
NADEEF: A Commodity Data Cleaning System

Michele Dallachiesa†∗ Amr Ebaid‡∗ Ahmed Eldawy§∗
Ahmed Elmagarmid] Ihab F. Ilyas] Mourad Ouzzani] Nan Tang]

]Qatar Computing Research Institute (QCRI)
†University of Trento ‡Purdue University §University of Minnesota

dallachiesa@disi.unitn.it, aebaid@cs.purdue.edu, eldawy@cs.umn.edu
{aelmagarmid, ikaldas, mouzzani, ntang}@qf.org.qa

ABSTRACT
Despite the increasing importance of data quality and the
rich theoretical and practical contributions in all aspects of
data cleaning, there is no single end-to-end off-the-shelf so-
lution to (semi-)automate the detection and the repairing
of violations w.r.t. a set of heterogeneous and ad-hoc qual-
ity constraints. In short, there is no commodity platform
similar to general purpose DBMSs that can be easily cus-
tomized and deployed to solve application-specific data qual-
ity problems. In this paper, we present NADEEF, an exten-
sible, generalized and easy-to-deploy data cleaning platform.
NADEEF distinguishes between a programming interface
and a core to achieve generality and extensibility. The pro-
gramming interface allows the users to specify multiple types
of data quality rules, which uniformly define what is wrong
with the data and (possibly) how to repair it through writing
code that implements predefined classes. We show that the
programming interface can be used to express many types
of data quality rules beyond the well known CFDs (FDs),
MDs and ETL rules. Treating user implemented interfaces
as black-boxes, the core provides algorithms to detect errors
and to clean data. The core is designed in a way to allow
cleaning algorithms to cope with multiple rules holistically,
i.e., detecting and repairing data errors without differentiat-
ing between various types of rules. We showcase two imple-
mentations for core repairing algorithms. These two imple-
mentations demonstrate the extensibility of our core, which
can also be replaced by other user-provided algorithms. Us-
ing real-life data, we experimentally verify the generality,
extensibility, and effectiveness of our system.

Categories and Subject Descriptors
H.2 [Database Management]: General—integrity

∗Work done while interning at QCRI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Keywords
ETL, conditional functional dependency, matching depen-
dency, data cleaning

1. INTRODUCTION
Data has become an important asset in today’s economy.

Extracting values from large amounts of data to provide ser-
vices and to guide decision making processes has become a
central task in all data management stacks. The quality of
data becomes one of the differentiating factors among busi-
nesses and the first line of defense in producing value from
raw input data. Ensuring the quality of the data with re-
spect to business and integrity constraints has become more
important than ever.

Despite the need of high quality data, there is no end-
to-end off-the-shelf solution to (semi-)automate error detec-
tion and correction w.r.t. a set of heterogeneous and ad-hoc
quality rules. In particular, there is no commodity plat-
form similar to general purpose DBMSs that can be easily
customized and deployed to solve application-specific data
quality problems. Although there exist more expressive log-
ical forms (e.g., first-order logic) to cover a large group of
quality rules, e.g., CFDs, MDs or denial constraints, the main
problem for designing an effective holistic algorithm for these
rules is the lack of dynamic semantics, i.e., alternative ways
about how to repair data errors. Most of these existing rules
only have static semantics, i.e., what data is erroneous.

Emerging data quality applications place the following
challenges in building a commodity data cleaning system.

Heterogeneity: Business and dependency theory based
quality rules are expressed in a large variety of formats and
languages from rigorous expressions (e.g., functional depen-
dencies), to plain natural language rules enforced by code
embedded in the application logic itself (as in many practical
scenarios). Such diversified semantics hinders the creation
of one uniform system to accept heterogeneous quality rules
and to enforce them on the data within the same framework.

Interdependency: Data cleaning algorithms are normally
designed for one specific type of rules. [14] shows that in-
teracting two types of quality rules (CFDs and MDs) may
produce higher quality repairs than treating them indepen-
dently. However, the problem related to the interaction of
more diversified types of rules is far from being solved. One
promising way to help solve this problem is to provide uni-
fied formats to represent not only the static semantics of
various rules (i.e., what is wrong), but also their dynamic
semantics (i.e., alternative ways to fix the wrong data).

