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Abstract—The recent explosion in the amount of spatial data
calls for specialized systems to handle big spatial data. In this
paper, we discuss the main features and components that needs
to be supported in a system to handle big spatial data efficiently.
We review the recent work in the area of big spatial data
according to these four components, namely, language, indexing,
query processing, and visualization. We describe each component,
in details, and give examples of how it is implemented in existing
work. After that, we describe a few case studies of systems for big
spatial data and show how they support these four components.
This assists researchers in understanding the different design
approaches and highlights the open research problems in this
area. Finally, we give examples of real applications that make
use of these systems to handle big spatial data.

I. INTRODUCTION

In recent years, there has been an explosion in the amounts
of spatial data produced by several devices such as smart
phones, space telescopes, medical devices, among others. For
example, space telescopes generate up to 150 GB weekly spa-
tial data [1], medical devices produce spatial images (X-rays)
at a rate of 50 PB per year [2], a NASA archive of satellite
earth images has more than 500 TB and is increased daily by
25 GB [3], while there are 10 Million geotagged tweets issued
from Twitter every day as 2% of the whole Twitter firehose [4],
[5]. Meanwhile, various applications and agencies need to
process an unprecedented amount of spatial data. For example,
the Blue Brain Project [6] studies the brain’s architectural
and functional principles through modeling brain neurons as
spatial data. Epidemiologists use spatial analysis techniques
to identify cancer clusters [7], track infectious disease [8],
and drug addiction [9]. Meteorologists study and simulate
climate data through spatial analysis [10]. News reporters use
geotagged tweets for event detection and analysis [11].

Unfortunately, the urgent need to manage and analyze big
spatial data is hampered by the lack of specialized systems,
techniques, and algorithms to support such data. For example,
while big data is well supported with a variety of Map-Reduce-
like systems and cloud infrastructure (e.g., Hadoop [12],
Hive [13], HBase [14], Impala [15], Dremel [16], Vertica [17],
and Spark [18]), none of these systems or infrastructure
provide any special support for spatial or spatio-temporal data.
In fact, the only way to support big spatial data is to either
treat it as non-spatial data or to write a set of functions as
wrappers around existing non-spatial systems. However, doing
so does not take any advantage of the properties of spatial and
spatio-temporal data, hence resulting in sub-par performance.

The importance of big spatial data, which is ill-supported
in the systems mentioned above, motivated many researchers
to extend these systems to provide distributed systems for

big spatial data. These extended systems natively support
spatial data which makes them very efficient when handling
spatial data. This includes (1) MapReduce systems such as
Hadoop-GIS [19], ESRI Tools for Hadoop [20], [21], and
SpatialHadoop [22]; (2) Parallel DB systems such as Parallel
Secondo [23]; (3) Systems built on key-value stores such as
MD-HBase [24] and GeoMesa [25]; and (4) Systems that use
resilient distributed datasets (RDD) such as SpatialSpark [26]
and GeoTrellis [27].

In this paper, we describe the general design of a system
for big spatial data. This design in inspired by the existing
systems and as it covers the functionality provided by these
systems. Our goal is to allow system designers to understand
the different aspects of big spatial data in order to help them
in two directions. First, it is helpful to researchers pursuing
research in existing systems to decide the possible directions
of advancing their research. To better support them, we provide
examples of how each feature is implemented in different
systems, which makes it easy to choose the most suitable
approach depending on system architecture. Second, this paper
helps researchers who are planning to build a new system for
big spatial data, to figure out the components that needs to be
there to efficiently support big spatial data. As more distributed
systems for big non-spatial data are emerging, we expect that
there will be more work to extend those systems to support
spatial data. In this case, this paper serves as a guideline of
which components should be implemented in the system.

The system design we propose in this paper contains
four main components, namely, language, indexing, query
processing, and visualization. The language is a simple high
level language that allows non-technical users to interact with
the system. The indexing component adapts existing spatial
indexes, such as R-tree and Quad tree, to the distributed
environment so that spatial queries would run more efficiently.
The query processing component contains a set of spatial
queries that are implemented efficiently in the system. Finally,
the visualization component allows data to be displayed as an
image which makes it easy for users to explore and understand
big datasets. Based on these four components, we study the
available systems for big spatial data and discuss how they
are designed based on these four components. We also discuss
some applications that can make use of big spatial data systems
and how the corresponding systems are designed to meet the
requirements of this application.

