
Clustering Streaming Graphs
Ahmed Eldawy

University of Minnesota
eldawy@cs.umn.edu

Rohit Khandekar
IBM Research

rkhandekar@gmail.com

Kun-Lung Wu
IBM Research

klwu@us.ibm.com

Abstract—In this paper, we propose techniques for clustering
large-scale “streaming” graphs where the updates to a graph
are given in form of a stream of vertex or edge additions and
deletions. Our algorithm handles such updates in an online and
incremental manner and it can be easily parallelized.

Several previous graph clustering algorithms fall short of han-
dling massive and streaming graphs because they are centralized,
they need to know the entire graph beforehand and are not
incremental, or they incur an excessive computational overhead.

Our algorithm’s fundamental building block is called graph
reservoir sampling. We maintain a reservoir sample of the edges
as the graph changes while satisfying certain desired properties
like bounding number of clusters or cluster-sizes. We then declare
connected components in the sampled subgraph as clusters of
the original graph. Our experiments on real graphs show that
our approach not only yields clusterings with very good quality,
but also obtains orders of magnitude higher throughput, when
compared to offline algorithms.

I. INTRODUCTION

Graphs are effective models for representing collections
of relationships between entities. These relationships could
be, for example, social ties between people, communications
links between computer systems, links between web-pages,
transportation channels between locations, or chemical bonds
between atoms or molecules. These graphs are rich sources of
information regarding how the entities behave and interact with
each other. The field of graph analytics or graph data mining
is devoted to understanding and decoding this information by
studying structural properties of the graph and observing how
they evolve with time. This information can then be put to use
in several applications like online marketing, ranking search
results, recommendation systems, churn prediction in mobile
networks, disease control and drug discovery, to name a few.

In last decade, we have witnessed a significant growth in
the capability of capturing and storing large volumes of real-
time information. As a result, the interesting real-world graphs
have grown in size to millions or even billions of vertices and
edges. Furthermore these graphs may grow or change with
time rapidly. For example, Twitter, with 200 million users
as of 2011, generates over 200 million tweets and handles
over 1.6 billion search queries per day [1]. Here each tweet
or search query can be thought of as an edge or a collection
of edges in an appropriate graph.

In this paper, we consider the problem of clustering or
partitioning vertices in a “streaming” graph where the updates
to the graph are given in form of a stream of edge or vertex
additions or deletions. Handling such rapidly changing graphs
is challenging because of its dynamic, online nature and

massive scale. The algorithm needs to be necessarily incre-
mental, extremely fast and amenable parallel or distributed
implementations.

The graph clustering problem has been a subject of ex-
tensive research in the past [2], [3] mostly in an offline
setting where the entire graph is given beforehand. Researchers
have studied many models of clustering — overlapping [4]
or non-overlapping [5]; hierarchical or multi-level [6], [7]
clustering into a given number or unspecified number of
vertex-clusters [8]; clustering based on vertex-proximity or
cut-based measures such as clustering to minimize total cut-
cost, sum/max conductance (or sparsity) [9], maximize cluster
densities [10], correlation clustering to minimize classification
errors [8]; clustering with constraints on the size of individual
clusters [9], etc. Graph clustering has been used as a subroutine
in applications like detecting communities in social networks
for building recommender systems, market segmentation and
product positioning; in computational biology to construct
phylogenetic trees or analyze human genes; in computer
science for load balancing in distributed computing, image
segmentation, etc.

A. The problem description

We focus on the following variant of the graph clustering
problem. Given an undirected graph G = (V,E) and an
integer B, partition the vertices V into subsets, called clusters,
C1, C2, . . . , Ck, such that each Ci has at most B vertices
and the number of inter-cluster edges is minimized, i.e.,
minimize |cut({C1, . . . , Ck})| where cut({C1, . . . , Ck}) =
{e = (u, v) ∈ E | u ∈ Ci and v ∈ Cj where i �= j}. We
refer to this problem as multi-way balanced graph partitioning
problem. In the offline version, it is assumed that the entire
graph is known to the algorithm in the beginning.

Here we consider the so-called “streaming” version of this
problem. In this online and dynamic setting, the graph G may
change fairly rapidly with time due to additions and deletions
of vertices and edges. Suppose time t increases from 0 to
∞. We use G(t) to denote the version of graph G at time
t. We assume that the parameter B is fixed. We are given a
“stream of graph updates” ordered by increasing time-stamps.
These updates could be (single or batch) addition or deletion
of vertices or edges. We are also given a “stream of queries”
ordered by increasing time-stamps. The algorithm is allowed
to make only one pass over the streams and is required to
maintain and update a clustering {C1(t), . . . , Ck(t)(t)} of G(t)
incrementally. As the notation suggests, the number k(t) of
clusters may change with time. We sometimes drop t from

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.20

466

the notation if it is clear from the context. The queries could
be of the following types. Here the underlying graph and the
clustering are corresponding to the time-stamp t of the query.

1) Given a vertex u, output i such that u ∈ Ci.
2) Given a vertex u, output all vertices in the cluster

containing u.
3) Output the total number k of clusters.
Some desirable properties of the algorithm are as follows.

The algorithm should be easy to parallelize for multi-core
environments or be distributed for multi-host environments. In
a distributed setting, for example, we may need a “front-end”
host that receives the update and query streams and outputs
the answer stream; and it distributes the actual computational
and storage work to multiple “worker” hosts. To handle
massive inputs, the algorithm should have low overall space
complexity, preferably linear in the number of vertices and in
general sub-linear in the number of edges or size of the entire
graph. To handle high throughput streams, it should have very
low time complexity per update or query.

B. Our contributions

Our contributions can be summarized as follows.
1) We present a sampling-based algorithm that computes

vertex-clusters in large-scale dynamic graphs in which
edge insertions and deletions are allowed. In particular,
it can be used for graphs induced by a sliding window of
an edge-stream. It satisfies the constraints and attempts
to optimize the objective in the multi-way balanced
graph partitioning problem.