Rule Collector

Data Quality Dashboard

NADEEF

Data owners
Domain experts

Rules

Data

ETLs, CFDs, MDs,
Business rules

Violation Detection

Data Repairing

Rule Compiler

Detection and Cleaning Algorithms
Core

Metadata

Data Loader

Metadata Management
Auditing and Lineage

Indices

Probabilistic models

Figure 1: Architecture of NADEEF

Deployment and extensibility: Although many algo-
rithms and techniques have been proposed for data clean-
ing [5, 14, 29], it is difficult to download one of them and
run it on the data at hand without tedious customization.
Adding to this difficulty is when users define new types of
quality rules, or want to extend an existing system with their
own implementation of cleaning solutions.

Metadata management and data custodians: Data is
not born an orphan. Real customers have little trust in the
machines to mess with the data without human consulta-
tion. Several attempts have tackled the problem of includ-
ing humans in the loop (e.g., [15, 26, 29]). However, they
only provide users with information in restrictive formats.
In practice, the users need to understand much more meta-
information e.g., summarization or samples of data errors,
lineage of data changes, and possible data repairs, before
they can effectively guide any data cleaning process.

We introduce NADEEF, a prototype for an extensible
and easy-to-deploy cleaning system that leverages the sep-
arability of two main tasks: (1) isolating rule specification
that uniformly defines what is wrong and (possibly) how to
fix it; and (2) developing a core that holistically applies these
routines to handle the detection and cleaning of data errors.

We show NADEEF’s architecture in Fig. 1. In a nutshell,
NADEEF first collects data and rules defined by the users.
The rule compiler then compiles these heterogeneous rules
into homogeneous constructs. Next, the violation detection
module finds what data is erroneous and possible ways to
repair them, based on user provided rules. After identifying
errors, the data repairing module handles the interdepen-
dency of these rules by treating them holistically. Since data
cleaning is usually an iterative process and new violations
might be introduced when updating data values during re-
pairing, NADEEF adopts a simple strategy to ensure that
the process terminates. NADEEF also manages metadata
related to its different modules. These metadata can be used
to allow domain experts and users to actively interact with
the system. We are working on augmenting NADEEF with
a data quality dashboard that would exploit these metadata
and provide information such as error summarization and
error distribution; details on this component are left for fu-
ture work.

Contributions. We make several notable contributions.

(1) We describe the first end-to-end commodity data clean-
ing system (Section 2).

(2) We propose a novel programming interface (Section 3)

that supports the generality of NADEEF by providing users
with ways to specify the semantics, both static and dynamic,
of multiple types of data quality rules.

(3) We discuss basic error detection methods (Section 4). We
also describe partitioning and compression as two techniques
to improve violation detection. The former is to reduce the
number of pairwise comparisons when computing violations,
while the latter is to reduce the number of comparisons and
the size of violations.

(4) To demonstrate the extensibility of our system, we
present two core implementations for data cleaning algo-
rithms (Section 5). The first one, which is designed to
achieve higher accuracy, converts all violations and possi-
ble data changes to a variable-weighted conjunctive normal
form (CNF). This CNF is then fed to a weighted MAX-SAT
solver that computes repairs while minimizing their overall
cost. The second one, which is designed to be more efficient,
leverages the idea of equivalence classes [5]. It merges vio-
lating data into multiple equivalence classes and assigns a
unique value to each equivalence class.

(5) We conduct extensive experiments to verify the general-
ity, extensibility, and effectiveness of our system using real-
life datasets (Section 6).

2. A MOTIVATING SCENARIO AND SYS-
TEM ARCHITECTURE

We present a detailed scenario to show the many features
of NADEEF, followed by a discussion about its architecture.

2.1 A Motivating Scenario
Consider two databasesD1 andD2 from a European bank:

D1 maintains customer information collected when credit
cards are issued and D2 records credit card transactions.
The databases are specified by the following schemas:

bank (FN, LN, St, city,CC, country, tel, gd),
tran (FN, LN, str, city,CC, country, phn,when,where).