The rest of this paper is organized as follows. Section II
gives an overview of the system design. The four components
are described in Sections III-VI. Sections VII and VIII provide
use cases of systems and applications for big spatial data,
respectively. Finally, Section IX concludes the paper.



II. OVERVIEW

In this section we provide an overview of the proposed
system design for big spatial data. The system consists of four
components, namely, language, indexing, query processing,
and visualization, as described briefly below.

The language component hides all complexities of the system
by providing a simple high level language which allows non-
technical users to access system functionality without worrying
about its implementation details. This language should contain
basic spatial support including standard data types and func-
tions. Section III contains more details about the language.

The indexing component is responsible of storing datasets
using standard spatial indexes in the distributed storage. One
way to adapt existing indexes to distributed environments is
through a two-level structure of global and local indexes,
where the global index partitions data across machines, while
the local indexes organize records in each partition. In addition
to storing indexes on disk, there should be additional compo-
nents which allow the query processing engine to access these
indexes while processing a spatial query. Details of spatial
indexing is given in Section IV.

The query processing component encapsulates the spatial
operations that are implemented in the system using the
constructed spatial indexes. This component also needs to
be extensible to allow developers to implement new spatial
operations that also access the spatial indexes. Details of the
query processing in discussed in Section V.

The visualization component allows users to display datasets
stored in the system by generating an image out of them.
The graphical representation of spatial data is more common
for end users as it allows them to explore and visualize new
datasets. The generated image should be of a very high quality
(i.e., high resolution) to allow users to zoom into a specific
region and see more details. This is particularly important for
big spatial data because a small image of a low resolution
would not contain enough details to describe such a big dataset.
Details of the visualization is described in Section VI.

III. LANGUAGE

As most users of systems for big spatial data are not
from computer science, it is urgent for these systems to
provide an easy-to-use high level language which hides all the
complexities of the system. Most systems for big non-spatial
data are already equipped with a high level language, such as,
Pig Latin [28] for Hadoop, HiveQL for Hive [13], and Scala-
based language for Spark [18]. It makes more sense to reuse
these existing languages rather than proposing a completely
new language for two reasons. First, it makes it easier to adopt
by existing users of these systems as they do not need to learn
a totally new language. Second, it makes it possible to process
data that has both spatial and non-spatial attributes through the
same program because the introduction of spatial constructs
should not disable any of its existing features of the language.

Extending a language to support spatial data incorporates
the introduction of spatial data types and spatial opera-
tions. The Open Geospatial Constortium (OGC) [29] defines
standards for spatial data types and spatial operations to be
supported by this kind of systems. Since these standards

are already adopted by existing spatial databases including
PostGIS [30] and Oracle Spatial [31], it is recommended to
follow these standards in new systems to make it easier for
users to adopt. It also makes it possible to integrate with
these existing systems by exporting/importing data in OGC-
standard formats such as Well-Known Text (WKT). OGC
standards are already adopted in three languages for big spatial
data, Pigeon [32] which extends Pig Latin, ESRI Tools for
Hadoop [20] which extends HiveQL, and the contextual query
language (CQL) used in GeoMesa [25].

IV. INDEXING

Input files in traditional systems are not spatially orga-
nized which means that spatial attributes are not taken into
consideration to decide where to store each record. While
this is acceptable for traditional applications for non-spatial
data, it results in sub-performance for spatial applications.
There is already a large number of index structures designed
to speed up spatial query processing (e.g., R-tree [33], Grid
File [34], and Quad Tree [35]). However, migrating these
indexes to other systems for big data is challenging given the
different architectures used in each one. In this section, we
first give an example of how spatial indexes are implemented
in the Hadoop MapReduce environment and then show how
to generalize the described method to support other indexes
in other environments. After that, we show how these indexes
are made available to the query processing engine.

