objectives, return whether the preference method can
commute with the selection operation.

This function returns true for preference methods that always commute, and false
for methods that never commute. Thus, implementation of this function is necessary
for functions that conditionally commute. In Section 8, we study the selection com-
mutability rules implemented in this function for our seven case study methods.

6.3.2. Distributing FlexPref over EquiJoins. For FlexPref to distribute over the join opera-
tion on two relations R and S, we are required to “break up” the preference objectives
in P into: (1) PR, the objectives that apply to attributes in R, and (2) PS, the objectives
that apply to attributes in S. As an example, consider a skyline query over relations
Hotels S and Restaurants R with P = {min S.price, max S.rating, min R.price, max
R.rating}. Here, PR = {min R.price, max R.rating}, while PS = {minS.price, max
S.rating}. Formally, we investigate the following equivalence.

F�P (R �J S) = F�PR(R) �J F�PS (S)

Here J represents the join predicate. Note that if J = φ, the join is a Cartesian product.
The distribution of FlexPref over a join is dependent on three main factors: (1) the

preference method �, (2) the join predicate J , and (3) whether P = PR or P = PS, that
is, whether the preference objectives apply to attributes in only R or S. No standard join
distribution law applies to FlexPref. For instance, the skyline preference method has
been shown to distribute with Cartesian product [Chomicki 2003] (i.e., when J = φ).
Skyline also distributes over a join when P = PR (or P = PS) in the case of an equijoin,
that is, the preference objectives apply to attributes only in R or S. However, skyline
does not distribute for an equijoin when objectives in P apply to attributes in both R
and S. Meanwhile, the top-k method does not even distribute over a Cartesian product.
Assuming P applies to attributes in both R and S, the top-k evaluation cannot be
“pushed down” below the Cartesian product, as this transformation would produce
k inputs to the Cartesian product from both R and S, meaning k2 results would be
generated from the Cartesian product. Essentially, this “push down” rule will not work
for any method designed to produce k results (e.g., top-k domination) without also
integrating preference evaluation within or on-top of the join (e.g., see Li et al. [2005]).

In order to correctly optimize preference queries involving various preference meth-
ods exhibiting different distribution rules for join, the FlexPref framework provides a
plugin function that specifies whether the running preference method commutes with
a join operation. The definition of this function is as follows.

—JoinDistribute(Preference objectives P, Join predicate J , R Attributes AR, S
Attributes AS). Given a set of preference objectives, the join predicate, the tuple
attributes of input relation R, and the tuple attributes of input relation S, return
whether the preference method can distribute over the join operation.

In Section 8, we provide the implementation details of this plugin function for our
seven case study methods, along with extensive examples.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:20 J. J. Levandoski et al.

Table I. Binary Relation Properties Supported by FlexPref

Property Definition FlexPref Support
Reflexive tx �p tx , ∀tx ∈ R Not Allowed

Irreflexive ¬(tx �p tx), ∀tx ∈ R Required
Symmetric (tx �p ty) ⇒ (ty �p tx) , ∀tx, ty ∈ R Not Allowed
Transitive (tx �p ty) ∧ (ty �p tz) ⇒ (tx �p tz) , ∀tx, ty, tz ∈ R,

tx
= ty
= tz
Allowed

Asymmetric (tx �p ty) ⇒ ¬(ty �p tx) , ∀tx, ty ∈ R Allowed
Antisymmetric (tx �p ty) ∧ (ty �p tx) ⇒ (tx = ty) , ∀tx, ty ∈ R Allowed

Connective (tx �p ty) ∨ (ty �p tx) ∨ (tx = ty) , ∀tx, ty ∈ R Allowed

6.3.3. Commuting Projection with FlexPref. Given a projection operation πV , where V is the
set of projected attributes, we investigate the following equivalence.

πV (F�P (R)) = F�P (πV (R))

Projection will always commute with FlexPref, no matter the preference method �, as
long as P ⊆ V, that is, the set of attributes in the preference objectives are contained
in the set of projected attributes. If this case does not hold and projection is performed
before FlexPref, at least one attribute in P will be discarded prior to preference evalu-
ation, which is illegal.

7. SUPPORT FOR PREFERENCE METHOD PROPERTIES IN FLEXPREF

In this section, we present a taxonomy of theoretical properties that are supported (and
not supported) by FlexPref. The goal here is to present a road map for database practi-
tioners, such that creators of new (or existing) preference methods can easily tell if their
method qualifies for implementation in FlexPref. Looked at another way, the content of
this section serves as a theoretical foundation of FlexPref, as it defines the boundaries
of what is theoretically possible to accomplish within the FlexPref framework. In the
rest of this section, we discuss our taxonomy of theoretical properties broken down into
the following five classes: (1) binary preference relations, (2) preference granularity,
(3) preference definition types, (4) preference composition, and (5) deterministic and
nondeterministic answers.

7.1. Binary Preference Relation

In this section, we explore seven binary relation properties that preference methods
must meet for implementation in FlexPref. These properties are listed in Table I, and
have become standard in categorizing preference evaluation approaches [Chomicki
2003; Koutrika et al. 2010; Stefanidis et al. 2011]. We note that these properties also
have a corresponding graph representation [Koutrika et al. 2010; Stefanidis et al. 2011].
For each property, we give: (a) a formal definition, in terms of a binary preference rela-
tion �p defined between two tuples in a relation R. These formal definitions are given
in Table I; (b) a classification of whether FlexPref supports preference methods that
exhibit the property. Three classifications are possible: (1) Not Allowed, the semantics
of the property are not supported by FlexPref; (2) Required, the preference method
must adhere to the property to be implemented in FlexPref; (3) Allowed, FlexPref is
indifferent to whether the preference method exhibits the property.

7.1.1. Reflexive. The reflexive property states that all tuples can dominate themselves.
This property makes (nonempty) preference answer derivation impossible, and is not
allowed in FlexPref.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:21

Table II. Preference Granularity Properties Supported by FlexPref

Granularity Definition FlexPref Support
Tuple Preferences defined at the tuple level, preference evalua-

tion performed between two individual database tuples
Supported

Set Preferences defined between a set (or cluster) of common,
preference evaluation performed between tuple sets

Limited Support

Attribute Preferences defined between attributes, used to determine
which attributes are more important in preference evalu-
ation

Not Supported

7.1.2. Irreflexive. The irreflexive property states that no tuple can dominate itself. In
FlexPref, a tuple is never compared with itself in the generic query processing frame-
work. Thus, embedded preference methods must be irreflexive, that is, no tuple can
dominate itself.

7.1.3. Symmetric. The symmetric property states that for all pairs of tuples, the dom-
inance property is symmetric (i.e., each pair can dominate each other). Preference
functions exhibiting the symmetric property are not allowed in FlexPref. If all tuples
can dominate each other, deriving a nonempty preference answer is impossible.

7.1.4. Transitivity. FlexPref handles both transitive and nontransitive preference meth-
ods. As discussed in Section 6.2, transitivity leads to optimizations in FlexPref query
processing, and more query processing overhead for nontransitive methods.

7.1.5. Asymmetric. The asymmetric property states that for all tuple pairs tx and ty,
if tx dominates ty, then ty can never dominate tx. FlexPref is indifferent to whether
a preference method exhibits the asymmetric dominance property, as dominance is
evaluated both ways for all tuple pairs. It is important to note that a nonsymmetric
preference method does not imply the method exhibits symmetry.

7.1.6. Antisymmetric. The antisymmetric property states that for all tuple pairs tx and
ty, if the pair exhibits symmetric dominance then tx and ty are equivalent. FlexPref can
support preference methods where tuples dominate each other but are not equivalent
(discussed previously for the asymmetric case). Thus, FlexPref is indifferent to the
antisymmetric property.

7.1.7. Connective. The connective property implies a total order (or strong order) can
be derived using the preference method. The ability to assign a numeric score to each
tuple in FlexPref implies that FlexPref supports connective preference methods (e.g.,
top-k). However, scoring tuples is not a requirement in FlexPref, thus nonconnective
methods (e.g., skylines) are also supported.

7.2. Preference Granularity

Preference granularity refers to the “level” at which preferences are expressed and
evaluated. Table II summarizes the preference granularity properties supported by
FlexPref. There are three granularity properties we consider.

7.2.1. Tuple-Level Granularity. Preferences at this granularity are expressed at tuple
level, usually through the values of their attributes (e.g., minimize price, maximize
rating). Preference evaluation is performed between two individual database tuples.
Tuple-level preference granularity is the most widely used in practice (e.g., sky-
line [Börzsönyi et al. 2001] and k-dominance [Chan et al. 2006a]). FlexPref supports
tuple-level preference granularity, as its core functionality compares tuples pairwise
in building a preference answer.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:22 J. J. Levandoski et al.

Table III. Preference Definition Properties Supported by FlexPref

Property Definition FlexPref Support
Numeric Preference expressions over numeric tuple attributes Supported
Categorical Preference expressions over categorical tuple attributes Limited
Contextual Numeric or categorical preference expressions valid only

under given contextual constraints
Not Supported

7.2.2. Set Preferences. Set properties allow users to express preferences constraints
over a set of tuples. For instance, a user may prefer a set of four restaurants, minimizing
price and distance, where two of them should be Chinese restaurants. FlexPref supports
set preferences in a limited fashion. FlexPref does not support set preferences at neither
the syntax nor query processing level. However, FlexPref does support a limited form
of set preferences if the set can be expressed using aggregation and transformed into
a single tuple. In this case the FlexPref operators can evaluate the result tuples from
the aggregate operator(s).

7.2.3. Attribute Preferences. Attribute preferences allow the user to express preferences
between attributes, such that the top-n attributes are included in the preference
query [Koutrika and Ioannidis 2004]. For instance, one could specify that preferences
over a restaurant price attribute should matter more in a preference query than restau-
rant rating. FlexPref does not support attribute granularity preferences at the syntax
nor query processing level.