Here, a bank record specifies a credit card holder identified
by first name (FN), last name (LN), street (St), city, country
code (CC), country, phone number (tel) and gender (gd). A
tran tuple is a record of a purchase paid by a credit card at
time when and place where, by a customer identified by first
name (FN), last name (LN), street (str), city, country code
(CC), country and phone (phn). Example instances of bank
and tran tables are shown in Figs. 2(a) and 2(b), respectively.

FN LN St city CC country tel gd
t1: David Jordan 12 Holywell Street Oxford 44 UK 66700543 Male
t2: Paul Simon 5 Ratcliffe Terrace Oxford 44 UK 44944631 Male

(a) D1: An instance of schema bank

FN LN str city CC country phn when where
r1: David Jordan 12 Holywell Street Oxford 44 UK 66700543 1pm 6/05/2012 Netherlands
r2: Paul Simon 5 Ratcliffe Terrace Oxford 44 UK 44944631 11am 2/12/2011 Netherlands
r3: David Jordan 12 Holywell Street Oxford 44 Netherlands 66700541 6am 6/05/2012 US
r4: Peter Austin 7 Market Street Amsterdam 31 UK 55384922 9am 6/02/2012 Netherlands

(b) Database D2: An instance of schema tran
Figure 2: Example databases

Based on the application business logic, users may impose
the following rules:

ϕ1: (on table tran) if a customer’s CC is 31, but his/her
country is neither Netherlands nor Holland, update the
country to Netherlands;

ϕ2: (on tables bank and tran) if the same person from
different tables has different phones, the phone number
from table bank is more reliable;

ϕ3: (on table tran) a country code (CC) uniquely deter-
mines a country;

ϕ4: (on table tran) if two purchases of the same person
happened in the Netherlands and the US (East Coast)
within 1 hour (assuming 6 hours’ time difference be-
tween these two countries), these two purchases are
either a fraud or were erroneously recorded.

Figure 3 shows how these rules are represented in our sys-
tem via a unified programming interface. In a nutshell, the
users specify a rule’s static semantics (what is wrong) over
either one tuple or two tuples via a vio() function, where an
error is represented by a set of attribute values. Moreover,
the users can also, if possible, specify its dynamic semantics
(i.e., how to repair) by providing different alternatives to
repair the data via a fix() function.

Rule1 (for ϕ1) is a transformation rule on a single tuple on
table tran. It states via a vio() function that if a tuple’s CC is
31, but its country is neither Netherlands nor Holland, then
it is problematic. It also states via a fix() function that the
violating tuple’s country should be updated to Netherlands.

Rule2 (for ϕ2) is defined on two tables bank and tran.
When it identifies that the same person from different tables
has different phones (i.e., the violation is not empty via a
vio() function), it updates the phn value in tran to the tel
value from bank (in fix()). Actually, the user indicates that
the values from bank are more reliable. Here, the ≈ could be
any (domain-specific) similarity function that a user defines.

Rule3 (for ϕ3) specifies how to identify the violations via
a vio() function on two tuples from table tran. It also de-
fines via a fix() function two options to resolve a violation
V : either update V.s2[country] to V.s1[country], or update
V.s1[country] to V.s2[country].

Rule4 (for ϕ4) only specifies how to detect a violation via
a vio() function. No fix() function is given since the users do
not know how to resolve this violation.

By allowing the expression of multiple types of rules
(e.g., eCFD [6] for the vio() of ϕ1 and ETL for the fix()
of ϕ1, an MD ϕ2, an FD ϕ3 augmented with a fix() that
changes values from the right hand side of the rule, and a
custom rule ϕ4) through our unified programming interface,
NADEEF provides a simple way to determine what is wrong
via vio() functions, and more importantly, it also captures
how to repair it via a fix() function.