A. Spatial Indexing in Hadoop

In the Hadoop MapReduce environment, there are two
main limitations which make it challenging to adopt a tra-
ditional index such as an R-tree. (1) These data structures are
designed for procedural programming where a program runs
as sequential statements while Hadoop employs a functional
MapReduce programming where the program consists of a
map and reduce functions and Hadoop controls how these two
functions are executed. (2) A file in Hadoop Distributed File
System can be written in append only manner and cannot be
modified which is very limiting compared to traditional file
systems where files can be modified.

In [19], [21], [22], these two challenges are overcome in
Hadoop by employing a two-layer index structure consisting of
one global index and multiple local indexes. In this approach,
the input file is first partitioned across machines according
to a global index, and then each partition is independently
indexed using a local index. (1) This approach lends itself
to the MapReduce programming paradigm where partitions
can be processed in parallel using a MapReduce job. (2) It
overcomes the limitations of HDFS where the small size of
each partition allows it to be bulk loaded in memory and then
written to HDFS in a sequential manner. Figure 1 shows an
example of an R-tree index where each rectangle represents
a partition in the file stored as one HDFS block (64MB).
To keep the size of each partition within 64MB, dense areas
(e.g., Europe) contain smaller rectangles while sparse areas
(e.g., oceans) contain larger rectangles. When a range query,
for example, runs on that index, it can achieve orders of
magnitude better performance by quickly pruning partitions
that are outside query range as they do not contribute to the
answer.



Fig. 1.

B. Other Spatial Indexes

Most systems for big spatial data share the same two
limitations of Hadoop. For example, Hive, Spark, and Impala,
all use HDFS as a storing engine. Also, Spark employs RDD
as a another functional programming paradigm. Thus, the
two-layer design described above can be employed in other
systems. However, there are three design decisions that should
be considered when designing a distributed spatial..

1. Global/Local index types: An index might have a global
index only, local indexes only, or both, and the types of global
and local indexes do not have to be the same. For example, a
uniform grid index is constructed using only a global index of
a uniform grid [19], [22], an R-tree distributed index uses R-
tree for both global and local indexes [22], a PMR Quad tree
uses Z-order partitioning in the global index and Quad tree
in local indexes [21], and a K-d tree-based index uses only a
global index of K-d tree [24], [36].

2. Static or Dynamic: A static index is constructed once for
a dataset and records cannot be inserted nor deleted from
it. On the other hand, a dynamic index can accommodate
both insertions and deletions. A static index is useful for data
that does not change frequently such as archival data. It also
matches the architecture of HDFS where a file, once uploaded,
cannot be modified. This makes it reasonable to use when
constructing various indexes in Hadoop [19], [21], [22], [37].
A dynamic index is more suitable for highly dynamic data
that is rapidly changing such as moving objects. In this case,
it has to be stored on a storage engine that supports updates.
For example, a dynamic Quad tree and K-d tree indexes are
constructed in HBase [38] and a geohash index is constructed
in Accumulo [25].

3. Primary or Secondary: In a primary index, the actual value
of records are stored in the index. In a secondary index, the
values of records are stored separately from the index while the
index contains only references or pointers to the records. The
primary index is more suitable for a distributed file system such
as HDEFS as it avoids the poor performance of random access.

R-tree partitioning of a 400GB road network data

However, as its name indicates, one file can accommodate only
one primary index and possibly multiple secondary indexes.
Therefore, secondary indexes could be inevitable if multiple
indexes are desired. Most index structures implemented for
big spatial data are primary indexes including grid index [19],
[22], R-tree [22], [37], R+-tree [22], and PMR Quad tree [21].
A secondary PMR Quad tree is also implemented and shown
to be much worse in performance than a primary index [21].

C. Access Methods

Organizing data in the file system is just the first part
of indexing, the second part, which completes the design, is
adding new components which allow the indexes to be used
in query processing. Without these components, the query
processing layer will not be able to use these indexes and
will end up scanning the whole file as if there were no
index constructed. Back to our example with Hadoop, the
index is made accessible to MapReduce programs through
two components, namely, SpatialFileSplitter and SpatialRecor-
dReader. The SpatialFileSplitter accesses the global index
with a user-defined filter function to prune file partitions that
do not contribute to answer (e.g., outside the user-specified
query range). The SpatialRecordReader is used to process non-
pruned partitions efficiently by using the local index stored in
each one. These two components allow MapReduce programs
to access the constructed index in its two levels, global and
local. To make these indexes accessible in other systems, e.g.,
Spark, different components need to be introduced to allow
RDD programs to access the constructed index.