2) Our algorithm uses space that is in general sub-linear in
the size of the entire graph, i.e., the number of edges.

3) It can be easily parallelized or distributed to exploit
multi-core or multi-host environments.

4) Our experiments show that in terms of cut-quality,
our algorithm performs almost as well as the well-
established offline algorithm called METIS [7]. In terms
of throughput (number of edges insertions or deletions
handled per unit time), our algorithm out-performs
METIS by about three orders of magnitude.

C. Intuition behind our approach

Suppose that the input graph clusters well, i.e., it has a
hidden clustering C∗1 , C

∗
2 , . . . , C

∗
k∗ satisfying the cluster-size

constraints such that each cluster C∗i has a lot of internal edges
and relatively fewer edges leaving it. How would one identify
(an approximation of) such clusters using a simple heuristic?
Use random sampling! That is, imagine that we construct a
subgraph H of G by adding each edge to H independently
with probability p, where p ∈ (0, 1] is a parameter. Since each
C∗i has a lot of internal edges, vertices in C∗i are likely to be in
the same connected component in H . On the other hand, since
there are relatively few inter-cluster edges in G, the vertices
in C∗i are less likely to be in the same connected component
in C∗j for i �= j. Thus the connected components of H would
be a good approximation of the hidden clustering. Thus our
algorithm can declare the connected components of H as

1 2

3

5
4

(a) The original graph G

1
2

3

5
4

(b) Random subgraph H with 20% of the
edges

Fig. 1. Effect of sampling a well-clustered graph with preknown clusters.
Vertices of each cluster are colored and grouped in each figure.

clusters in G. See Figure 1 for an illustration. In this figure, a
graph was generated with five clusters each having ten vertices.
Figure 1(a) shows the original graph G with each cluster
grouped and colored with a different color. In figure 1(b), we
show the subgraph H constructed randomly with p = 0.2.
We notice that connected components in H represent clusters
in G to some extent. For example, the connected component
in the bottom right perfectly matches with cluster 5 , while
the connected component on the top left contains eight out of
ten vertices from cluster 1 . Although sampling was purely
random, we can still recover a reasonable clustering of the
original graph.

How does one extend this algorithm in presence of the con-
straint that size of any cluster is at most B? Here is a simple
way. With each edge e, assign a random number re ∈ (0, 1].
Discard the edges with re > p and order the remaining
edges {e1, . . . , et} such that re1 ≤ re2 ≤ . . . ≤ ret ≤ p.
Now form a subgraph H by adding edges one-by-one in
this order. While considering edge ei, we determine if any
connected component of H ∪ {ei} has size more than B.
If yes, we disregard ei, otherwise we add ei to H , i.e., let
H ← H ∪ {ei}. After processing all the edges, declare the
connected components of H as the clusters in G. We call the
set of sampled edges as a structural reservoir. It is easy to see
that an edge is “sampled” with probability at most p and that
no cluster has size more than B. Picking re randomly from a
uniform distribution assumes that edges are unweighted. It was
shown that weighted edges can be easily supported by using
an exponential distribution [11]. Note that the parameter p
needs to be set carefully. If p is very small, one may encounter
clusters with size significantly smaller than B, even of size 1;
and obtain a large cut-size as a result. On the other hand, if p
is very large, the size of the structural reservoir may be very
large, thereby increasing the space complexity.

Now, how does one extend this algorithm in presence of
additions and deletions of edges? Our extension to such an
online setting is quite intuitive. Consider additions first. When
a new edge e∗ is added to G, we assign to it a random number
re∗ ∈ (0, 1]. We discard e∗ right away if re∗ > p. Otherwise,

467

we insert e∗ at the appropriate place in the sorted order, of all
the edges with re ≤ p, according to re values. It is clear that
the inclusion of the edges in the structural reservoir, appearing
before e∗ in this order, will not be affected due to addition of
e∗. We then start from e∗ and decide which edges to include
and which not to include as before. Note that, for additions
to be effective, one has to keep track of the edges e with
re ≤ p that are not included in the structural reservoir due
to the cluster-size constraints. We call the set of such edges
as a support reservoir. The edges may move back and forth
between the structural reservoir and the support reservoir due
to future additions. Now consider deletions. Suppose an edge
e∗ gets deleted from the graph. If e∗ does not belong to either
of the two reservoirs, there is nothing to do. If e∗ belongs
to the support reservoir, we simply delete it from there. If e∗

belongs to the structural reservoir, we update the two reservoirs
in a manner similar to one described above. This scheme can
be slightly optimized by considering the edges in the reverse
direction. Further details are given in Section III.

Since we do not store all the edges in the graph, it is
not possible to compute the exact value of the objective
function, i.e., the number of inter-cluster edges in the current
clustering. To estimate the value of the computed clustering,
we optionally maintain an independent reservoir in which each
edge is added independently with probability q ∈ (0, 1]. It is
easy to see that 1

q times the number of edges in the independent
reservoir that go between the clusters is an unbiased estimator
of the value of the objective function.

D. Organization

The rest of the paper is organized as follows. Section II
discusses related works and compares them to our approach. In
Section III, we present our core idea of structural sampling and
how to use it for clustering. Section IV discusses experimental
evaluation of our algorithm to support the claims related to
cut-quality and throughput. In section V, we show how to
generalize our approach for other problems in a streaming
system. The paper ends with conclusions in Section VI.

II. RELATED WORK

Traditional graph clustering algorithms fall short of handling
massive and time-evolving graphs due to many reasons. Sev-
eral algorithms are offline, i.e., they need the entire graph input
before-hand. Offline algorithms cannot effectively be used in
an online or streaming fashion, since they are not incremental
in nature. Several algorithms are centralized; they cannot be
or are very difficult to be parallelized or distributed. Several
algorithms have super-linear, quadratic or even higher, com-
putational overhead, probably because they are not designed
to handle massive inputs.