7.3. Preference Definition

Preference definition properties refer to how a user expresses preferences, and what
type of data a user can express preferences over in the system. We consider a classifica-
tion of four different preference definition properties in FlexPref. Table III summarizes
these properties and their support in FlexPref.

7.3.1. Numeric Preferences. Numeric preferences refers to support for preferences
defined over numeric attributes. FlexPref supports numeric preferences using the
MIN and MAX expressions. Numerical ranking (i.e., top-k processing) is supported by
specifying a monotonic ranking function as a user-defined function within the With
Objectives clause (see the top-k example in Section 3.2.2). FlexPref also supports
trivial Substitutable Value (SV)-semantics [Kieβling 2002] on single attributes. An
example is the AROUND preference from PreferenceSQL that substitutes a stored
value x with its distance to a given value v, formally, abs(x − v). FlexPref supports this
class of preferences by allowing user-defined functions in its With Objectives clause
(e.g., MIN abs(x-v)). These functions are applied to a tuple before processing by the
FlexPref operator.

7.3.2. Categorical Preferences. The focus of the FlexPref framework is primarily on nu-
merical attributes. However, FlexPref provides limited support for categorical prefer-
ences by translating categorical preferences to numerical preferences. We classify this
support as limited since the translation must be performed as a preprocessing step
using a set of categorical preferences given by the user.

To perform the translation, we assume that categorical preferences are expressed
using the common “better-than” graph [Kieβling 2002; Wong et al. 2008]. A better-than
graph is a finite, acyclic, directed graph, where nodes represent values of a category
attribute and a directed edge between nodes specifies that the source node is preferred
over the destination node. For example, assume a user expressed the following prefer-
ences for a restaurant type categorical attribute: (Thai → Chinese), (Italian → French),
(French → Chinese). From these preferences, we can construct a better-than graph as

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:23

Fig. 4. Categorical preferences represented as “better-than” graph.

Table IV. Preference Composition Properties Supported by FlexPref

Composition Definition FlexPref Support
Pareto compo-
sition

Base preferences given equal importance in preference
method

Supported

Prioritized
composition

Base preferences can be prioritized, some more important
to preference method than others

Not Supported

depicted in Figure 4, where each node is assigned a level value (lower is better). The
level is the minimum number of graph traversals, starting from a “best” node, neces-
sary to reach the destination node, where a “best” node is a node with no incoming edges
(Italian and Thai at level 0 in Figure 4). All unspecified nodes are assigned the highest
level, labeled “everything else” in Figure 4. Substituting the numeric-level value for
each category value, we can then transform the categorical preference into numeric
preference expression that minimizes the level value.

7.3.3. Contextual Preferences. Contextual preferences are preference expressions
that are valid only if a given contextual constraint holds. For example, a user
may prefer expensive French restaurants over Chinese restaurants only if the
weather is sunny. Contextual preferences can be qualitative [Agrawal et al. 2006] or
quantitative [Stefanidis and Pitoura 2008].

FlexPref supports neither type of contextual preference at syntax or query processing
level due to the high overhead needed to process contextual preference queries. In
general, support for contextual preferences requires an offline “reconciliation” step
used to disambiguate conflicts in contextual constraints. For instance, a user may
have the following two conflicting preferences: (1) French restaurants preferred over
Chinese restaurants if the weather is sunny; (2) Chinese restaurants preferred over
French restaurants if weather is sunny and cold. In this example, a reconciliation
step is needed to break the cyclic preference for French and Chinese restaurants.
This reconciliation step is NP-hard [Agrawal et al. 2006]. There have recently been
modular approaches to constructing context-aware preferences [Roocks et al. 2012],
though FlexPref does not support this approach.

7.4. Preference Composition

Preference composition refers to how a preference method assumes base preferences
are combined. In FlexPref, multiple base preferences are listed in the PREFERRING
clause, separated by the AND keyword. Examples of two base preferences for restaurant
data are minimize price and maximize rating. Two alternatives exist for preference
composition; their support in FlexPref is summarized in Table IV.

7.4.1. Pareto Composition. Pareto composition treats all base preferences as equally
important. Due to its commonality, Pareto composition with trivial substitutable se-
mantics [Kieβling 2002] is supported by FlexPref.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:24 J. J. Levandoski et al.

Table V. Deterministic and Nondeterministic Answers in FlexPref

Property Definition FlexPref Support
Deterministic
answers

Query processing logic has ability to produce deterministic
answer

Supported

Nondeterministic
answers

Query processing logic has ability to produce nondetermin-
istic answer

Supported

7.4.2. Prioritized Composition. Prioritized composition allows users to “rank” base pref-
erences based on importance [Kieβling 2002]. For instance, a user may state that mini-
mizing price is more important than maximizing rating when looking for a restaurant.
Prioritized preference composition is used very little in practice, as it is not used by
many preference methods. FlexPref does not support prioritized composition at syntax
or query processing level.

7.5. Deterministic and Nondeterministic Answers

In this section, we discuss FlexPref support for preference methods that produce de-
terministic and nondeterministic answers, summarized in Table V.

7.5.1. Deterministic Answers. FlexPref supports the ability to produce deterministic pref-
erence answers, meaning multiple runm of the same preference query over the same
data will produce the same answer. At its core, FlexPref is a generic framework that
provides a query processing framework for preference methods, while determinism of
a preference method is solely a property of the preference method itself. Thus, de-
terminism is controlled by the logic implemented in the extensible FlexPref plugin
functions.

7.5.2. Nondeterministic Answers. FlexPref supports the ability to produce nondetermin-
istic preference answers, as long as all nondeterminism of the preference method can
be encapsulated in the extensible plugin functions. In other words, a preference method
cannot base its nondeterministic behavior on functionality outside of FlexPref, for ex-
ample, tuple orders produced by other DBMS operators feeding the FlexPref operators.

8. CASE STUDIES

In this section, we demonstrate the extensibility and usefulness of FlexPref by pro-
viding case studies for injecting seven state-of-the-art preference evaluation meth-
ods introduced in Section 3.2.2. We chose these case studies carefully to cover
a wide spectrum of preference methods. In particular, skyline represents transi-
tive dominance-based preference methods, k-dominance and ε-dominance represent
nontransitive dominance-based preference methods, top-k represents ranking-based
preference methods, top-k dominating and k-representative skyline represent prefer-
ence methods that combine ranking-based and dominance-based preferences, and k-
frequency represents methods that propose object rankings that do not require a spe-
cific function, but base their scoring on inherent properties of an object (e.g., attribute
correlation and subspace search).

For each preference method, we first describe its functionality. We then cover the
implementation of the general functions described in Section 4, and the query opti-
mization functions described in Section 6. Finally, we give illustrative examples, using
the data in Figure 5, for single-table, multitable, and sorted list access. Unless oth-
erwise mentioned, the examples assume the MIN preference over numeric attributes.
The details in this section are summarized in the appendix.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:25

(a) single-table example (b) join data (c) sorted lists

Skyline

K-Dominance

K-Frequency

Top-K

Epsilon Dominance

K-Representative Skyline

Top-K Dominating
(a,1),(c,1)

(a,3),(b,2)

(a,1)

(a,1), (c,3)

(a,3.3), (b,3.5)

(a,3), (c,1)

(c,1)

Fig. 5. Case study example data.

8.1. Case Study 1: Skylines

Given a dataset D, the objective of skyline preference evaluation [Börzsönyi et al. 2001]
is to find the set of objects S that are not dominated by any other object in D. An object
P is said to dominate an object Q if P is better than or equal to Q in all dimensions,
and strictly better than Q in at least one dimension. For example, in Figure 5(a) object
a dominates object e as it is better (i.e., less) in all three dimensions.

8.1.1. General Function Implementation. A skyline implementation in FlexPref is given
next.

Macros

(1) Default Score. Skyline evaluation does not rank objects. Thus, within our frame-
work, the skyline score of an object P is binary and is set to one if P is not dominated,
and zero otherwise. Initially, each object is assumed to be a skyline, thus each object
has a default score of one.

(2) IsTransitive. This returns true; the skyline method exhibits the transitive property.

Evaluation functions

(1) PairwiseCompare. Change the score of P to zero only if it is dominated by Q, and
return the appropriate value (i.e., 1, 0, or −1) based on the dominance relation
between P and Q, that is, if P is dominated it cannot be a preferred object, and vice
versa. Q’s score is not updated in PairwiseCompare per the function definition given
in Section 4.

(2) IsPreferredObject. This function does not need the reference set S to determine if
P is a preferred object. Instead, we return true if the score of P is one, that is, P
was not dominated by any object.

(3) AddPreferredToSet. Append P to the end of set S, and remove any nonskyline objects
in S.

(4) StopSortedEval. The skyline stopping condition can be based on previous research in
distributed skyline query processing [Balke et al. 2004]. This condition is: stop once
there is a complete object Q in set P. At this stopping point, the complete object Q is
equal to, or dominates, the virtual object O. Furthermore, any new object added to
P cannot be better than O, thus only objects currently in P are skyline candidates.

Optimization functions

(1) EstimateCardinality. Much previous work has addressed cardinality estimation for
the skyline preference method [Chaudhuri et al. 2006; Godfrey 2004; Zhang et al.
2009]. Any of these methods can be used within this function.

(2) SelectionCommute. Skyline commutability with selection is conditional upon the se-
lection predicate. Let C1(t) represent a selection condition over a tuple t; also, let

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:26 J. J. Levandoski et al.

C2(p,q) represent the given preference criteria that specify whether tuple p is pre-
ferred over tuple q (e.g., MIN price and MIN distance). It has been shown that the
following condition must hold in order for selection to commute with skyline, which
can be verified in quadratic time [Chomicki 2003].

∀p, q[(C1(q) ∧ C2(p, q)) ⇒ C1(p)]
That is, the selection condition over a “nonpreferred” tuple q, logically combined
with an AND condition with the preference conditions, must imply the selection
condition over the preferred tuple p.