This separation between the index structure in the file
system and the access methods used in query processing
provides the flexibility to reuse indexes. For example, all of
Hadoop, Hive, Spark, and Impala can read their input from raw
files in HDFS. This means that one index appropriately stored
in HDFS can be accessed by all these systems if the correct
access methods are implemented. This also means that we can,
for example, construct the index using a Hadoop MapReduce
job, and query that index from Hive using HiveQL.



V. QUERY PROCESSING

A main part of any system for big spatial data is the
query processing engine. Different systems would probably use
different processing engines such as MapReduce for Hadoop
and Resilient Distributed Dataset (RDD) for Spark. While
each application requires a different set of operations, the
system cannot ship with all possible spatial queries. Therefore,
the query processing engine should be extensible allowing
users to express custom operations while making use of the
spatial indexes. To give some concrete examples, we will
describe three categories of operations, namely, basic query
operations, join operations, and fundamental computational
geometry operations.

A. Basic Query Operations

To give example of basic query operations, we will describe
range and k-nearest neighbor queries, and we will use the
MapReduce environment as an example. The challenge in
these two queries is that the input file in Hadoop Distributed
File System (HDFS) is traditionally a heap file which requires a
full table scan to answer any query. With the input file spatially
indexed, we should rewrite these queries to avoid accessing
irrelevant data to improve the performance [22].

Range Queries. In a range query, the input is a set of records
R a rectangular query range A while the output is the set of all
records in R overlapping A. In traditional Hadoop, all records
in the input are scanned in parallel using multiple machines,
each record is compared to A, and only matching records are
produced in the output [39]. With the two-level spatial index
discussed in Section IV, a more efficient algorithm is proposed
which runs in three phases [19], [21], [22]. (1) The global
index is first accessed with a range query to select the partitions
which overlap A and prune the ones that are disjoint with A
as they do not contribute to the final answer. (2) The partitions
selected by the first step are processed in parallel where each
machine processes a local index in one partition with a range
query to find all records that overlap A. (3) Since the indexed
file might have some replication according to the index type,
a final duplicate avoidance step might be necessary to ensure
each matching record is reported only once.

k-nearest neighbor (KNN). The kNN query takes a set of
points P, a query point (), and an integer k as input while
the output is the k closest points in P to (). A traditional
implementation without a index would scan the input set P,
calculate the distance of each point p € P to @, sort the
points based on the calculated distance, and choose the top-k
points [39]. With the spatial index, a more efficient implemen-
tation is provided which runs runs in two rounds [22]. In the
first round, the global index is accessed to retrieve only the
partition that contains the query point Q. The local index in
the matching partition is used to answer the kNN query using
a traditional single machine algorithm. The answer is tested
for correctness by drawing a fest circle centered at ) with a
radius equal to the distance to the k" farthest neighbor. If the
circle overlaps only one partition, the answer is correct as all
other partitions cannot contain any points that are closer to
points in the answer. If the circle overlaps more partitions, a
second round executes a range query to retrieve all points in
the test circle and chooses the closest k£ points to ().

Fig. 3.

Pruning in skyline

B. Join Operations

In spatial join, the input is two sets R and S and a spatial
join predicate 6 (e.g., touches, overlaps or contains), and the
output is the set of all pairs (r,s) where r € R, s € S and
the join predicate 6 is true for (r, s). If the input files are not
indexed, SIMR [40] is used as the MapReduce implementation
of the Partition Based Spatial-Merge join (PBSM) [41]. In this
technique, the two files are co-partitioned using a uniform grid
and the contents of each grid cell are joined independently.
If the input files are spatially indexed, we can provide a
more efficient algorithm which runs in three phases [22].
(1) The global join step joins the two global indexes to
find each pair of overlapping partitions. (2) The local join
step processes each pair of overlapping partitions by running
a spatial join operation on their two local indexes to find
overlapping records. (3) The duplicate avoidance step is finally
executed if the indexes contain replicated records to ensure that
each overlapping pair is reported only once.