Class Rule1 { /* for ϕ1 */
set〈cell〉 vio(Tuple s1) { /*s1 in table tran */
if (s1[CC]=31∧ (s1[country] 6=Netherlands ∨ s1[country] 6=Holland))
return { s1[CC, country]; }

return ∅;
}
set〈Expression〉 fix (set〈cell〉 V) {
return { V.s[country]← Netherlands; }
} } /* end of class definition */

Class Rule2 { /* for ϕ2 */
set〈cell〉 vio (Tuple s1, Tuple s2) { /*s1 in bank, s2 in tran */
if (s1[LN, St, city]=s2[LN, str, city]∧s1[FN] ≈ s2[FN]∧s1[tel] 6=s2[phn])
return { s1[FN, LN, St, city, tel], s2[FN, LN, str, city, phn]; }

return ∅;
}
set〈Expression〉 fix (set〈cell〉 V) {
return { V.s2[phn]← V.s1[tel]; }
} } /* end of class definition */

Class Rule3 { /* for ϕ3 */
set〈cell〉 vio (Tuple s1, Tuple t2) { /* s1, s2 in table tran */
if (s1[CC] = s2[CC] ∧ s1[country] 6= s2[country])
return { s1[CC, country], s2[CC, country]; }

return ∅;
}
set〈Expression〉 fix (set〈cell〉 V) {

set〈Expression〉 fixes;
fixes.insert(V.s1[country] ←V.s2[country]);
fixes.insert(V.s2[country] ←V.s1[country]);
return fixes;
} } /* end of class definition */

Class Rule4 { /* for ϕ4 */
set〈cell〉 vio (Tuple s1, Tuple s2) { /*s1, s2 in table tran */
if (s1[LN, city, CC, tel] = s2[LN, city, CC, tel]
∧s1[where] = Netherlands ∧ s2[where] = US ∧ s1[FN] ≈ s2[FN]
∧(s1[when]− s2[when] ≥ 5) ∧ (s1[when]− s2[when] ≤ 7)
return { s1[FN, LN, city, CC, tel, when, where],
s2[FN, LN, city, CC, tel, when, where]; }

return ∅;
} } /* end of class definition */

Figure 3: Sample rules

Next, we show how the data in Fig. 2 can be repaired by
the rules in Fig. 3 in a sequence of interdependent opera-
tions, as illustrated below:

(a) Rule1 updates r4[country] from UK to Netherlands.

(b) Rule2 identifies that t1 in D1 and r3 in D2 are the same
person, but with different phones. It updates r3[phn] by
taking 66700543 from t1[tel], since bank is more reliable.

(c) Rule3 detects that r3 violates r1 and r2, i.e., they have
the same CC value but carry different country values. To re-
solve these two violations, one can either change r3[country]
from Netherlands to UK, or change both r1[country] and
r2[country] from UK to Netherlands. A typical cleaning al-
gorithm will choose the one with the minimum number of
changes, i.e., changing r3[country] from Netherlands to UK.

(d) Rule4 detects that the two purchases from the same
person, r1 and r3, are problematic. Note that this rule only
reports the violation, without repairing it.

Observe that only after changing r3[phn] to 66700543 (the
step (b) above), the violation in step (d) can be detected by
a customized rule. We can see that (1) when taken together,
different data quality rules help each other, and (2) to make
practical use of their interaction, repairing operations for
various types of data quality rules should be interleaved.

From this scenario, we can see that a commodity data
cleaning system has to provide (a) a unified format for the
users to specify both the static semantics and dynamic se-
mantics of various types of rules, and (b) common data
structures to represent data errors, which provide a natu-
ral way to design algorithms that holistically repair data.

2.2 Architecture Overview
Figure 1 depicts of the architecture of NADEEF. It con-

tains three components: (1) the Rule Collector gathers user-
specified quality rules; (2) the Core component uses a rule
compiler to compile heterogeneous rules into homogeneous
constructs that allow the development of default holistic
data cleaning algorithms; and (3) the Metadata manage-
ment and Data quality dashboard modules are concerned
with maintaining and querying various metadata for data
errors and their possible fixes. The dashboard allows do-
main experts and users to easily interact with the system.