The technique of random sampling to find small cuts in
graphs is first analyzed by Karger [11]. He partitions vertices
into (not necessarily balanced) k clusters in offline graphs to
minimize the total number of inter-cluster edges. Zanghi et
al. [12] present an online clustering of graphs using Erdös-
Réyni model. In their model, vertices arrive online and get

Structural Sampler

Query events

Reservoir
Manager

Graph
Manager

Graph
updates

Query answers

Window
Manager

New
edges

Fig. 2. Structural Sampler architecture

assigned to one of prespecified clusters so that a global
likelihood function is maximized. After each arrival, previous
vertices are allowed to move between clusters. They do not
allow deletion or modification of vertices or edges. The
algorithm also does not seem to scale well with the number
of clusters. In fact, it is shown to work with only a relatively
small number of clusters. Aggarwal et al. [13] considered a
problem of finding clusters of structurally similar graphs in a
stream of large number of small graphs.

Recently, Aggarwal, Zhao, and Yu [14] (or AZY) use the
idea of reservoir sampling with constraints. Our work can be
thought of as being motivated by and an extension of AZY. We
therefore compare our contributions to those of AZY in detail
below. AZY is designed for detecting outliers in graph streams.
Their scheme is based on finding multiple vertex clusterings
in a streaming graph which only grows with edge additions.
They do not consider edge deletions. Their approach maintains
a random sample of the edges satisfying the same constraint
that any connected component in the graph of sampled edges
has at most B vertices. In order to do this, they assign a
random number re ∈ (0, 1] with each edge e and order the
edges as {e1, e2, . . . , em} by non-decreasing re values. They
then declare the largest prefix {e1, . . . , ei} that satisfies the
connected component size constraints as their random sample.
We call their scheme prefix reservoir sampling to reflect the
fact that they do not allow samples that are non-prefix in this
edge ordering. The prefix restriction allows them to update the
reservoir on edge additions without the need of any support
reservoir. Note however that the prefix reservoir sampling is
likely to yield a clustering with many small clusters, resulting
in worse objective value. In fact, in Section IV, we show that
the objective value of their clustering is much worse than that
of our clustering. Moreover, since they do not allow edge
deletions, their scheme cannot be applied on fully dynamic
graphs, e.g., graphs over sliding windows in a stream of edges.

III. STRUCTURAL SAMPLER

In this section we describe how our scheme, called “struc-
tural sampler”, works for online clustering of streaming
graphs. We first give a broad overview of the system, then
get into the details of each component in the system.

A. System Architecture

Figure 2 shows the overall system architecture of Structural
Sampler. The window manager is used only when one wants
to maintain a graph over certain window of time. In a typical

468

system, new edges arrive continuously on the new edges
stream, e.g., new tweets or network packets. The window
manager accepts this stream as input and produces graph
updates (insert edge(s) or delete edge(s)) according to the
specified window settings. If we directly receive such graph
updates from a source, the window manager can be eliminated.
The graph updates are passed to the reservoir manager which
maintains a running sample of the “active” edges in the struc-
tural reservoir as well as some edges in a support reservoir.
The sampled edges chosen by the reservoir manager are then
passed to the graph manager which performs all graph related
operations and keeps track of current clusters. Query events
are sent directly to the graph manager which produces query
answers as a stream. In our discussion, we will go quickly
over window manager and graph manager as they are not our
main contributions in this work. Our main contribution is the
reservoir manager and we will discuss it in more details.

B. Window Manager

3 days
time window

time

eviction insertion

events current time

Fig. 3. A sample sliding window of three days

A window manager is a typical component in most stream-
ing applications and it allows processing events according
a specific window configuration. It is a preprocessing phase
to determine edge insertions and deletions from a stream of
edges. Figure 3 shows an example of a ‘time-based sliding
window of three days’. This window keeps track of all events
within the last three days. ‘Sliding’ means the the window
period of three days is always counted from current time-
stamp, i.e., it slides with time. Events that fall outside the
window need to be evicted or deleted from the underlying
system as the time advances. Another window configuration
could be ‘count-based tumbling window of 10k items’. In this
configuration new edges are added to the window without
doing any processing. When the window fills up (i.e., number
of items reaches 10k), items within the current window are
all processed and then the window is cleared which means
all items are removed from the window, i.e., the window
tumbles. Based on window configuration, window manager
keeps the appropriate data structures to identify which edges
to be evicted and when to evict them.

C. Reservoir Manager

Reservoir manager is the system component that receives
edges insertion and eviction from window manager, and based
on current state of the graph, it decides which edges to add to
current sampled graph and which edges to remove from it. The
main goal is to randomly sample a maximal number of edges
while keeping size of largest connected component at most a
threshold B (cluster bound). As explained earlier, connected

Structural Reservoir

0 1

Support Reservoir

new edges

Fig. 4. Reservoir manager overview

components in this sampled graph is expected to represent
good clusters of the original graph. We need to maximize the
size of this sample to be a good representative to the real
graph. At the same time, clustering this sample should be much
easier than clustering the whole graph because each connected
component is treated as one cluster.

Reservoir manager works as follows. Recall the intuition
given in Section I-C and assume that p = 1 for now. For
simplicity, let us assume we have received a set of edges
and at some point of time we need to pick a random sample
as described above. First, we randomly permute the list of
edges. Then, we iterate over all these edges in this random
order and start picking them up one by one and adding
them to a sampled graph. We keep picking edges as long
as we satisfy the clustering constraint, i.e., size of largest
connected component in the sampled graph does not exceed
the threshold B. If this constraint is violated by an inserted
edge, we discard this edge and move on to the next edge.
This discarded edge is considered conflicting with current set
of sampled edges. Once we iterate over all edges, we declare
connected components in the sampled graph as clusters. Note
that the sampled graph maintains two properties: conformity
and maximality. Conformity means it satisfies the clustering
constraint, while maximality means we cannot add more edges
to it from the original graph without violating the constraint.
This algorithm would work well but running it again and again
for every inserted or removed edge will be highly inefficient.
In the rest of this section we describe how to implement this
algorithm in an incremental fashion such that the sampled
graph is always conformable and maximal.