C. Computational Geometry Operations

The area of computational geometry is rich with operations
that are used extensively when processing spatial data, such as,
polygon union, skyline and convex hull. Traditional CG algo-
rithms rely on a single machine which makes them unscalable
to work with big spatial data. A spatial index constructed in
a distributed environment provide a room for improvement if
the algorithms are redesigned to make use of them. In the
following part, we give two examples of operations that are
implemented efficiently in a MapReduce environment, namely,
skyline, and convex hull [42].

Skyline. In the skyline operation, the input is a set of points
P and the output is the set of non-dominated points. A point
p dominates a point q if p is greater than ¢ in all dimensions.
There exist a divide and conquer algorithm for skyline which
can be ported to MapReduce but it would require to scan the
whole file. This algorithm is improved in [42] by applying a
pruning step based on the global index to avoid processing
partitions that do not contribute to answer. A partition c; is
pruned if all points in this partition are dominated by at least
one point in another partition c;, in which case we say that
c¢; dominates c;. For example in Figure 3, c¢; is dominated
by c5 because the top-right corner of c; (i.e., best point) is
dominated by the bottom-left corner of c5 (i.e., worst point).
The transitivity of the skyline domination rule implies that
any point in c; dominates all points in c;. In addition, the
partition c4 is dominated by cg because the top-right corner of
c4 is dominated by the top-left corner of cg which means that
any point along the top edge of cs dominates all points in c4.
Since the boundaries of each partition are tight, there has to
be at least one point along each edge.
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Convex Hull. In the convex hull operation, the input is a set of
points P, and the output is the points that form the minimal
convex polygon that contains all points in P. To apply the
pruning step in convex hull, we utilize a property which states
that a point on the convex hull must be part of one of the
four skylines (min-min, min-max, max-min, and max-max).
Therefore, we apply the skyline pruning technique four times
for the four skylines, and prune partitions that do not contribute
to any of the four skylines. Apparently, if a partition does not
contribute to any of the four skylines, it cannot contribute to
the convex hull.

VI. VISUALIZATION

The visualization process involves creating an image that
describes an input dataset. This is a natural way to explore
spatial datasets as it allows users to spot interesting patterns in
the input. Traditional visualization techniques rely on a single
machine to load and process the data which makes them unable
to handle big spatial data. For example, visualizing a dataset of
1.7 Billion points takes around one hour on a single commodity
machine. GPUs are used to speed up the processing but they
are still limited to the memory and processing capacity of a
single machine and cannot scale out to multiple machines.
We can categorize the visualization techniques based on the
structure of the generated image into two categories, single
level images and multilevel images. In single level images, the
produced image consists of one file that contains an image of a
specified resolution. In multilevel images, the generated image
consists of a set of image tiles at different zoom levels which
allows users to zoom in to see more details.

A. Single Level Image Visualization

In single level image visualization, the input dataset is
visualized as a single image of a user-specified image size
(width x height) in pixels. To generate a single image in
a MapReduce environment, we propose an algorithm that
runs in three phases, partitioning, rasterize, and merging.
(1) The partitioning phase partitions an input file using either
the default Hadoop partitioner, which does not take spatial
attributes into account, or using a spatial partitioner which
groups nearby records together in one partition. (2) The ras-
terize phase starts by applying an optional smoothing function
which fuses nearby records together to produce a cleaner
image. Figures 2(a) and 2(b) give an example of visualizing a
road network without and with smoothing, respectively, where
intersecting road segments are fused together to provide a more
realistic look. Notice that a smoothing function can be applied

(d) Stitch

(e) Multilevel Image

Visualization

only if a spatial partitioning is used. After that, the rasterize
phase creates a partial image and visualizes all records in that
partition on that partial image. (3) The merging phase collects
all partial images together to produce one final picture which
is written to the output as a single image. This phase either
overlays partial images (Figure 2(c)) or stitches them together
(Figure 2(d)) depending on whether we use the default Hadoop
partitioner or spatial partitioner. The final image is then written
to disk as a single image.