(3) JoinDistribute. Skyline can distribute over a Cartesian product (i.e., when J = φ)
[Chomicki 2003]. Furthermore, skyline will distribute over an equijoin when the
preference objectives in P apply to attributes in only one of the join input relations
(e.g, F�P (R �J S) = F�PR(R) �J S). However, skyline will not distribute over an
equijoin in the general case when P applies to attributes in both input relations [Jin
et al. 2007, 2010].

8.1.2. Preference Evaluation Example:

Single-Table Execution. Consider the three-dimensional data in Figure 5(a). First,
object a is read, given a default score of 1, and compared pairwise with all other objects
using PairwiseCompare. Function PairwiseCompare returns −1 when a is compared with
object b, 0 when compared to c, and −1 when compared to d and e. Thus, b, d, and e
are discarded from the dataset. Since a is not dominated, function PairwiseCompare does
not change a’s score to 0. Thus, IsPreferredObject reports that a can be added to the
preference answer. Object c is then read and also found to be a preferred answer (as it
is not dominated by a, the only object left in the dataset). After processing c, no objects
are left in the dataset and execution terminates. Objects a and c exist in the preference
set, each with a score of one, as given in the skyline answer in Figure 5(a).

Multitable Execution. In Figure 5(b), pruning removes tuples (a,5,5) and (b,8,8) from
table S prior to the join. These tuples are not skylines within their join-key groups.
Furthermore, these tuples cannot possibly be skylines when joined with their corre-
sponding tuples (a,5,5) and (b,7,2) in table R. For example, joined tuple (a,5,3,5,5) will
at least be dominated by members of its same join group: both (a,5,5,3,4) and (a,5,5,4,3).
Similarly, joined tuple (b,7,2,8,8) would be dominated by both (b,7,2,4,2) and (b,5,5,4,3).

Sorted Table Access. Round-robin processing can stop after five reads for the data in
Figure 5(c). At this point, set P contains objects (a,5,3,3) and (b,7,2,), while object O
equals (7,3,3) and object F equals (5,2,3). Clearly, any new object added to P cannot be
better than virtual object O due to sorted access, and any new object added to P will
be dominated by the complete object a.

8.2. Case Study 2: Top-K Dominating

Given a dataset D, the objective of top-k dominating preference evaluation [Yiu and
Mamoulis 2007] is to score each object P by its dominance power, that is, the number
of objects it dominates. Here, the dominance definition is the same as the skyline
method. The preference answer contains the k objects with the highest score (i.e., the
objects that dominate the most other objects). As an example, consider objects a and c
in Figure 5(a). Object a has a score of three, as it dominates objects b, d, and e. Object c
has a score of one as it only dominates e. Object preference is based solely on dominance
power, thus nonskyline objects can be preference answers.

8.2.1. General Function Implementation. A top-k dominating implementation in FlexPref
is given next.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:27

Macros

(1) Default Score. Each object is given a default score of zero.
(2) IsTransitive. This returns true.

Evaluation functions

(1) PairwiseCompare. When it is found that P dominates an object Q, it increments
P ’s score by one. An object can never be ruled out of the preference answer using
pairwise comparison, since P ’s score must be calculated through comparison with
all objects, thus this function always returns zero.

(2) IsPreferredObject. This returns true if P has a score superior to any of the current
k objects in S, or if S contains less than k objects.

(3) AddPreferredToSet. This adds P in sorted order in S, removing the old kth object if
applicable.

(4) StopSortedEval. One stopping condition can be stop once there are k complete objects
in set P. While it is possible that some incomplete objects in P will be superior to
the complete k objects, this stopping condition at least ensures that the complete k
objects dominate any objects not yet added to P. The unseen objects are equal to
or dominated by object O, which in turn is equal to or dominated by each of the k
complete objects.

Optimization functions

(1) EstimateCardinality. The cardinality is k, since top-k domination can rank objects
to produce a total order.

(2) SelectionCommute. As discussed in Section 6.3.1, selection does not commute with
top-k domination in any case.

(3) JoinDistribute. As discussed in Section 6.3.2, given the semantics preference
methods designed to return k results, top-k domination does not distribute over a
Cartesian product, nor equijoins (which is semantically selection over a Cartesian
product).

8.2.2. Preference Evaluation. The top-k domination answer is given in Figure 5(a) as-
suming k = 2. In Figure 5(b), top-k domination pruning removes from S tuples (a,5,5)
and (b,8,8) both with scores of zero. These pruned tuples are not in the top-2 in their
local join-key groups. Meanwhile, sorted round-robin processing can stop after nine
reads for the data in Figure 5(c). At this point, set P contains objects (a,5,3,3), (b,7,2,4),
(c,8, ,3), and (d, ,4,), while object O equals (8,4,4) and object F equals (5,2,3).

8.3. Case Study 3: K-Dominance

Given a dataset D and a value k, k-dominance preference evaluation [Chan et al.
2006a] finds the set of objects S that are not k-dominated by any other object in D.
k-dominant queries are similar in spirit to skyline queries, except for the relaxed notion
of dominance: an n-dimensional object P is allowed to dominate another object Q on
any k ≤ n dimensions. When k = n, a k-dominant query reverts to a skyline query. As
an example, consider objects a and c in Figure 5(a). For k = 2, object a k-dominates
object c since a is better in dimensions d1 and d3 (less is better). However, when k = 3
neither object dominates the other as in the case of skylines.

8.3.1. General Function Implementation. A k-dominance implementation in FlexPref is
given next.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:28 J. J. Levandoski et al.

Macros

(1) Default Score. As k-dominance does not rank objects, each object can either have a
score of one if it is not k-dominated, zero otherwise.

(2) IsTransitive. This returns false, as k-dominance is not transitive as circular domi-
nance is possible: an object x can k-dominate an object y, y can k-dominate an object
z, and z can k-dominate x.

Evaluation functions

(1) PairwiseCompare. The function PairwiseCompare changes the score of P to zero only
if it is k-dominated by Q, and returns the appropriate value based on dominance
relation between P and Q.

(2) IsPreferredObject. This returns true if P ’s score is 1 (i.e., P is not k-dominated), 0
otherwise.

(3) AddPreferredToSet. This appends P to the end of set S.
(4) StopSortedEval. A stopping condition is stop once set P contains an object Q with at

most k− 1 incomplete dimensions, and Q k-dominates virtual object O, and O does
not k-dominate Q (where the value ∞ is substituted for the incomplete dimensions
of Q). Having an object Q with at most k− 1 incomplete dimensions ensures that it
cannot be k-dominated on these incomplete dimensions by an object not yet added
to P. Furthermore, since Q k-dominates virtual object O, but O does not k-dominate
Q, then any object not yet added to P is guaranteed to be k-dominated by Q. Thus
the k-dominant answer candidates must exist in P. We note that for multitable
execution, where tables R and S contain dR and dS dimensions each, pruning
computes the dR and dS-dominant answer, and then the k-dominant answer in the
final (i.e., root) preference evaluation.

Optimization functions

(1) EstimateCardinality. There has been no work exploring cardinality estimation of the
k-dominance preference method, and providing an in-depth cardinality estimate is
outside the scope of this article. However, for any value of k, we can find an upper
bound estimate by employing skyline cardinality techniques (e.g., see Chaudhuri
et al. [2006] and Zhang et al. [2009]).

(2) SelectionCommute. Given a d-dimensional dataset, when k = d, k-dominance will
commute under the same condition as the skyline method, as they are equivalent
in this case. When k < d, selection does not commute with k-dominance, as selec-
tion performed before preference evaluation may filter objects that can k-dominate
objects that qualify for selection. As an example, consider the case of 2-dominance
for a datset D with schema (id,d1,d2,d3) and three objects (a,2,3,6), (b,3,2,6), and
(c,1,4,2). Given the selection condition d2 < 4, which is “legal” in the case of a sky-
line, performing F�P (σd2<4(D)) will produce {a,b} as an answer, while σd2<4(F�P (D))
produces {φ} as an answer. In this case pushing selection filtered the key object c
that 2-dominates both a and b.

(3) JoinDistribute. Given a two join relations R and S with AR number or attributes
in R and AS number of attributes in S, k-dominance has the same join distribution
properties as a skyline when k = AR+AS. However, k-dominance does not distribute
over a Cartesian product (and hence join) when k < (AR + AS). We consider three
cases: (1) AR ≤ k and AS ≤ k. Pushing preference evaluation before the join will
produce skyline objects as input to the Cartesian product. Per skyline distribution
rules, the resulting Cartesian product is also a skyline. However, we can construct
an example where the result is not k-dominant. Consider the case where k = 5 and

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:29

R = {(1,1,1,1)} and S = {(1,2,1,2),(2,1,2,1)} (all three objects are skylines). How-
ever, neither tuple in the Cartesian product (1,1,1,1,1,2,1,2) and (1,1,1,1,2,1,2,1) is
5-dominant. (2) AR > k and AS > k. We can again construct a case where the out-
put is not k-dominant. Consider the previous example from the first case for k = 3.
Both inputs R and S are 3-dominant, but neither object in the Cartesian product
is 3-dominant. (3) AR > k and AS ≤ k (or vice versa). The exact same argument for
case 2 applies to this case.

8.3.2. Preference Evaluation Example. The k-dominance answer is given in Figure 5(a)
assuming k = 2. In Figure 5(b), pruning will remove from table S tuples (a,5,5) and
(b,8,8), as they are k-dominated within their join-key groups. Similarly, round-robin
processing can stop after five reads for the data in Figure 5(c), where set P contains
objects (a,5,3,3) and (b,7,2,) while object O equals (7,3,3) and object F equals (5,2,3).

8.4. Case Study 4: K-Frequency

Given a dataset D, k-frequency preference evaluation [Chan et al. 2006b] scores each
object P by its dominated subspaces: the number of possible subdimensions in which P
is dominated. The preference answer contains the k objects with the lowest score (i.e.,
the objects that are dominated in the least number of possible subdimensions). As an
example, object a in Figure 5(a) has a score of one, since it can only be dominated in
a single subdimension (d2 by object c). Meanwhile, object e has a score of 7, since it
is dominated in all possible subdimensions by object a (i.e., {d1}, {d2}, {d3}, {d1, d2},
{d1, d3}, {d2, d3}, {d1, d2, d3}).