Rule Collector. It collects user-specified data quality rules
such as ETL rules, CFDs (FDs), MDs, deduplication rules,
and other customized rules.

Core. The core contains three components: rule compiler,
violation detection and data repairing.

(i) Rule Compiler. This module compiles all heterogeneous
rules and manages them in a unified format.

(ii) Violation Detection. This module takes the data and the
compiled rules as input, and computes a set of data errors.

(iii) Data Repairing. This module encapsulates holistic re-
pairing algorithms that take violations as input, and com-
putes a set of data repairs, while (by default) targeting the
minimization of some pre-defined cost metric. This module
may interact with domain experts through the data quality
dashboard to achieve higher quality repairs.

Inside the core of NADEEF, we also implement an ex-
tensible Updater that decides which computed data changes
will be finally committed. The Updater is needed since data
cleaning is an expensive, (mostly) nondeterministic, and it-
erative process. When applied to the database, updates
computed by repairing algorithms may trigger new viola-
tions and the cleaning process may not terminate. The
Updater provides a termination test, ensuring that the entire
data cleaning process terminates. We adopt a simple termi-
nation test in each iteration of the data repair process that
is similar to data cleaning techniques proposed in [8,20]; the
Updater applies the computed updates only if an attribute
value is not changed more than x times (x is a parameter
set to 2 by default). Otherwise, the Updater changes the
attribute value to a special null value that eliminates any
potential violations on this attribute value in the future.

Metadata management and data quality dash-
board. Building a commodity data cleaning system requires
collecting and handling several types of metadata to help in
understanding and improving the cleaning process as well
as supporting many features of NADEEF. The role of a
metadata management module is to keep full lineage infor-
mation about data changes, the order of changes, as well

as maintaining indices to support efficient metadata oper-
ations. The data quality dashboard helps the users to un-
derstand the health of the database through progress indica-
tors, data quality health information, as well as summarized,
sampled or ranked data errors. It also facilitates the solici-
tation of users’ feedback for data repairs. Details about this
module are left for future work.

3. FUNDAMENTALS
In this section, we present the proposed programming in-

terface for rule specification as well as some of the notations
and concepts needed in NADEEF.

We consider a database D = {D1, · · · , Dm}, where each
Dj (j ∈ [1,m]) is an instance whose relation schema is Rj

as Rj = {Aj1 , · · · , Ajn}. We use the term cell to denote
a combination of a tuple and an attribute of a table, i.e.,
D.s[A]. For simplicity, we write a cell as s[A], when D is
clear from the context.

For example, in Fig. 2, D1 is an instance of relation bank,
and t1[FN] is a cell in instance D1 whose value is David.

Data quality rules. The programming interface class Rule
for defining the semantics of data errors and possible ways
to fix them is as follows.

class Rule {
set〈cell〉 vio (Tuple s1) { return ∅ };
set〈cell〉 vio (Tuple s1, Tuple s2) { return ∅ };
set〈Expression〉 fix (set〈cell〉) { return ∅ };

} /* end of class definition */

In the above class we define three functions:

(1) vio(s) takes a single tuple s as input, and returns a set of
problematic cells, e.g., Rule1 in Fig. 3. By default, it returns
an empty set.

(2) vio(s1, s2) takes two tuples s1, s2 as input, and returns
a set of problematic cells, e.g., Rule2, Rule3 and Rule4 in
Fig. 3. By default, it returns an empty set. Note that s1, s2

can come from the same relation or two different relations.

(3) fix (set〈cell〉) takes a nonempty set of problematic cells
as input, and returns a set of suggested expressions to repair
these data errors.

We refer to a class that inherits from Rule and implements
at least one of the error detection functions vio() as a data
quality rule, in order to express its static semantics (what is
wrong). The function fix() is to reflect its dynamic seman-
tics (how to repair errors). The presence of function fix()
is optional, and its absence indicates that the users are not
clear about its dynamic semantics, e.g., Rule4 in Fig. 3.

We can get ϕi (i ∈ [1, 4]) in Section 2 by instantiating
Rulei in Fig. 3. In the rest of the paper, we shall use ϕi and
Rulei interchangeably.