B. Multilevel Image Visualization

The quality of a single level image is limited by its
resolution which means users cannot zoom in to see more
details. On the other hand, multilevel images provide multiple
zoom levels which allows users to zoom in and see more
details in a specific region. Figure 2(e) gives an example of
a multilevel image of three zoom levels 0, 1, and 2, where
each level contains 1, 4, and 16 image tiles, respectively. Each
tile is a single image of a fixed resolution 256 x 256. Most
modern web maps (e.g., Google Maps and Bing Maps) use
this technique where all image tiles are generated in an offline
phase while the web interface provides a convenient way to
view the generated image by allowing the user to zoom in/out
and pan through the image. The goal of the multilevel image
visualization algorithm is to generate all these image tiles
efficiently for an input dataset.

The input to this algorithm is a dataset and a range of zoom
levelS [Zmin, Zmaz| and the output is all image tiles in the
specified range of levels. A naive approach is to use the single
level image algorithm to generate each tile independently
but this approach is infeasible due to the excessive number
of MapReduce jobs to run. For example, at zoom level 10,
there will be more than one million images which would
require running one million MapReduce jobs. Alternatively,
we can provide an algorithm that understands the structure of
the multilevel image and is able to generate all image tiles
in one MapReduce job. To generate a multilevel image, we
can provide an algorithm that runs in two phases, partition
and rasterize. The partition phase scans all input records and
replicates each record r to all overlapping tiles in the image
according to the MBR of r and the MBR of each tile. This
phase produces one partition per tile in the desired image.
The rasterize phase processes all generated partitions and
generates a single image out of each partition. Since the size
of each image tile is small, a single machine can generate
that tile efficiently. This technique is used in [45] to produce
temperature heat maps for NASA satellite data.



System Architecture Data types Language Indexes Queries Visualization
SpatialHadoop [22] MapReduce Vector Pigeon* [32] Grid, R-tree, R+-tree RQ, KNN, SJ, CG Single level, Multilevel
Hadoop GIS [19] MapReduce Vector HiveQL Grid RQ, KNN, SJ -
ESRI Tools for Hadoop [20], [21] MapReduce Vector HiveQL* PMR Quad Tree RQ, KNN -
MD-HBase [24] Key-value store Point-only - Quad Tree, K-d tree RQ, KNN -
GeoMesa [25] Key-value store Vector CQL* Geohash RQ Through GeoServer
Parallel Secondo [23] Parallel DB Vector SQL-Like Local only RQ, SJ -
SciDB [36], [43] Array DB Point, Raster AQL K-d tree RQ, KNN Single level
SpatialSpark [26] RDD Vector Scala-based On-the-fly SJ -
GeoTrellis [27], [44] RDD Raster Scala-based - Map Algebra Single level
* OGC-compliant
TABLE 1. CASE STUDIES OF SYSTEMS

VII. CASE STUDIES: SYSTEMS

In this section, we provide a few case studies of systems
for big spatial data. It is important to mention that this does not
serve as a comprehensive survey of all systems nor it provides
a detailed comparison of them. Rather, this section gives a few
examples of how a few systems for big spatial data cover the
four aspects that we discussed earlier in this paper, namely,
language, indexing, query processing, and visualization. The
goal of this section is to help system designers understand the
possible alternatives for building a system for big spatial data.

Table I summarizes the case studies covered in this section.
Each row in the table designates a system for big spatial data
while each column represents one aspect of the system as
described below.

Architecture. Each system mentioned in the table is built
on an existing system for big data and it follows its archi-
tecture. We can see that this column is quite diverse as it
contains MapReduce-based systems, key-value stores, parallel
DB, Array DB, and resilient distributed dataset (RDD). This
shows that interest of processing spatial data across a wide
range of systems. It is worth mentioning that we did not find
any notable work for integrating spatial data into the core of
a distributed column-oriented database such as Vertica [17],
Dremel [16], or Impala [15]. Although these systems can
process points and polygons due to their extensibility, this
processing is done as an on-top approach while the core system
does not understand the properties of spatial data [26].