8.4.1. General Function Implementation. A k-frequency implementation in FlexPref is
given now.

Macros

(1) Default Score. Each object is given a default score of zero.
(2) IsTransitive. This returns true.

Evaluation functions

(1) PairwiseCompare. Dominant subdimension counting must be performed carefully
for k-frequency. For instance, in Figure 5(a) object c is dominated on overlapping
dimensions by different objects. That is, c is dominated in subdimensions ({d1},
{d3}, {d1, d3}) by object a, and subdimension {d3} by object d. Clearly, overcounting
dominated subdimensions is an issue. Thus, this function must have access to an
extra data structure that stores the dominated subdimensions for each object P.
Tracking these subdimensions ensures that an object is scored correctly, that is,
distinct subdimensions can be extracted and counted. Pscore is updated based on
the distinct subdimensions where Q dominates P. An object can never be ruled
out of the preference answer using pairwise comparison since P ’s score must be
calculated through comparison with all objects, thus this function always returns
zero.

(2) IsPreferredObject. This returns true if P has a score superior to any of the current
k objects in S or if S contains less than k objects.

(3) AddPreferredToSet. This adds P in sorted order in S, possibly removing the old kth

object.
(4) StopSortedEval. This uses the same stopping condition as skylines. This condition

guarantees that an interesting set of objects exists in P, as any object not yet added
to P is guaranteed to be equal to or dominated by the complete object Q. Thus,
any object not in P is guaranteed to be dominated in all possible subdimensions,

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:30 J. J. Levandoski et al.

meaning that all unseen objects will have the same score. If there are not yet k
objects in P when the stopping condition is met, then any arbitrary objects can be
added to P as they have the same score.

Optimization functions

(1) EstimateCardinality. The cardinality is k, since k-frequency can produce exactly k
answers based on ranking objects in total order.

(2) SelectionCommute. k-frequency does not commute with selection, as it ranks objects
based on counting dominant subspaces against all other objects in the dataset. The
basic argument is the same as that of top-k domination.

(3) JoinCommute. As discussed in Section 6.3.2, given the semantics preference meth-
ods designed to return k results, k-frequency does not distribute over a Cartesian
product, nor equijoins.

8.4.2. Preference Evaluation. The k-frequency answer is given in Figure 5(a) assuming
k = 2. In Figure (b), k-frequency pruning will remove from table S tuples (a,5,5) and
(b,8,8), as they both have local scores of three, that is, they are dominated in all possible
subspaces. Round-robin processing can stop after five reads for the data in Figure 5(c).
At this point, P contains objects (a,5,3,3) and (b,7,2,), while object O equals (7,3,3) and
object F equals (5,2,3).

8.5. Case Study 5: Top-K

Given a set of data D, top-k preference evaluation [Chaudhuri and Gravano 1999]
scores each data object P using a monotonic ranking function f . The preference answer
contains the k objects with the minimum score. A monotone function f takes as input
multiple attribute values of an object P and returns a single real number as its score.
For example, for object a in Figure 5(a) and a monotone function f = (1

10 ∗ (d1 + d2) +
4
5 ∗ d3), a’s score is 3.3.

8.5.1. General Function Implementation. A top-k implementation in FlexPref is given next.

Macros

(1) Default Score. Each object has a default score of zero.
(2) IsTransitive. This returns true.

Evaluation functions

(1) PairwiseCompare. Top-k does not rely on pairwise comparison since an object’s score
is determined using only its own attributes. Thus, this function returns −2 by
default.

(2) IsPreferredObject. This computes object P ’s score using a monotonic ranking func-
tion f , and returns true if P has a score superior to any of the current k objects in
S, or if S contains less than k objects.

(3) AddPreferredToSet. This adds P in sorted order in S, removing the old kth object if
applicable.

(4) StopSortedEval: A possible stopping condition is based on previous research that
defines the threshold score for efficient top-k joins over sorted lists [Ilyas et al.
2003]. Specifically, the condition is: stop once there are k complete objects in P
that have scores less than or equal to a given threshold value T. Threshold T
is a lower bound on the scores of any object not seen so far in set P, defined
as MIN(f (O[1],F[2], . . . ,F[n]), f (F[1],O[2], . . . ,F[n]), f (F[1],F[2], . . . ,O[n])), that is,
the minimum of the scores taken from combining the last value seen from each
input with the first values read from every other input.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:31

Optimization functions

(1) EstimateCardinality. The cardinality is k, since top-k can produce exactly k answers
based on ranking objects in total order.

(2) SelectionCommute. From the extensive previous work in top-k processing, it is se-
mantically correct for top-k to commute with selection [Li et al. 2005].

(3) JoinCommute. As discussed in Section 6.3.2, given the semantics preference methods
designed to return k results, top-k does not distribute over a Cartesian product, nor
equijoins.

8.5.2. Preference Evaluation. The top-k answer is given in Figure 5(a) for k = 2, where
we aim to minimize scores based on a ranking function that sums all attribute values.
In Figure 5(b), pruning removes from S tuples (a,5,5) and (b,8,8) with scores 10 and 16,
respectively. These pruned tuples are not in the top-2 in their join-key groups. Round-
robin processing can stop after 12 reads for the data in Figure 5(c). At this point, set P
contains (a,5,3,3), (b,7,2,4), (c,8,5,3), (d,10,4,11), while O = (10,5,11), F = (5,2,3), and
threshold T = 13.

8.6. Case Study 6: Epsilon Dominance

The epsilon-dominance (abbr. ε-dominance) preference method [Xia et al. 2008] alters
the concept of traditional skyline dominance to be more flexible. The idea is to increase
or decrease the dominance region of each object in the dataset by a constant ε1. For-
mally, given two d-dimensional points p and q, with a set of weights on each dimension
W = {wi|i ∈ [1, d],0 < wi ≤ 1}, p ε-dominates q if ∀i ∈ [1, d], p[i] · wi ≤ q[i] · wi + ε
and ∃ j ∈ [1, d], p[j] < q[j], assuming less is better. The ε-dominant answer is given
in Figure 5, assuming w1 = 0.5, w2 = w3 = 1, and ε = 1.5. In this case, c is the only
preference answer, which differs from a traditional skyline answer of {a,c}, since c
ε-dominates a.

8.6.1. General Function Implementation. A ε-dominance implementation in FlexPref is
given now.

Macros

(1) Default Score. Each object has a default score of one.
(2) IsTransitive. If ε > 0, return false. In this case, ε-dominance loses the transitive

property. Otherwise, if ε ≤ 0, return true.

Evaluation functions

(1) PairwiseCompare. If P ε-dominates Q, return 1. If Q ε-dominates P, set the score of
P to zero, and return −1. Else, return 0.

(2) IsPreferredObject. Return true if the score of P is one. Otherwise return false.
(3) AddPreferredToSet. Append P to the end of set S.
(4) StopSortedEval. If ε ≤ 0, we can use the standard skyline stop condition stop once

there is a complete object Q in set P. If ε > 0, a stopping condition is stop once there
is a complete point Q in P that is not e-dominated by virtual point O. With this
condition, we can be certain that any incomplete points will not be dominated by
any unseen objects, since the complete point Q is at least as good as any incomplete
object (i.e., it is better than O).

1ε-dominance is a specific instance of skylines using the more general “substitutable value” (or SV)-preference
semantics proposed in Kieβling [2005], where ε is similar to the d-value of SV-semantics.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:32 J. J. Levandoski et al.

Optimization functions

(1) EstimateCardinality. For the average case, ε-dominant cardinality can be estimated
by employing skyline cardinality techniques (e.g., see Chaudhuri et al. [2006] and
Zhang et al. [2009]). However, refining this estimation for varying values of ε
remains as future work.

(2) SelectionCommute. ε-dominance shares similar semantics to skyline when ε ≤ 0. In
this case it shares the same selection commutability rules with skyline. However,
when ε > 0, selection does not commute with ε-dominance. As ε-dominance is
nontransitive in this case, the proof is the same as that made for k-dominance, that
is, we can construct a case where a filtered tuple dominates a nonfiltered tuple
during preference evaluation.

(3) JoinDistribute. For any value of ε, the ε-dominance method shares the same join
distribution rules as skyline. This rule holds as the dominance definition for both
methods relies on independent pairwise comparability in every dimension between
two objects. For the case of Cartesian product, performing preference evaluation
before the join will guarantee that joined objects are part of the preference answer,
as each object’s dimensions are compared independent of one another. For the case
of equijoin, the same nondistribution for skyline applies to ε-dominance.

8.6.2. Preference Evaluation Example. For these ε-dominance examples, we are assuming
w1 = 0.5, w2 = w3 = 1, and ε = 1.5. For single-table evaluation, the ε-dominant answer
is given in Figure 5. In Figure 5(b), ε-dominance pruning removes from S tuples (a,3,4),
(a,4,3), (a,5,5), and (b,8,8). These pruned tuples are all ε-dominated within their join-
key groups. Sorted round-robin processing can stop after five reads for the data in
Figure 5(c). At this point set P contains objects (a,5,3,3) and (b,7,2), while object O
equals (7,3,3) and F equals (5,2,3). The complete object (a,5,3,3) cannot be ε-dominated
by O.

8.7. Case Study 7: k-Representative Skyline

The k-representative skyline [Lin et al. 2007] is based on the same dominance property
of the traditional skyline method, except each object in the preference answer is ranked
by the number of objects it dominates. Thus, a total ordering of skyline objects is
achieved. As an example, the k-representative skyline preference answer is given in
Figure 5, where object a is the top-ranked object with a score of 3, since it dominates
objects b, d, and e. Meanwhile, object c is ranked after a with a score of 1, since it only
dominates object e.