Figure 4 shows an example of the state of the reservoir
manager. As shown, reservoir manager keeps two reservoirs
of edges, structural reservoir and support reservoir. Structural
reservoir contains sampled edges that were picked up so
far and they are all inserted in the graph manager. Support
reservoir is used to recover the maximality of sampled edges
as edges are removed from structural reservoir. As mentioned
earlier, all edges are stored in a random order so that they are
processed in a random order. To accomplish this, each edge is
assigned a random position in the range (0, 1] and edges are
kept sorted according to this random position.

1) Insertion: Algorithm 1 is used to insert a new edge to the
reservoir manager. This algorithm is called whenever a new
edge is inserted in the original graph. It is assumed before
invoking this algorithm that the structural reservoir (sampled
graph) is both conformable and maximal. The goal of this
algorithm to ensure that both conformity and maximality

469

Algorithm 1 Reservoir Manager insert algorithm
1: Function ReservoirManagerInsert(newEdge, structuralReservoir,

supportReservoir, graphManager)
2: Generate a random position pos ∈ (0, 1] for the newEdge
3: Insert the newEdge in structuralReservoir at position pos
4: Insert the newEdge in the graphManager
5: if constraint is not satisfied in graphManager then
6: while constraint is not satisfied in graphManager do
7: Remove lastEdge with highestPosition from

structuralReservoir
8: Insert the lastEdge to supportReservoir at its assigned position
9: Remove lastEdge from graphManager

10: end while
11: Search for all edges from supportReservoir with positions higher than the

last removed edge in line 7
12: for each edge in search results do
13: Insert the edge in graphManager
14: if constraint is not satisfied in graphManager then
15: Delete the edge from graphManager
16: else
17: Move the edge from supportResevoir to structuralReservoir
18: end if
19: end for
20: end if

properties hold after inserting the new edge. The first step
in lines (2-4), the new edge is assigned a random position
and added to sampled graph and structural reservoir. Next, it
tests for conformity property by checking the constraint in the
sampled graph (line 5). If the constraint is satisfied, we know
that the current sample is conformable. It is also maximal
because it was maximal before inserting the new edge which
means no more edges can be added. However, if the constraint
is not satisfied, the algorithm needs to restore the conformity
of the sample and this is done in two phases: remove phase and
add phase. In the remove phase, the conformity of the sample
is restored by unsampling some edges, i.e., moving edges from
structural to support reservoir. While restoring the conformity,
we might have broken the maximality of the sample, thus, in
the add phase, we restore the maximality by sampling some
edges back from support reservoir to structural reservoir.

The remove phase is performed in the loop in lines 6-10.
It keeps moving edges from structural reservoir to support
reservoir until the required property is restored again. In
lines 7-9, we remove the last sampled edge from structural
reservoir and move it to support reservoir. As we described
earlier, the technique is to sample edges in the generated
random order, this implies unsampling edges in the reverse
order. Removing an edge from structural reservoir is reflected
to current graph by removing this edge from graph manager
(line 9). We repeat this process and keep checking the required
constraint until it is satisfied again.

Once the first loop finishes, we are sure that the current
sample is conformable but it might not be maximal. To restore
maximality, we need to check if we can move edges from
support reservoir to structural reservoir without breaking the
conformity of the sample. Note that we need only to check
edges that come after the first deleted edge. The reason is that
we always sample edges from left to right (i.e., in ascending
order), which means that edges which were not sampled
conflict with edges left to it. These non-sampled edges do not
have a chance to be sampled unless one of these preceding

Algorithm 2 Reservoir Manager delete algorithm
1: Function ReservoirManagerDelete(edge, structuralReservoir,

supportReservoir, graphManager)
2: Try to remove the edge from supportReservoir
3: if edge is present in structuralReservoir then
4: Remove the edge from structuralReservoir and graphManager
5: Search for all edges from supportReservoir with positions higher than the

removed edge
6: for each edge in search results do
7: Insert the edge in graphManager
8: if constraint is not satisfied in graphManager then
9: Delete the edge from graphManager

10: else
11: Move the edge from supportResevoir to structuralReservoir
12: end if
13: end for
14: end if

0

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

 0 0.2 0.4 0.6 0.8 1

A
c
c
u
m
u
l
a
t
e
d

n
u
m
b
e
r

o
f

e
d
g
e
s

Position

Non sampled
Sampled

Fig. 5. Accumulated number of edges at different positions

edges are deleted. In line 11, we issue a search query for all
edges that are candidate to be sampled. In lines 12-19, we test
each of these edges in order, according to their positions, to see
which ones can be sampled without breaking the conformity.
In line 13, we add next edge to sampled graph. If this edge
breaks the constraint, we remove it back from the sampled
graph and move on to next edge in search results. If constraint
is not broken as a result of adding this edge, we complete the
sampling of this edge by moving it from support to structural
reservoir. Once the second loop is finished, we are sure that
we restored both conformity and maximality sampled graph.

2) Deletion: Algorithm 2 shows the deletion (eviction)
algorithm for reservoir manager. The deleted edge might be
either in the structural or the support reservoir. In line 2, we
try to delete the edge from support reservoir. If the edge
was indeed in support reservoir, we do not need to do any
more steps as the sampled graph is not affected, hence it is
still conformable and maximal. If the edge was not found in
support reservoir, it means it is currently sampled and need to
be deleted from both structural reservoir and graph manager
(line 4). Deleting an edge from current sampled graph might
cause it to be not maximal any more. Thus, we need to visit
edges in support reservoir and check if any of these edges can
be added to current sample or not. This is exactly the same as
the add phase in the algorithm for insert. Lines 6 through 13
of algorithm 2 are an exact copy of lines 12 through 19 of
algorithm 1.