Data types. Most systems are designed to work with
vector data (i.e., points and polygons) while only two systems,
SciDB and GeoTrellis, handle raster data. SciDB employs
an array-based architecture which allows it to deal with a
raster layer as a two-dimensional array. GeoTrellis natively
supports raster data and it distributes its work on a cluster using
Spark. Although other systems do not natively support raster
data, they can still process it by first converting it to vector
data where each pixel maps to a point. Even though SciDB
can handle polygons, the system internally does not treat it
spatially; for example, it cannot index a set of polygons.

Language. While most systems provide a high level
language, only three of them provide OGC-compliant data
types and functions. Most of them are declerative SQL-
like languages including HiveQL, Contextual Query Language
(CQL), Secondo SQL-like language, and Array Query Lan-
guage (AQL). Other languages are based on Scala and Pig
Latin which are both procedural languages. Although there
might not be a deep research in providing an OGC-compliant
language, it is very important for end users to adopt the system
especially that many users are not from the computer science

field.

Indexes. The indexes implemented in systems vary and
they include both flat indexes (grid and geohash) and hierar-
chical indexes (R-tree, R+-tree, Quad tree, PMR Quad tree and
K-d tree). Notice that Parallel Secondo implements a local-only
index by creating an index in each Secondo instance. However,
it does not provide a global index which means that records
are partitioned across machines in a non-spatial manner. This
means that it has to access all partitions for each query which
is more suitable for the parallel DB architecture. SpatialSpark
provides an on-the-fly index which is constructed in an ad-hoc
manner to answer a spatial join query but is never materialized
to HDFS. This allows each machine to speed up the processing
of assigned partitions but it cannot be used to prune partitions
as the data is stored as heap files on disk. This leaves the RDD
architecture of Spark open for research to implement spatial
indexes.

Queries. The queries supported by the systems cover
the three categories described in Section V, namely, basic
operations, join operations and computational geometry (CG)
operations. Both MD-HBase and GeoMesa focus on the basic
operations, range and KNN queries, as they are both real-time
queries which makes them more suitable for the key-value
store architecture. Spatial join is an analytical query which is
suitable for MapReduce, parallel DB and RDD architectures.
While Hadoop-GIS supports range query, KNN and spatial join,
the constructed index is only used when processing the range
query and self join, while the other two operations are done
through full table scan. As GeoTrellis primarily work with
raster data, it supports Map Algebra operations [46] which are
perfect to parallelize in distributed systems as most of them
they are embarrassingly parallel. GeoTrellis natively works on
a single machine, so it uses Spark to parallelize the work over
multiple machines.

Visualization. Unlike all other aspects, visualization is
only supported by a few systems and only one of them covers
both single- and multi-level images. Notice that the two sys-
tems that work with raster data support visualization as raster
data is naturally a set of images which makes it reasonable to
support visualization. GeoMesa supports visualization through
GeoServer [47], a standalone web service for visualizing data
on maps. This means that GeoMesa provides a plugin to
allow GeoServer to retrieve the data from there while the
actual visualization process runs on the single machine running
GeoServer. This technique works only with small datasets but
cannot handle very large datasets due to the limited capabilities
of a single machine. The other approach is to integrate the
visualization algorithm in the core system which makes it more
scalable by parallelizing the work over a cluster of machines.
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VIII. CASE STUDIES: APPLICATIONS

This section provides a few case studies of applications
that use the systems described in Section VII to handle big
spatial data. These applications help readers understand how
these systems are used in a real end-user application.

A. SHAHED

SHAHED [45] is a MapReduce system for analyzing and
visualizing satellite data. It supports two main features, spatio-
temporal selection and aggregate queries, and visualization.
It makes these features available through a user-friendly web
interface as shown in Figure 4(a). In this interface, users
can navigate to any area on the map and choose either a
specific point or a rectangle on the map. In addition, they can
choose a time range from the date selectors. Based on user
choice, the system runs a spatio-temporal selection query to
retrieve all values (e.g., temperature) in the specified range,
a spatio-temporal aggregate query to retrieve the minimum,
maximum, and average in the range, or visualizes all values
in the specified range as a temperature heat map.