8.7.1. General Function Implementation. A k-representative skyline implementation in
FlexPref is given next.

Macros

(1) Default Score. The default score of an object is zero.
(2) IsTransitive. This returns true.

Evaluation functions

(1) PairwiseCompare. If P dominates Q, increase the score of P by one. This function
always returns 0, as an object’s rank requires pairwise comparison to every other
object in the dataset.

(2) IsPreferredObject. Compare P to object in S, if P is a skyline return true. Otherwise,
return false.

(3) AddPreferredToSet. Add P to S in sorted order by the score of P; also remove any
nonskyline objects from S.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:33

(4) StopSortedEval. The stopping case for k-representative skyline is the same as the
standard skyline method.

Optimization functions

(1) EstimateCardinality. If the size of the skyline is greater than or equal to k, the
k-representative skyline can produce exactly k answers based on the total order
ranking of the skyline. Otherwise, cardinality can be estimated using existing
estimation techniques for skyline.

(2) SelectionCommute. As the k-representative skyline has the same semantics as the
skyline, the selection commutability rules are the same as skyline.

(3) JoinDistribution. The same join distribution rules for skyline apply to the k-
representative skyline.

8.7.2. Preference Evaluation Example. For these examples, we assume k = 2, that is,
we want the top-2 representative skyline objects. For single-table evaluation, the k-
representative skyline answer is given in Figure 5. In Figure 5(b), pruning removes
from S tuples (a,5,5), and (b,8,8), as these tuples can never contribute to the top-2
representative skyline when joined with any counterpart tuple. Sorted round-robin
processing can stop after five reads for the data in Figure 5(c). At this point set P
contains objects (a,5,3,3) and (b,7,2), while object O equals (7,3,3) and F equals (5,2,3).

9. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance of FlexPref. Our experi-
ments involve the following implementations: (1) the skyline, k-dominance, and top-k
preference evaluation methods implemented in FlexPref according to the function def-
initions given in Section 8. These implementations are denoted FlexSKY , FlexKDOM,
and FlexT K, respectively2. (2) The custom implementations of the skyline block-nested
loop operator (CustSKY) [Börzsönyi et al. 2001], the sort-first-skyline (CustSKY−SFS)
with an added elimination filter step), and the two-scan K-dominance algorithm
(CustKDOM) [Chan et al. 2006a]. We also implemented the custom multirelational sky-
line join operator (JCustSKY) [Jin et al. 2007] in order to fairly evaluate our multire-
lational preference execution framework. These custom implementations make for the
fairest comparison against our framework as they do not assume sorted or indexed
data. We note that for the case of top-k, no custom implementation exists that assumes
completely unsorted/unranked input [Ilyas et al. 2008]. An exception to this claim is
the case involving sorted list access, which we discuss in Section 9.2. Our experiments
evaluate four main aspects of FlexPref: (1) multitable access (Section 9.1), (2) sorted
list access (Section 9.2), (3) single-table access (Section 9.3), and (4) query optimization
(Section 9.4).

All approaches are implemented in the query processor of the PostgreSQL 8.3.5 open-
source database [Postgre SQL 2013]. The experiment machine is an Intel Core2 8400
at 3 Ghz with 4GB of RAM running Ubuntu Linux 8.04. We use the generator specified
in Börzsönyi et al. [2001] to generate synthetic datasets for all experiments. Unless
otherwise mentioned, the data contain six integer attributes, where the attribute values
are generated independent of one another. We experiment with dataset sizes ranging
from 10K to 3M tuples. The value of k for the k-dominance preference is set at 4. For
the top-k method, the default number of answers (k) is set to 20. As mentioned in
Section 3.2.1, the k in k-dominance is different than that used for top-k. The k in top-k
refers to the number of desired answers, while the k in k-dominance represents the

2We implemented all methods from Section 8, but omit results as the general trend is similar.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:34 J. J. Levandoski et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10:10 30:30 50:50 70:70 90:90

Ti
m

e
(s

ec
)

Join Ratio

FlexSKY
JFlexSKY

(a) sky

 0
 2
 4
 6
 8

 10
 12
 14
 16

10:10 30:30 50:50 70:70 90:90

Ti
m

e
(s

ec
)

Join Ratio

FlexTK
JFlexTK

(b) top-k

 0
 5

 10
 15
 20
 25
 30
 35
 40

10:10 30:30 50:50 70:70 90:90

Ti
m

e
(s

ec
)

Join Ratio

JFlexSKY
CustSKY

JCustSKY
CustSKY-SFS

(c) sky (vs custom)

 0
 2
 4
 6
 8

 10
 12
 14

10:10 30:30 50:50 70:70 90:90

Ti
m

e
(s

ec
)

Join Ratio

JFlexKDOM
CustKDOM

(d) k-dom (vs custom)

Fig. 6. Multitable FlexPref join.

number of dimensions to use when evaluating dominance. Our performance metric is
the elapsed time reported by the PostgreSQL EXPLAIN ANALYZE command.

9.1. Multitable Join Query

In these experiments, we study the impact of the FlexPref multitable preference eval-
uation framework that prunes join input tuples, and then compare the FlexPref im-
plementations to CustSKY , CustSKY−SFS, and CustKDOM, as well as the custom skyline
join algorithm JCustSKY . The general SQL signature for this query is as follows.

Select * From T1, T2 WHERE T1.id = T2.id
Preferring T1.d1 AND T1.d2 AND T1.d3

AND T2.d1 AND T2.d2 AND T2.d3

We omit the using clause as multiple preference methods are tested. The join is an m:m
binary join where tables T1 and T2 contain three-attribute tuples, plus an id, while
preference is evaluated over all six attributes. Each table contains 1K unique ids, with
an equal number of tuples assigned to each join-key group. We increase the size of each
table from 10K to 100K that increases the join ratio from 10:10 to 100:100, as well as
the join result cardinality.

9.1.1. Effect of Pruning. This experiment studies the effect of pruning join inputs in
FlexPref ’s multitable execution. We study the skyline and top-k implementations in
FlexPref using the naive join approach (abbr. FlexSKY , and FlexT K) against the op-
timized pruned approach (abbr. JFlexSKY and JFlexT K). For space purposes, we do
not discuss the k-dominance implementation, however, it exhibits similar behavior to
the skyline case. Figures 6(a) and 6(b) provide the runtimes for the skyline and top-k
methods, respectively. Clearly, pruning is beneficial to the FlexPref framework, keeping
preference evaluation scalable for multitable queries. For the skyline method, tuples
are pruned throughout the progression of join ratios, reducing the workload of the join
and final postjoin preference evaluation. For the case of top-k (with default k = 20),
pruning takes effect after the 20:20 ratio. For smaller ratios, no join input tuples can be
pruned as join-key groups contain less than 20 tuples, thus pruning causes an overhead
for these cases.

9.1.2. Comparison With Custom Algorithms. Given that pruning in FlexPref is beneficial to
multitable preference queries, we now compare the optimized skyline and k-dominance
FlexPref implementations, JFlexSKY and JFlexKDOM, against CustSKY , CustSKY−SFS,
and CustKDOM that must perform preference evaluation after the join (i.e., on top of
the query plan). We also compare FlexPref against the specialized skyline join opera-
tor [Jin et al. 2007], JCustSKY). Figures 6(c) and 6(d) give the runtimes for skyline and
k-dominance methods, respectively. These results clearly highlight the advantages of
FlexPref. The optimized FlexPref implementations exhibit scalable behavior as the join
ratio (and data size) increases. FlexPref is superior to the CustSKY , CustSKY−SFS, and
CustKDOM methods that represent an ontop approach for the multitable case. CustSKY ,
CustSKY−SFS, and CustKDOM cannot reduce the input to the join, thus must process the
complete join result. Interestingly, JFlexSKY exhibits comparable performance to the

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:35

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

JFlexSKY
SLFlexSKY
JCustSKY

(a) skyline

 0
 5

 10
 15
 20
 25
 30
 35

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

JFlexTK
SLFLexTK

(b) top-k

Fig. 7. Sorted list access.

custom skyline join JCustSKY . These results are promising, and show that: (1) FlexPref
is clearly advantageous for arbitrary DBMS queries compared to an outside (or on-top)
and (2) competitive with specialized approaches for more sophisticated queries.

We do not compare our JFlexKDOM method against a custom k-dominance join algo-
rithm, as none exists. The only possible implementation for k-dominance in the case of
arbitrary multirelational queries is to perform evaluation on top of the query plan. This
fact highlights the strength of FlexPref. Once registered with FlexPref, any preference
method gains the advantages of being coupled with nontrivial database operations.
This experiment highlights the efficiency gains by taking the general extensible ap-
proach of FlexPref.

9.2. Sorted List Access

This experiment studies the efficiency of the general sorted access preference evalu-
ation algorithm outlined in Section 5.3 for the skyline and top-k methods. For space
purposes, we do not plot the k-dominance experiment, however, it exhibits similar
behavior to the skyline case. The signature for this query is as follows.

Select * From T1,...,T6
Where T1.id = T2.id = T3.id = T4.id = T5.id = T6.id
Preferring T1.d AND ... AND T6.d

We again omit the using clause as multiple preference methods are tested. The join is
1:1 that combines six 2-ary tables T1–T6, each with a primary key id and attribute
d; all tables are sorted on d. We compare the FlexPref optimized join implementation
(JFlexSKY and JFlexT K) to the FlexPref sorted list implementation for the skyline and
top-k methods (SLFlexSKY and SLFlexT K). For the skyline case, we also compare with
JCustSKY . We do not implement a custom join algorithm for top-k, as the FlexPref top-
k sorted list implementation actually reduces to an m-way version of the custom join
specified in Ilyas et al. [2003]. Figure 7 gives the runtimes for both skyline and top-k
as the table sizes increase from 500K to 3M tuples. The results confirm the efficiency
of the general sorted list access framework of FlexPref. As input size increases, the
sorted list method makes use of the stopping condition in order to end I/O earlier
during processing. Of course, the FlexPref join framework must read every input tuple
in order to perform the full join. Interestingly, the custom skyline join JCustSKY shows
poorer performance than both FlexPref implementations. This poor performance is due
to JCustSKY needing to materialize every intermediate join result in the query tree in
order to find a global skyline for the input to the subsequent join.