3) Space and Processing Optimization: While running
structural sampler over a wide range of real graphs, we noticed
one important observation depicted in figure 5. Recall how

470

the algorithm iterates over all edges in the random order
and samples some edges in this order. This figure show total
number of edges sampled so far as the algorithm is checking
edges comparing it to number of non-sampled edges. We drew
this figure by taking a snapshot while the system is running
and accumulating number of sampled and non-sampled edges
at different positions. At each position, the solid line represents
total number sampled edges with lower positions, while the
dotted line represents total number of edges that were not
sampled or were redundant. Non sampled edges are edges
that caused size of largest cluster to grow beyond B, and
hence, were moved to the support reservoir. Redundant edges
are those edges that are connecting two vertices already in
the same cluster. Although redundant edges are sampled in
the structural reservoir, they do not actually affect the final
answer because they do not affect the structure of connected
components. We can easily notice that more than 90% of
sampled edges are at positions less than 0.5. The reason is that
reservoir manager samples edges in their ascending positions,
and it is most likely for edges near the end to be conflicting
with previous edges and hence not sampled.

This observation inspires us to apply a sampling threshold
for inserted edges. The sampling threshold is exactly the
parameter p used in the intuition given in Section I-C. A
sampling threshold is a number p ∈ (0, 1] such that all edges
with positions larger than p, are not processed or even stored.
Choosing a lower sampling threshold saves more memory
and processing but it might affect the quality of final answer
because more edges are dropped without processing. Similarly,
increasing the sampling threshold produces higher quality
answers at the cost of more memory and processing time.
Sampling threshold can be carefully adjusted so that we save
much space while keeping clustering quality almost the same.
In section IV, we show the effects of changing sampling
threshold for both quality and performance.

D. Graph Manager

Graph manager is the component that handles all graph
logic and is used by the reservoir manager to ensure that
the clustering constraint is satisfied. As this graph manager
is not actually our main contribution, we will go quickly
over its implementation. The main data structures used are
for storing current sampled graph and connected components
of this graph. Since real graphs tend to be very sparse, we
store graph structure as an adjacency list. To keep track of
connected components, we use the union find data structure
to group all vertices in one connected component together as a
set. The union find structure is simply a forest where each tree
represents a set. Each vertex in the graph is mapped to exactly
one vertex in the union find structure. Each set (tree) in the
union find represents one connected component in the graph.
Adding a new edge might force two connected components to
be merged together; in this case, all we need to do is making
the root of one connected component a child of the root of the
other connected component. We also keep track of the size of
each connected component and update accordingly when two

components are merged.
We also need to check whether the largest connected compo-

nent has grown beyond the threshold B or not. To accomplish
this, we always keep track of the last edge inserted. When
we need to check the constraint satisfaction, we only need
to check the connected component that contains last inserted
edge. Whenever a connected component grows in size beyond
the defined threshold B, we fix it by deleting some edges.
This means that there can be only one connected component
breaking the constraint at any time and this would be the last
one that grew up in size.

Deleting an edge is a little bit tricky. Deleting an edge from
a connected component might break it into two components or
might leave it unaffected. Since the union find data structure
does not store the actual edges in the underlying graph, we
have no clue how deleting an edge affects connected compo-
nents. Our approach is very simple and effective. We know
for sure that deleting an edge from a connected component
does not affect other connected components. So, we delete
the affected connected component from the union find data
structure and rebuild it using all edges in the adjacency of
affected nodes. Although the deletion algorithm used here is
not efficient, we still get orders of magnitude performance im-
provement which actually shows the efficiency of our approach
for processing stream graphs.

We remark that one can also use a dynamic algorithm for
connectivity queries given by Henzinger and King [15]. Their
algorithm takes amortized poly-logarithmic time per update or
query, but is quite complex to implement. We decided use a
simpler union-find based algorithm because the connectivity
is not the central focus in this work.

E. Parallelized/Distributed Structural Sampler

What if a single host does not have enough memory to store
all the edges in the two reservoirs? In such a case, we must
distribute the storage and computational requirement across
multiple hosts. In this section, we briefly sketch how to do
this. Full discussion is omitted due to lack of space.

Recall that our structural sampler is based on the assignment
of a random number re with each edge e. Such a random
number can be assigned using universal hashing [16]. One
can use the simplest form of universal hashing based on
modular arithmetic as explained by Carter and Wegman [16].
Once we choose a random hash function H from a universal
hash family, we assign re = H(id(e)) to each edge e,
where id(e) is a unique identifier associated with edge e. We
subdivide the range (0, 1] of the hash function into h ranges
(0, R1], (R1, R2], . . . , (Rh−1, 1], where h denotes the number
hosts in our distributed implementation. Here 0 < R1 < R2 <
. . . < Rh−1 < 1 are chosen based on the capacities of different
hosts. Host i is responsible for maintaining the parts of the
structural and support reservoirs that fall in range i. Host i
also stores the graph manager that manages the subgraph i
which is induced on the edges falling in range i. There is
a front-end host that ingests the update and query streams,
assigns the random indices based on the hash function and

471

kicks off the algorithm for edge additions or deletions. During
edge additions or deletions, since the updates to the structural
and support reservoirs take place, first in the decreasing order
of re values (remove phase) and then in the increasing order of
re values (add phase). Therefore, the control travels between
hosts i, first in the decreasing order of i and then in the
increasing order of i.

The connectivity queries on the entire graph can be real-
ized in this distributed implementation as follows. The graph
manager on host i maintains a spanning forest of subgraph
i. It forwards the edges of the spanning forest to a back-end
host. The back-end host maintains a graph which is the union
of these spanning forests for all values of i. It is easy to see
that the connectivity query on the entire graph is equivalent
to the connectivity query on this union. Upon edge additions
or deletions from the graph, the appropriate host i adds or
deletes the edges in subgraph i. It then forwards the changes
to the edges in its spanning forest to the back-end host. The
back-end host then updates the union as necessary.