SHAHED internally uses SpatialHadoop where all input
datasets are indexed using a uniform grid index as the data is
uniformly distributed. A SpatialHadoop MapReduce job con-
structs the indexes efficiently while the queries are processed
directly on the index, without MapReduce, to provide real-
time answers while avoiding the overhead of MapReduce. For
example, it runs an aggregate query for a small area over a
dataset of total size 2TB in less than a second. Temperature
heat maps are generated using the visualization component
of SpatialHadoop. If one day is selected, the generated heat
map is visualized as a still image, while if a range of dates
is selected, an image is created for each day and they are
then compiled into a video. The efficiency of the visualization
component allows it to visualize a dataset of 6.8 Billion points
in around three minutes.

B. EarthDB

EarthDB [43] is another system that deals with satellite
data and it uses SciDB as an underlying framework. It uses the
functionality provided by SciDB to process satellite data and
visualize the results as an image (Figure 4(b)). It supports two
queries, (1) it reconstructs the true-color image by combining
the values of the three components RGB, (2) it generates a
vegetation heat map from raw satellite data. In both examples,
the query and visualization are expressed in SciDB’s Array
Query Language (AQL) which processes the data in parallel
and generates the desired image. The use of AQL allows users

to play with the query in an easy way to make more advanced
processing techniques or produce a different image.

C. TAREEG

TAREEG [48] is a MapReduce system for extracting
OpenStreetMap [49] data using SpatialHadoop. It provides a
web interface (Figure 4(c)) in which the user can navigate to
any area in the world, select a rectangular area, and choose
a map feature to extract (e.g., road network, lakes, or rivers).
TAREEG automatically retrieves the required data and sends
it back to the user via email in standard data formats such as
CSV file, KML and Shapefile. The challenge in this system
is extracting all map features from a single extremely large
XML file provided by OpenStreetMap, called Planet.osm file.
The Planet.osm file is a 500GB XML file which is updated
weekly by OpenStreetMap. Using a standard PostGIS database
to store and index the contents of that file takes days on a single
machine. To process it efficiently, TAREEG uses Pigeon, the
spatial high level language of SpatialHadoop, to extract all
map features using MapReduce in standard format (e.g., Point,
Line, and Polygon). The extracted files are then indexed using
R-tree indexes to serve user requests more efficiently. The
extraction and indexing steps happen once in an offline phase
and it takes only a few hours on a 20-node cluster instead of
days. In the online phase, the system issues range queries on
the created indexes based on user request. The retrieved values
are then put in standard file format and is sent back to the user
in an email attachment.

D. TAGHREED

TAGHREED [50] is a system for querying, analyzing
and visualizing geotagged tweets. It continuously collects
geotagged tweets from Twitter [5] and indexes them using
SpatialHadoop. Since SpatialHadoop does not support dy-
namic indexes, it creates a separate index for each day and
periodically merges them into bigger indexes (say, weekly
or monthly) to keep them under control. In addition to the
spatial index, TAGHREED also constructs an inverted index
to search the text of the tweets. The users are presented with
a world map (Figure 4(d)) where they can navigate to any
area of the world, choose a time range and a search text.
TAGHREED automatically retrieves all tweets in the specified
spatio-temporal range matching the search text, and runs some
analyses on the retrieved tweets, such as, top hashtags and most
popular users. Both the tweets and the analyses are visualized
on the user interface where users can interact with them, e.g.,
choose a tweet to see more details.



IX. CONCLUSION

In this paper, we study the distributed systems designed
to handle big spatial data. We show that this is an active
research area with several systems emerging recently. We
provide general guidelines to show the four components that
are needed in a system for big spatial data. The high level
language allows non-technical users to use the system using
standard data types and operations. The spatial indexes store
the data efficiently in a distributed storage engine and allow
the queries to use them through suitable access methods. The
query processing engine encapsulates a set of spatial queries
to be used by end users. Finally, the visualization component
helps users explore the datasets or query results in a graphical
form. We give a few case studies of systems for big spatial
data and show how they cover those four components. Finally,
we provide some real applications that use those systems to
handle big spatial data and provide end-user functionality.
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