9.3. Single-Table Access

This experiment studies the performance of the skyline and k-dominance preference
implementations for a single-table access query. The query signature is the following.

Select * From T
Preferring T.d1 AND ... AND T.d6

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:36 J. J. Levandoski et al.

 0

 2

 4

 6

 8

 10

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

FlexSKY
CustSKY

CustSKY-SFS

(a) skyline

 0

 2

 4

 6

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

FlexKDOM
CustKDOM

(b) k-dominance

Fig. 8. Single-table preference evaluation.

Figures 8(a) and 8(b) give the runtimes for the skyline and k-dominance methods,
respectively, as the table cardinality is increased from 500K to 3M tuples. Both the
FlexPref skyline and k-dominance implementations (FlexSKY and FlexKDOM) show infe-
rior performance to their counterpart custom implementations (CustSKY , CustSKY−SFS,
and CustKDOM). Implemented as user-defined functions, CustSKY , CustSKY−SFS, and
CustKDOM resemble a specialized approach for this experiment as they are designed
to read data from a single, unsorted table. As expected, CustSKY−SFS shows superior
performance to the generic BNL implementation of CustSKY as reported in previous
work [Chomicki et al. 2003; Godfrey et al. 2005]. We emphasize that it is not the ob-
jective of FlexPref to win over these very specialized implementations for this case of
single-table access. The power of FlexPref appears in: (a) its support for optimizing more
sophisticated queries, as we studied in previous experiments, where any preference
method in FlexPref is coupled with nontrivial database operations, and (b) its practical
approach to implementing a wide array of preference evaluation methods, which would
require a great amount of effort without FlexPref. Regardless, FlexSKY and FlexKDOM
display linear behavior similar to CustSKY and CustKDOM, as the FlexPref single-table
access algorithm cuts its inner loop immediately when an outer object is found to be
dominated, thus staying competitive with the customized algorithms [Börzsönyi et al.
2001; Chan et al. 2006a].

9.4. FlexPref Query Optimization

This experiment studies the efficiency gains when FlexPref operators can be optimized
alongside existing relational operators. Specifically, we investigate performance gains
when the selection (Section 9.4.1) and projection (Section 9.4.2) operator can be pushed
completely below the single-table FlexPref operator.

9.4.1. Pushing Selection. In this experiment, we study the performance gain when the
selection operator can be pushed below the single-table FlexPref operator. The general
SQL signature is as follows.

Select * From T
Preferring T.d1 AND ... AND T.d6
Using Skyline
Where T.d1 < X

The variable X allows for various selectivity ratios. These experiments use the skyline
implementation due to its ability to commute with selection (Section 8.1).

Figure 9(a) plots the runtimes for the skyline method as the table cardinality in-
creases from 500K to 3M tuples when the selectivity is set to 10%. When selection is
pushed below FlexPref (labeled FlexSKY−Push), we see approximately a factor of seven
speedup for all data sizes when compared to the case when selection is performed after
preference evaluation (labeled FlexSKY−NoPush). This performance gain is due to se-
lection filtering a large number of tuples before reaching the more expensive FlexPref

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:37

 0

 2

 4

 6

 8

 10

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

FlexSKY-Push
FlexSKY-NoPush

(a) 10% selectivity

 0

 2

 4

 6

 8

 10

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

FlexSKY-Push
FlexSKY-NoPush

(b) 30% selectivity

 0

 2

 4

 6

 8

 10

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

FlexSKY-Push
FlexSKY-NoPush

(c) projection (50% of attributes)

Fig. 9. Query optimization experiments.

operator. Figure 9(b) plots the same query for a selectivity of 30%. Even with this higher
selectivity ratio, we see approximately a speedup of four when selection is pushed below
the FlexPref operator.

9.4.2. Pushing Projection. This experiment studies the performance improvement when
the projection operator can be pushed below the single-table FlexPref operator. The
general SQL signature is the following.

Select T.d1, T.d2, T.d3 From T
Preferring T.d1 AND ... AND T.d3
Using Skyline

For this query, the projection operator removes half of the attributes from the default
six-attribute tuples in table T (i.e., T.d4, T.d5, T.d6). This query is legal according to the
rules for commuting projection with the FlexPref operator as discussed in Section 6.3.3,
as none of the attributes removed by projection takes part in preference evaluation.
Figure 9(c) provides the query performance numbers when projection is pushed below
the FlexPref operator implementing the skyline method (labeled FlexSKY−Push) and
when projection is done after the FlexPref operator (labeled FlexSKY−NoPush). Here, we
see a small constant speedup when projection is pushed below the FlexPref operator.
For both query plans, FlexPref must process all tuples in table T. However, for the
FlexSKY−Push approach, the tuples processed by FlexPref are 50% smaller, which is the
reason for the better performance.

10. CONCLUSION

This article presented FlexPref, a general framework for extensible preference eval-
uation. FlexPref is implemented in the query processor of a database, and supports
various preference evaluation methods. Implementing a new preference method re-
quires the registration of only three functions that capture its essence. Once integrated,
the preference method “lives” at the core of the database, enabling the efficient exe-
cution of preference queries involving common database operations. We provided the
details of how FlexPref is integrated into three database operations: single-table access
(preference selection), joins, and sorted list access. We provided a query optimization
framework for FlexPref, as well as a theoretical framework that defines the proper-
ties a preference method must exhibit to be implemented in FlexPref. We detailed the
implementation of seven state-of-the-art preference methods within FlexPref. We also
provided experimental evidence that verified the ability of FlexPref to provide effi-
cient query support for arbitrary preference queries. FlexPref lays the groundwork for
further generic and extensible support for preference evaluation in databases, includ-
ing, but not limited to uncertainty handling, indexing, and integration with aggregate
operators.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:38 J. J. Levandoski et al.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

10:10 30:30 50:50 70:70 90:90

Ti
m

e
(s

ec
)

Join Ratio

CustSKY
CustSKY-SFS

JFlexSKY

(a) sky (vs custom)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10:10 30:30 50:50 70:70 90:90

Ti
m

e
(s

ec
)

Join Ratio

CustKDOM
JFlexKDOM

(b) k-dom (vs custom)

Fig. 10. Three-table join.

APPENDIXES

This appendix supplements the main body of the article as follows. Appendix A pro-
vides further experimental evaluation of FlexPref. Appendix B provides a single-page
implementation summary for all of the case studies presented in Section 8.

A. FURTHER EXPERIMENTAL EVALUATION

This section provides further experimental evaluation of FlexPref. We begin by provid-
ing further evidence of FlexPref ’s usefulness in multitable join queries. We then eval-
uate FlexPref using data generated using both anticorrelated and correlated datasets.

A.1. Three-Table Join Query

This experiment expands on the multitable join query presented in Section 9 by using
a three-table join query to evaluate FlexPref compared to CustSKY , CustSKY−SFS, and
CustKDOM. The SQL signature for this experiment is as follows.

Select * From T1, T2, T3 WHERE T1.id = T2.id = T3.id
Preferring T1.d1 AND T1.d2 AND T1.d3

AND T2.d1 AND T2.d2 AND T2.d3
AND T3.d1 AND T3.d2 AND T3.d3

Figure 10(a) provides the results for the skyline query. In this case the prune
optimization of JFlexSKY leads to two orders of magnitude performance speedup over
both CustSKY and CustSKY−SFS. Since this is a nonreductive join, the input to both
CustSKY and CustSKY−SFS explodes as the number of joins increases. The runtime of
both increases by an order of magnitude compared to the two-table join experiment
in Section 9. Since neither CustSKY nor CustSKY−SFS perform preference evaluation
after the join, they can do nothing to limit the input. Meanwhile, JFlexSKY scales
well with the addition of another join, exhibiting a runtime of 26 seconds in the worst
case, compared to 3710 and 3029 seconds for CustSKY and CustSKY−SFS, respectively.
Figure 10(b) plots the results for the k-dominance query. As expected, the overall
runtime for CustKDOM is higher than the two-table query. The runtime for JFlexKDOM
is comparatively higher as well, but still exhibits an order of magnitude speedup
compared to CustKDOM for higher join ratios.

A.2. Correlated and Anticorrelated Data

This experiment explores how FlexPref performs when run on data with correlated
and anticorrelated dimensions. For each dataset, we rerun the single-table experiment
from Section 9. Figures 11(a) and 11(b) report the results for the correlated data. On the
whole, the algorithms exhibit better (or same) performance than when using the inde-
pendent dataset in Section 9. The custom implementations still show a general trend of
besting FlexPref in this setting. As discussed previously, it is not the objective of Flex-
Pref to win against specialized implementations for single-table queries; the previous

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:39

Table VI. Implementation Summary for Case Studies

IsTransitive DefaultScore PairwiseCompare IsPreferredObject AddPreferredToSet StopSortedEval

Skyline true 1 If P dominates
Q, return 1. If Q
dominates P,
update Pscore to 0
and return −1.
Otherwise,
return 0

If object score Pscore

equals 1, return
true. Otherwise
return false.

Add object P to
the end of set S.

Stop once there is
a complete object
Q in set P

Top-k
Domination

true 0 If P dominates
Q, increment
Pscore by 1.
Return 0

If the cardinality of
S is less than k or
Pscore is superior to
the kth object’s
score in S, return
true. False
otherwise.

If S has a
cardinality of k,
remove the kth

object from S. Add
P to S in sorted
order by Pscore .

Stop once there
are k complete
objects in set P.

K-Dominance false 1 If P
k-dominates Q,
return 1. If Q
k-dominates P,
set Pscore = 0,
return −1. Else
return 0.

If object score Pscore

equals 1, return
true. Otherwise
return false.

Add object P to
the end of set S.