IV. EXPERIMENTS

To test the quality and performance of structural sampler, we
carry out a set of experiments in this section. We compare our
algorithm to two previous algorithm: AZY [14] and METIS [7].
AZY was introduced as an outlier detection algorithm but it can
still be used for clustering. Since the original version of AZY

does not support edge deletions, we modified it by adding
a support reservoir which is used for deletions. METIS was
not designed for stream applications, but we can use it in a
straight forward way. As edges are inserted or deleted, we keep
a list of all edges in the graph. Whenever a query is issued,
we run METIS over the current set of edges and return the
result. This is considered the naı̈ve implementation for graph
clustering over streams. We show the results for three sets of
experiments in this section: quality, performance and tuning
experiments.

• Quality: Using the cut-size quality measure, we show that
our approach gives reasonable quality compared to METIS

which is assumed to be close to the best clustering.
• Performance: We test the performance of each approach

in terms of average throughput (events processed per
second). We show that our approach beats METIS by
several orders of magnitudes in performance.

• Tuning: We show that the sampling-threshold parameter
p can be carefully selected to achieve higher performance
while keeping the quality stable.

A. Experimental Setup

Table I summarizes the data sets used in our experiments.
As seen in table, we use data sets from different domains for
a wider range of structures (e.g. social networks, web graphs
and paper citations). The cit-HepPh dataset represents citations
of ‘High Energy Physics’ papers from arXiv. It covers papers
on a range of 124 months and we use actual publish dates
as timestamps. A paper x citing a paper y is represented by
an edge between x and y with timestamp equal to the publish

Name Vertices Edges Description
cit-HepPh 34k 420k Paper citations in physics papers
web-NotreDame 330k 1.5M Web graph from Univ. of Notre Dame
replies 1.9M 1.6M Replies between Twitter users
DNS Edges 180k 4.8M DNS requests

TABLE I
REAL DATA SETS USED IN EXPERIMENTS

date of x. An interesting property of this dataset is that number
of vertices keeps increasing with time because old papers still
appear as they are cited by newer papers. The web-NotreDame
dataset is a snapshot taken in 1999 from the web graph of
University of Notre Dame. An edge between pages x and y
represents a hyperlink in one page pointing to the other. This
dataset has no timestamps, so we assign a random timestamp
to each edge so that we can use it in our system. The replies
dataset is a sample extracted from Twitter over five days of
usage. In this dataset, users are represented by vertices and
each edge between users x and y means that one of these users
has replied to the other one. Since this dataset represents only
1% of actual usage of Twitter, we found that this dataset is
very sparse and it does not cluster well even with METIS. The
last dataset is DNS Edges which contains a one day’s worth
of DNS requests from hosts within IBM Watson Research
Center to domains on the web. An interesting structure in this
dataset is that it contains lots of duplicate edges at different
timestamps meaning that the same host requests the IP of a
certain domain multiple times a day. At some extremes, there
are hundreds of edges between the same pair of vertices. To
model edges insertions and deletions for these datasets, we use
a count-based sliding window of size W (varies from 1K to
10K). For quality experiments, we use a tumbling window of
size W and measure the cut-size when each window is filled.

Our primary focus in these experiments is to evaluate the
algorithm in terms of its cut quality. Therefore we use a
single-host implementation. As described in Section III-E, the
algorithm can also be implemented in a distributed manner.
We use a Linux machine with Red Hat Enterprise 5.5, 32
GB physical memory and Intel Xeon X5570 2.93 GHz. We
implement all the algorithms within IBM’s System S [17], a
platform for streaming computations. Since System S allows
using C and C++ libraries within its operators, we are able to
use METIS out of the box and only built a wrapper around it
to be able to plug it into System S.

B. Quality Experiments

The first measure we care about is the clustering quality of
our new technique. Since we work in a more restrictive envi-
ronment where edges are received one by one and clustering
need to be updated, it would be difficult to improve upon
the quality of clustering computed by an offline algorithm
such as METIS. Figure 6 shows results of quality experiments
we performed over several data sets with different values of
clustering parameter B while fixing p at 1.0. As mentioned
earlier, we use the cut-size as our measurement for quality
where lower values are better. To calculate the quality in a

472

0

20K

40K

60K

80K

100K

 1000 5000 10000
C
u
t

S
i
z
e

B

AZY
Structural Sampler

METIS

(a) Notre Dame Web graph

0
1K
2K
3K
4K
5K
6K
7K
8K

 1000 5000 10000

B

AZY
Structural Sampler

METIS

(b) Citations

0

10K

20K

30K

40K

50K

60K

70K

 1000 5000 10000

B

AZY
Structural Sampler

METIS

(c) DNS requests

0

10K

20K

30K

40K

50K

60K

70K

 1000 5000 10000

B

AZY
Structural Sampler

METIS

(d) Twitter replies

Fig. 6. Quality experiments on different datasets

streaming system, we take a snapshot after processing every
10k updates and calculate the quality measurement for this
snapshot. Then, we calculate the average over all snapshots to
come up with one number representing the average quality for
one run. Since the meaning of this measurement is specific to
each dataset, we could not plot all numbers in one figure and
we had to plot one figure for each dataset. As expected, METIS

consistently gives the best quality on all datasets because it
works in an offline mode, i.e., after receiving all edges the
in current window. Structural Sampler comes in second place
on all our experiments and gives better quality than AZY as it
samples more edges. What is surprising to us is that, despite
its simplicity, our approach gives results that are close to a
well-celebrated offline algorithm such as METIS.

C. Performance Experiments

We designed our system to overcome the main limitation in
offline algorithms which is the very low throughput. Figure 7
shows the performance of both METIS and structural sampler
for different datasets and workloads. The workload employed
in these experiments consists of randomly generated queries
in the form “Are v1 and v2 connected at time t?”. The
query/update ratio indicates the average ratio between number
of query events and number of update events in a time window.
For example, a ‘1:5’ query/update ratio indicates that there
is approximately one query after each five updates. At very
small values, structural sampler does a lot of work for all the
updates which decreases the system throughput. At the same
time, METIS does not actually do anything until a query event
is received which makes it achieve high throughput values
for low query/update ratios. As the workload ratio increases,
METIS does worse while structural sampler gets better and

1

10

100

1K

10K

1:100 1:201:10 1:21:1 5:1T
h
r
o
u
g
h
p
u
t

[
L
o
g

s
c
a
l
e
]

Query/UpdateRatio

Structural Sampler
METIS

(a) Citations

1

10

100

1K

10K

1:100 1:201:10 1:21:1 5:1T
h
r
o
u
g
h
p
u
t

[
L
o
g

s
c
a
l
e
]

Query/UpdateRatio

Structural Sampler
METIS

(b) Web graph

Fig. 7. Performance experiments for different workloads

better. Recall that we calculate system throughput using both
query and update events. While structural sampler does the
same work to process update events and maintain clustering,
the more queries coming to the system are answered in almost
constant time, hence, throughput increases. On the other hand,
METIS gets slow as it need to re-cluster the graph for each
new query coming decreasing the overall system throughput.
Eventually, when query/update ratio grows beyond 1, the

473

 10

 100

 1000

 1000 5000 10000T
h
r
o
u
g
h
p
u
t

[
L
o
g

s
c
a
l
e
]

B

Structural Sampler
METIS

(a) DNS requests

 10

 100

 1000

 1000 5000 10000T
h
r
o
u
g
h
p
u
t

[
L
o
g

s
c
a
l
e
]

B

Structural Sampler
METIS

(b) Web Notre Dame

Fig. 8. Performance experiments for different clustering bounds B.
Query/Update ratio is fixed at 1/2.

throughputs for both systems grow very rapidly. The reason is
that beyond the ratio of 1, the system is expected to receive a
bunch of queries before receiving the next update event. This
means that the graph is clustered once to answer this bunch of
queries causing the throughput of both techniques to increase
as shown in figure 7.

Figure 8 shows the results of more performance experiments
we carried out to compare both approaches. In these experi-
ments, query/update ratio is fixed at 1/2 and clustering bound
is changed. We can see that structural sampler is consistently
better than METIS in performance. METIS gives almost the
same throughput for different values of B which is expected
as its running time is controlled by size of the graph which
remains constant in these experiments. On the other hand,
we see in figure 8 that the performance of structural sampler
decreases as the cluster bound increases. Our interpretation
for this is that as B increases, computed clusters tend to
be of larger sizes. As mentioned in section III-D, deletion
is implemented by breaking then rebuilding a cluster which
becomes time consuming with larger clusters. We believe
that implementing better algorithms for graph manager could
stabilize and increase performance of our approach but it does
not affect our general approach.

D. Tuning Experiments

As shown in section III-C3, a sampling threshold (p) can
be applied to structural sampler to increase its performance.
We carried out another set of experiments to see the effect of
sampling threshold on both performance and quality. Figures 9
shows its effect of changing sampling threshold on both
performance (Figures 9(a) and 9(b)) and quality (Figures 9(c)
and 9(d). We can see that carefully choosing the right sampling

100

1K

10K

 0.1 0.33 0.67 1T
h
r
o
u
g
h
p
u
t

[
L
o
g

s
c
a
l
e
]

Sampling Threshold

Structural Sampler
METIS

(a) Citations

100

1K

10K

 0.1 0.33 0.67 1T
h
r
o
u
g
h
p
u
t

[
L
o
g

s
c
a
l
e
]

Sampling Threshold

Structural Sampler
METIS

(b) DNS Requests

0

2K

4K

6K

8K

 0.1 0.33 0.67 1

C
u
t

S
i
z
e

Sampling Threshold

AZY
Structural Sampler

METIS

(c) Citations

0

10K

20K

30K

40K

50K

 0.1 0.33 0.67 1

C
u
t

S
i
z
e

Sampling Threshold

AZY
Structural Sampler

METIS

(d) DNS Requests

Fig. 9. Tuning experiments show the effect of sampling-threshold on both
performance and quality.

threshold can achieve orders of magnitude improvement in
performance without losing much quality. Applying sampling
threshold is just a preprocessing phase that does not change the
underlying algorithms. In fact, we could also apply sampling
threshold to METIS by storing and processing only edges that
were found to be below the threshold. For example, if sampling
threshold is set to 0.3, only 30% of edges are kept and METIS

is applied to this subset of edges. The effect of sampling
threshold on METIS is very limited but actually it is giving the
same trend as our approach, i.e. a lower sampling threshold
increases performance. The limited effect on METIS is because
METIS running time depends mainly on number of vertices
which does not change significantly in these datasets when
applying a sampling threshold. On the other hand, the running
time of our approach depends on number of edges in the
original graph which is why we see significant improvement
in performance.

The drawback of applying a lower sampling threshold is
possibly a worse clustering quality. Figures 9(c) and 9(d)
show the effect of sampling threshold on quality for different
datasets. When we apply a sampling threshold, most probably
we drop edges that do not affect the solution and hence overall
quality is hardly affected. For example in figure 9(d), applying
a sampling threshold of value 0.33, gives a quality very close
to the best quality achieved when sampling threshold is equal
to 1.0. At 0.1, all approaches do almost the same because
they operate on 10% of original edges leaving them with very
limited room to optimize. We include AZY here to verify the
effect we expected to occur when applying sampling threshold.
Recall that AZY only samples a prefix of edges in the random
order. Applying a higher sampling threshold would not affect
the sampled edges at all and would produce the same answer,
while applying a lower sampling threshold would affect the
quality. This can be verified from figures 9(c) and 9(d).

474

Object
Manager

Bounded
clustering
k-way
clustering

Random
spanning tree

...