Stop once set P
contains an object
Q with at most
k − 1 incomplete
dimensions, and Q
k-dominates
virtual object O,
and O cannot
k-dominate Q.

K-Frequency true 0 Increment Pscore

based on the
distinct
sub-dimensions
where Q
dominates P.
Return 0.

If |S| < k or Pscore

is superior to the
kth object’s score in
S, return true.
Otherwise, return
false.

If S has a
cardinality of k,
remove the kth

object from S. Add
P to S in sorted
order by Pscore .

Stop once there is
a complete object
Q in set P.

Top-K true 0 Return −1 Assign a score to
Pscore using
ranking function
f . If the
cardinality of S is
less than k or Pscore

is superior to the
kth object’s score in
S, return true.
Otherwise, return
false.

If S has a
cardinality of k,
remove the kth

object from S. Add
P to S in sorted
order by Pscore .

Stop once P
contains k
complete objects
that have scores ≤
a given threshold
value T. T =
MIN(f (O[1],F[2]
. . . ,F[n]),
f (F[1],O[2],
. . . ,F[n]),
f (F[1],F[2]
. . . ,O[n])).

Epsilon
Dominance

if ε > 0.
true

else false

0 If P ε-dominates
Q, return 1. If Q
ε-dominates P,
set the score of P
to zero, and
return −1. Else,
return 0.

Return true if the
score of P is one.
Otherwise return
false.

Append P to the
end of set S.

If ε ≤ 0, stop once
there is a
complete object Q
in set P. If ε > 0,
stop once there is
a complete point
Q in P that is not
e-dominated by
virtual point O.

k-
Representative
Skyline

true 0 If P dominates
Q, increment
Pscore and return
0

Compare P to
object in S, if P is a
skyline return
true. Otherwise,
return false.

Add P to S in
sorted order by
the score of P;
also remove any
non-skyline
objects from S.

Same as the
skyline method.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:40 J. J. Levandoski et al.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 1 2 3 4 5

Ti
m

e
(s

ec
)

Data Size

CustSKY
CustSKY-SFS

FlexSky

(a) sky (corr)

 0
 1
 2
 3
 4
 5
 6
 7
 8

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

CustKDOM
FlexKDOM

(b) k-dom (cor)

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5

Ti
m

e
(s

ec
)

Data Size

CustSKY
CustSKY-SFS

FlexSky

(c) sky (anti)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

500K 1M 1.5M 2M 2.5M 3M

Ti
m

e
(s

ec
)

Data Size

CustKDOM
FlexKDOM

(d) k-dom (anti)

Fig. 11. Single-table preference evaluation with correlated and anticorrelated data.

join query experiments show that FlexPref is clearly advantageous for more complex
preference queries. Figures 11(c) and 11(d) plot the results for the anticorrelated data.
These results exhibit the same general trend as the previous experiments.

B. IMPLEMENTATION SUMMARY FOR CASE STUDIES

This section provides a compact implementation summary for all case studies presented
in Section 8. Table VI provides this summary; the rows correspond to a preference
method, while the columns correspond to each pluggable function of the framework.

REFERENCES

AGRAWAL, R., RANTZAU, R., AND TERZI, E. 2006. Context-sensitive ranking. In Proceedings of the Annual ACM
SIGMOD Conference on Management of Data. 383–394.

AGRAWAL, R. AND WIMMERS, E. L. 2000. A framework for expressing and combining preferences. In Proceedings
of the Annual ACM SIGMOD Conference on Management of Data. 297–306.

ARVANITIS, A. AND KOUTRIKA, G. 2012. Towards preference-aware relational databases. In Proceedings of the
International Conference on Data Engineering (ICDE’12). 426–437.

BALKE, W.-T. AND GUNTZER, U. 2004. Multi-objective query processing for database systems. In Proceedings of
the International Conference on Very Large Databases (VLDB’04). 936–947.

BALKE, W.-T., GUNTZER, U., AND ZHENG, J. X. 2004. Efficient distributed skylining for web information systems.
In Proceedings of the International Conference on Extending Database Technology (EDBT’04). 597–608.

BATORY, D. S. 1986. Extensible cost models and query optimization in genesis. IEEE Data Engin. Bull. 9, 4
(1986), 30–36.

BATORY, D. S., BARNETT, J. R., GARZA, J. F., SMITH, K. P., TSUKUDA, K., TWICHELL, B. C., AND WISE, T. E. 1988.
GENESIS: An extensible database management system. IEEE Trans. Softw. Engin. 14, 11, 1711–1730.

BATORY, D. S. AND MANNINO, M. V. 1986. Panel on extensible database systems. In Proceedings of the Annual
ACM SIGMOD Conference on Management of Data. 187–190.

BORZSONYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of the International
Conference on Data Engineering (ICDE’01). 421–430.

CAREY, M. J. AND DEWITT, D. J. 1987. An overview of the exodus project. IEEE Data Engin. Bull. 10, 2, 47–54.
CAREY, M. J., DEWITT, D. J., FRANK, D., GRAEFE, G., RICHARDSON, J. E., SHEKITA, E. J., AND MURALIKRISHNA,

M. 1991. The architecture of the exodus extensible dbms. In On Object-Oriented Database Systems.
Springer, 231–256.

CAREY, M. J. AND HAAS, L. M. 1990. Extensible database management systems. SIGMOD Rec. 19, 4, 54–60.
CAREY, M. J. AND KOSSMANN, D. 1997. On saying “enough already!” in SQL. In Proceedings of the Annual ACM

SIGMOD Conference on Management of Data. 219–230.
CHAN, C. Y., ENG, P.-K., AND TAN, K.-L. 2005. Efficient processing of skyline queries with partially-ordered

domains. In Proceedings of the International Conference on Data Engineering (ICDE’05). 190–191.
CHAN, C.-Y., JAGADISH, H. V., TAN, K.-L., TUNG, A. K. H., AND ZHANG, Z. 2006a. Finding k-dominant skylines

in high dimensional space. In Proceedings of the Annual ACM SIGMOD Conference on Management of
Data. 503–514.

CHAN, C.-Y., JAGADISH, H. V., TAN, K.-L., TUNG, A. K. H., AND ZHANG, Z. 2006b. On high dimensional skylines.
In Proceedings of the International Conference on Extending Database Technology (EDBT’06). 478–495.

CHANG, K. C.-C. AND HWANG, S. 2002. Minimal probing: Supporting expensive predicates for top-k queries. In
Proceedings of the Annual ACM SIGMOD Conference on Management of Data. 346–357.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:41

CHAUDHURI, S., DALVI, N. N., AND KAUSHIK, R. 2006. Robust cardinality and cost estimation for skyline operator.
In Proceedings of the International Conference on Data Engineering (ICDE’06). 64.

CHAUDHURI, S. AND GRAVANO, L. 1999. Evaluating top-k selection queries. In Proceedings of the International
Conference on Very Large Databases (VLDB’99). 397–410.

CHOMICKI, J. 2002. Querying with intrinsic preferences. In Proceedings of the International Conference on
Extending Database Technology (EDBT’02). 34–51.

CHOMICKI, J. 2003. Preference formulas in relational queries. ACM Trans. Datab. Syst. 28, 4, 427–466.
CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2003. Skyline with presorting. In Proceedings of the Inter-

national Conference on Data Engineering (ICDE’03). 717–816.
COMER, D. 1979. The ubiquitous b-tree. Comm. ACM 11, 2, 121–137.
COPELAND, G. P. AND KHOSHAFIAN, S. N. 1985. A decomposition storage model. In Proceedings of the Annual

ACM SIGMOD Conference on Management of Data. 268–279.
ENDRES, M. AND KIEβLING, W. 2011. Semi-skyline optimization of constrained skyline queries. In Proceedings

of the Australian Database Conference (ADC’11). 7–16.
FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middleware. In Proceedings of

the Symposium on Principles of Database Systems (PODS’01). 102–113.
GODFREY, P. 2004. Skyline cardinality for relational processing. Foundat. Inf. Knowl. Syst. 2942, 1, 78–97.
GODFREY, P., SHIPLEY, R., AND GRYZ, J. 2005. Maximal vector computation in large data sets. In Proceedings of

the Annual ACM SIGMOD Conference on Management of Data. 229–240.
GRAEFE, G. 1994. Volcano - An extensible and parallel query evaluation system. IEEE Trans. Knowl. Data

Engin. 6, 1, 120–135.
GRAEFE, G. AND DEWITT, D. J. 1987. The exodus optimizer generator. In Proceedings of the Annual ACM

SIGMOD Conference on Management of Data. 160–172.
GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings of the Annual

ACM SIGMOD Conference on Management of Data. 47–57.
HAAS, L. M., FREYTAG, J. C., LOHMAN, G. M., AND PIRAHESH, H. 1989. Extensible query processing in starburst.

In Proceedings of the Annual ACM SIGMOD Conference on Management of Data. 377–388.
HAFENRICHTER, B. AND KIEβLING, W. 2005. Optimization of relational preference queries. In Proceedings of the

Australian Database Conference (ADC’05). 175–184.
HELLERSTEIN, J. M., NAUGHTON, J. F., AND PFEFFER, A. 1995. Generalized search trees for database systems. In

Proceedings of the International Conference on Very Large Databases (VLDB’95). 562–573.
ILYAS, I. F., AREF, W. G., AND ELMAGARMID, A. K. 2002. Joining ranked inputs in practice. In Proceedings of the

International Conference on Very Large Databases (VLDB’02). 950–961.
ILYAS, I. F., AREF, W. G., AND ELMAGARMID, A. K. 2003. Supporting top-k join queries in relational databases. In

Proceedings of the International Conference on Very Large Databases (VLDB’03). 754–765.
ILYAS, I. F., BESKALES, G., AND SOLIMAN, M. A. 2008. A survey of top-k query processing techniques in relational

database systems. ACM Comput. Surv. 40, 4.
ILYAS, I. F., SHAH, R., AREF, W. G., VITTER, J. S., AND ELMAGARMID, A. K. 2004. Rank-aware query optimization.