Pluggable
Oracles

(a) Generalized object manager with
pluggable oracles

Oracle
+addToSample(object)
+deleteFromSample(object)
+constraintSatisfied():boolean

Bounded
Clustering

Bounded
Clustering

Bounded
Clustering

(b) Abstract ObjectManager class
with possible extensions

Fig. 10. Architecture of the generalized structural sampler with possible
extensions

V. EXTENSIONS

The approach we use in structural sampler for graph clus-
tering can actually be generalized to several other problems.
Recall the architecture in figure 2. The only component that
handles graph specific logic is the graph manager. We show in
this section how we can use the same approach and framework
for other applications like min-cut k-way clustering. Figure 10
outlines our generalization. We replace the graph manager in
figure 2 with the object manager shown in Figure 10(a). The
framework itself remains almost the same. The main difference
is that we no longer deal with graph edges, rather with objects
of an arbitrary type. The reservoir manager keeps structural
and support reservoirs of these objects as before. Whenever an
object is added to or removed from the structural reservoir, this
change is also reflected in the object manager. The constraint
checking, if any, is done by the object manager.

The object manager itself may use one or more oracles to
enforce relevant constraints. As shown in Figure 10(b), the
oracle is a class that implements the three functions described
below. This framework allows creating different oracles each
dealing with a specific problem without having any reservoir-
related logic. Then, these oracles can be easily plugged into the
system and gain all the advantages of a running on a streaming
system for free. As a proof of concept, we describe briefly how
one can build the min-cut k-cut oracle. Here the objective is
to partition the vertices into at least k clusters (not necessarily
balanced) while minimizing the number of inter-cluster edges.
As shown in Figure 10(b), all we need is to create a C++
class that implements three functions. The class stores a data
structure that holds graph structure as an adjacency list. It
also stores connected components of the graph in a union-
find data structure. The method addToSample adds the
given object (edge in this case) to the adjacency list and
merges the connected components at the the two end points
of this edge (if different) into one connected component.
deleteFromSample will do the opposite of this. First, it
removes the given edge from the adjacency list. It then updates
the affected connected component by deleting it and rebuilding
it again from edges stored in the adjacency list. The last
method is constraintSatisifed and it checks whether
the constraint is currently satisfied or not. This method returns
true if there are at least k connected components.

In general, we can enforce any monotone constraint or
property. A non-trivial property P of subsets of a universe

U is called (downward) monotone if
• the empty set ∅ satisfies P , and
• if S satisfies P and T ⊂ S, then T also satisfies P .

For example, the property of a subset of edges that it induces at
least k connected components is monotone (if there are at least
k vertices). Similarly, the property of a subset of edges that it
connected components, each of size at most B is monotone.
This generalization is also motivated by the discussion on
monotone properties in AZY [14].

VI. CONCLUSIONS

In this paper, we used graph reservoir sampling to design
a streaming algorithm for clustering vertices in graphs. Our
scheme can be implemented in a dynamic setting of edge
additions and deletions. In spite of being extremely simple, our
scheme performs fairly well as compared to METIS in terms of
cut-quality and outperforms it by orders of magnitude in terms
of the throughput it can handle. It can also be generalized to
other problems like min-cut k-way clustering.

REFERENCES

[1] Twitter Wikipedia entry. [Online]. Available:
http://en.wikipedia.org/wiki/Twitter

[2] A. Jain and R. Dubes, Algorithms for Clustering Data. Prentice-Hall,
1988.

[3] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley and Sons, 1990.

[4] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling the
Web for Emerging Cyber-Communities,” Computer Networks, vol. 31,
no. 11-16, pp. 1481–1493, 1999.

[5] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell System Technical Journal, vol. 49, pp. 291–
307, 1970.

[6] R. Sokal and P. Sneath, Numerical Taxonomy. Freeman, 1973.
[7] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme

for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-
ing, vol. 20, no. 1, pp. 359–392, 1998.

[8] N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,” Machine
Learning, vol. 56, no. 1-3, pp. 89–113, 2004.

[9] F. T. Leighton and S. Rao, “Multicommodity Max-Flow Min-Cut Theo-
rems and Their Use in Designing Approximation Algorithms,” Journal
of the ACM, vol. 46, no. 6, pp. 787–832, 1999.

[10] M. Charikar, “Greedy Approximation Algorithms for Finding Dense
Components in a Graph,” in Intl. Workshop on Approximation Algoritms
for Combinatorial Optimization, 2000, pp. 84–95.

[11] D. Karger, “Global Min-cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm,” in ACM-SIAM Symposium on Discrete
Algorithms, Austin, TX, Jan 1993, pp. 21–30.

[12] H. Zanghi, C. Ambroise, and V. Miele, “Fast Online Graph Clustering
Via Erdos-Rényi Mixture,” Pattern Recognition, vol. 41, no. 12, pp.
3592–3599, 2008.

[13] C. Aggarwal, Y. Zhao, and P. Yu, “On Clustering Graph Streams,” in
Proceedings of the SIAM International Conference on Data Mining,
Columbos, OH, Apr 2010.

[14] ——, “Outlier Detection in Graph Streams,” in Proceedings of the Inter-
national Conference on Data Engineering, ICDE, Hannover, Germany,
Apr. 2011, pp. 399–409.

[15] M. Henzinger and V. King, “Randomized Fully Dynamic Graph Algo-
rithms with Polylogarithmic Time Per Operation,” Journal of the ACM,
vol. 46, pp. 502–516, 1999.

[16] J. Carter and M. Wegman, “Universal Classes of Hash Functions,”
Journal of computer and system sciences, vol. 18, no. 2, pp. 143–154,
1979.

[17] K.-L. Wu, P. Yu, B. Gedik, K. Hildrum, C. Aggarwal, E. Bouillet,
W. Fan, D. George, X. Gu, G. Luo, and H. Wang, “Challenges and
Experience in Prototyping a Multi-Modal Stream Analytic and Moni-
toring Application on System S,” in Proceedings of the International
Conference on Very Large Data Bases, VLDB, Sep.

475