In Proceedings of the Annual ACM SIGMOD Conference on Management of Data. 203–214.
JIN, W., ESTER, M., HU, Z., AND HAN, J. 2007. The multi-relational skyline operator. In Proceedings of the

International Conference on Data Engineering (ICDE’07). 1276–1280.
JIN, W., MORSE, M., PATEL, J., ESTER, M., AND HU, Z. 2010. Evaluating skylines in the presence of equi-joins.

In Proceedings of the International Conference on Data Engineering (ICDE’10). 249–260.
KABRA, N. AND DEWITT, D. J. 1999. OPT: An object-oriented implementation for extensible database query

optimization. VLDB J. 8, 1, 55–78.
KIEβLING, W. 2002. Foundations of preferences in database systems. In Proceedings of the International

Conference on Very Large Databases (VLDB’02). 311–322.
KIEβLING, W. 2005. Preference queries with SV-semantics. In Proceedings of the International Conference on

Management of Data (COMAD’05). 16–26.
KIEβLING, W., ENDRES, M., AND WENZEL, F. 2011. The preference SQL system - An overview. IEEE Data Engin.

Bull. 34, 2, 11–18.
KIEβLING, W. AND KOSTLER, G. 2002. Preference SQL - Design, implementation, experiences. In Proceedings of

the International Conference on Very Large Databases (VLDB’02). 990–1001.
KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: An online algorithm for skyline

queries. In Proceedings of the International Conference on Very Large Databases (VLDB’02). 275–286.
KOUTRIKA, G. AND IOANNIDIS, Y. 2004. Personalization of queries in database systems. In Proceedings of the

International Conference on Data Engineering (ICDE’04). 597–608.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

17:42 J. J. Levandoski et al.

KOUTRIKA, G. AND IOANNIDIS, Y. 2005a. Constrained optimalities in query personalization. In Proceedings of
the Annual ACM SIGMOD Conference on Management of Data. 73–84.

KOUTRIKA, G. AND IOANNIDIS, Y. E. 2005b. Personalized queries under a generalized preference model. In
Proceedings of the International Conference on Data Engineering (ICDE’05). 841–852.

KOUTRIKA, G., PITOURA, E., AND STEFANIDIS, K. 2010. Preferences in databases. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE’10). 1214–1215.

LACROIX, M. AND LAVENCY, P. 1987. Preferences: Putting more knowledge into queries. In Proceedings of the
International Conference on Very Large Databases (VLDB’87). 217–225.

LEE, J., YOU, G. W., AND HWANG, S. W. 2009. Personlized top-k skyline queries in high-dimensional space. Inf.
Syst. 34, 1, 45–61.

LEVANDOSKI, J. J., KHALEFA, M., AND MOKBEL, M. F. 2010a. A demonstration of flexpref: Extensible prefer-
ence evaluation inside the DBMS engine. In Proceedings of the Annual ACM SIGMOD Conference on
Management of Data. 1247–1250.

LEVANDOSKI, J. J., KHALEFA, M., AND MOKBEL, M. F. 2010b. FlexPref: A framework for extensible preference
evaluation in database systems. In Proceedings of the International Conference on Data Engineering
(ICDE’10). 828–839.

LI, C., CHANG, K. C.-C., ILYAS, I. F., AND SONG, S. 2005. RankSQL: Query algebra and optimization for relational
top-k queries. In Proceedings of the Annual ACM SIGMOD Conference on Management of Data. 131–142.

LIN, X., YUAN, Y., ZHANG, Q., AND ZHANG, Y. 2007. Selecting stars: The k most representative skyline operator.
In Proceedings of the International Conference on Data Engineering (ICDE’07). 86–95.

LINNEMANN, V., KSPERT, K., DADAM, P., PISTOR, P., ERBE, R., KEMPER, A., SDKAMP, N., WALCH, G., AND WALLRATH,
M. 1988. Design and implementation of an extensible database management system supporting user
defined data types and functions. In Proceedings of the International Conference on Very Large Databases
(VLDB’88). 294–305.

LOHMAN, G. M., LAPIS, G., LEHMAN, T. J., AGRAWAL, R., COCHRANE, R., MCPHERSON, J., MOHAN, C., PIRAHESH, H., AND

WIDOM, J. 1991. Starburst II: The extender strikes back! In Proceedings of the Annual ACM SIGMOD
Conference on Management of Data. 447.

LYNCH, C. A. AND STONEBRAKER, M. 1988. Extended user-defined indexing with application to textual databases.
In Proceedings of the International Conference on Very Large Databases (VLDB’88). 306–317.

OLSON, S., PLEDEREDER, R., SHAW, P., AND YACH, D. 1998. The sybase architecture for extensible data manage-
ment. IEEE Data Engin. Bull. 21, 3, 12–24.

ONG, J., FOGG, D., AND STONEBRAKER, M. 1984. Implementation of data abstraction in the relational database
system ingres. SIGMOD Rec. 14, 1, 1–14.

OSBORN, S. L. AND HEAVEN, T. E. 1986. The design of a relational database system with abstract data types for
domains. ACM Trans. Datab. Syst. 11, 3, 357–373.

PIRAHESH, H., HELLERSTEIN, J. M., AND HASAN, W. 1992. Extensible/rule based query rewrite optimization in
starburst. In Proceedings of the Annual ACM SIGMOD Conference on Management of Data. 447.

POSTGRESQL. 2013. http://www.postgresql.org.
RAGHAVAN, V. AND RUNDENSTEINER, E. 2010. Progressive result generation for multi-criteria decision support

queries. In Proceedings of the International Conference on Data Engineering (ICDE’10). 733–744.
REINWALD, B. AND PIRAHESH, H. 1998. SQL open heterogeneous data access. In Proceedings of the Annual ACM

SIGMOD Conference on Management of Data. 506 –507.
REINWALD, B., PIRAHESH, H., KRISHNAMOORTHY, G., LAPIS, G., TRAN, B. T., AND VORA, S. 1999. Heterogeneous

query processing through SQL table functions. In Proceedings of the International Conference on Data
Engineering (ICDE’99). 366–373.

ROOCKS, P., ENDRES, M., MANDL, S., AND KIEβLING, W. 2012. Composition and efficient evaluation of context-
aware preference queries. In Proceedings of the International Conference on Database Systems for Ad-
vanced Applications (DASFAA’12). 81–95.

SHAPIRO, L. D. 1986. Join processing in database systems with large main memories. ACM Trans. Datab.
Syst. 11, 3, 239–264.

SRINIVASAN, J., MURTHY, R., SUNDARA, S., AGARWAL, N., AND DEFAZIO, S. 2000. Extensible indexing: A frame-
work for integrating domain-specific indexing schemes into oracle8i. In Proceedings of the International
Conference on Data Engineering (ICDE’00). 91–100.

STEFANIDIS, K., KOUTRIKA, G., AND PITOURA, E. 2011. A survey on representation, composition and application
of preferences in database systems. ACM Trans. Database Syst. 36, 3.

STEFANIDIS, K. AND PITOURA, E. 2008. Fast contextual preference scoring of database tuples. In Proceedings of
the International Conference on Extending Database Technology (EDBT’08). 344–355.

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

Flexible and Extensible Preference Evaluation in Database Systems 17:43

STEFANIDIS, K., PITOURA, E., AND VASSILIADIS, P. 2007. Adding context to preferences. In Proceedings of the
International Conference on Data Engineering (ICDE’07). 846–855.

STONEBRAKER, M. 1986. Inclusion of new types in relational data base systems. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE’86). 262–269.

STONEBRAKER, M., ANTON, J., AND HANSON, E. N. 1987. Extending a database system with procedures. ACM
Trans. Datab. Syst. 12, 3, 350–376.

STONEBRAKER, M. AND ROWE, L. A. 1986. The design of postgres. In Proceedings of the Annual ACM SIGMOD
Conference on Management of Data. 340–355.

TAO, Y., DING, L., LIN, X., AND PEI, J. 2009. Distance-based representative skyline. In Proceedings of the
International Conference on Data Engineering (ICDE’09). 892–903.

VLACHOU, A., DOULKERIDIS, C., AND POLYZOTIS, N. 2011. Skyline query processing over joins. In Proceedings of
the Annual ACM SIGMOD Conference on Management of Data. 73–84.

WAAS, F. M. AND HELLERSTEIN, J. M. 2009. Parallelizing extensible query optimizers. In Proceedings of the
Annual ACM SIGMOD Conference on Management of Data. 871–878.

WENZEL, F., ENDRES, M., MANDL, S., AND KIEβLING, W. 2012. Complex preference queries supporting spatial
applications for user groups. Proc. VLDB Endow. 5, 12, 1946–1949.

WILSHUT, A. N. AND APERS, P. M.G. 1993. Dataflow query execution in a parallel main-memory environment.
Distrib. Parallel Datab. 1, 1, 103–128.

WONG, R. C., FU, A. W., PEI, J., HO, Y. S., WONG, T., AND LIU, Y. 2008. Efficient skyline querying with variable
user preferences on nominal attributes. In Proceedings of the International Conference on Very Large
Databases (VLDB’08). 1032–1043.

XIA, T., ZHANG, D., AND TAO, Y. 2008. On skylining with flexible dominance relation. In Proceedings of the
International Conference on Data Engineering (ICDE’08). 1397–1399.

YIU, M. L. AND MAMOULIS, N. 2007. Efficient processing of top-k dominating queries on multi-dimensional
data. In Proceedings of the International Conference on Very Large Databases (VLDB’07). 483–494.

ZHANG, Z., YANG, Y., CAI, R., PAPADIAS, D., AND TUNG, A. 2009. Kernel-based skyline cardinality estimation. In
Proceedings of the Annual ACM SIGMOD Conference on Management of Data. 509–522.

Received January 2012; revised April 2013; accepted June 2013

ACM Transactions on Database Systems, Vol. 38, No. 3, Article 17, Publication date: August 2013.