In contrast to traditional ways of defining data quality
rules by strictly following some declarative logical formalism,
the class Rule provides a unified and generic object-oriented
programming interface. Such interface is expressive enough
to allow users to easily capture both static and dynamic
semantics of a large spectrum of data quality rules, as well as
complex (e.g., probabilistic or knowledge-based) processes.

Violations and candidate fixes. Violations specify what
is wrong, while candidate fixes capture how to repair errors.

Violation. A violation is a nonempty set V of cells that
are returned by the function vio(s) or vio(s1, s2) of a data
quality rule ϕ, referred to as a violation of ϕ.

Intuitively, in a violation, at least one of the cells is
erroneous and should be modified. For example, the two
tuples r1 and r3 shown in Fig. 2 violate Rule3, since they
have the same CC value but carry different country val-
ues. The corresponding violation consists of four cells
{r1[CC], r1[country], r3[CC], r3[country]}.

For a database D and a data quality rule ϕ, we denote by
vio(D, ϕ) the set of all nonempty results returned by ϕ.vio(s)
(i.e., a single tuple) and ϕ.vio(s1, s2) (i.e., a pair of tuples),
where s is a single tuple in D and (s1, s2) is a pair of distinct
tuples in D, respectively. For a database D and a set Σ of
rules, we denote by vio(D,Σ) =

⋃
ϕ∈Σ vio(D, ϕ) the set of all

violations for data D and rules Σ.
In practice, many types of violations are usually defined

on either a single tuple (e.g., constant CFDs and many
ETL rules), two tuples (e.g., variable CFDs, MDs and dedu-
plication rules), or a set of tuples (e.g., aggregation con-
straints [21]). Supporting aggregation functions and other
data quality rules defined on a subset of the data triggers a
different class of challenges which are beyond the scope of
this paper. This is especially true for the efficiency of the
violation detection process. In this paper, we focus on the
first two classes of violations, i.e., violations defined on one
tuple or two tuples. These two classes already cover a very
large spectrum of data quality rules found in practice, thus
not diminishing the expressiveness of NADEEF.

Candidate fix. A candidate fix F is a conjunction of expres-
sions of the form “c ← x”, where c is a cell, and x is either
a constant value or another cell.

Intuitively, a candidate fix F is a set of expressions on
a violation V , such that to resolve violation V , the modi-
fications suggested by the expressions of F must be taken
together. That is, to resolve a violation, more than one cell
may have to be changed. In our example, each possible fix
contains a single expression. For instance, consider Rule3
in Fig. 3, each violation V has two candidate fixes, either
assigning V.s2[country] to V.s1[country], or V.s1[country] to
V.s2[country]. Either way can resolve violation V .

Cost functions. As a database can be repaired in multi-
ple ways, an immediate question is which repair to choose?
Similarly to what most data cleaning methods use to make
their decision, we adopt minimality, i.e., compute an in-
stance that repairs a database while incurring the least cost
in terms of fixing operations. Let cost(c, v1, v2) be the cost
of changing the cell c from value v1 to v2, and cost(D,Dr) is
defined as the sum of cost(c, v1, v2) for each cell whose value
is modified from D to a modified database Dr. Since the
users can plugin their own repairing algorithms, they can
also replace the cost functions by their own.

Consistent database. Consider an instance D of R, and
a data quality rule ϕ, we say that D satisfies ϕ, denoted by
D |= ϕ, if (i) vio(s) returns an empty set for each tuple t in
D; and (ii) vio(s1, s2) returns an empty set for all pairs of
distinct tuples s1, s2 in D. We say that D satisfies a set Σ
of data quality rules, denoted by D |= Σ, if D satisfies each
ϕ in Σ. We say that D is consistent w.r.t. Σ if D |= Σ.

Fixed database. For an instance D ofR and a data quality
rule ϕ, we say that D is fixed w.r.t. ϕ, if for each violation
V of D w.r.t. ϕ, fix(V) returns an empty set. We say that
D is fixed w.r.t. a set Σ of data quality rules, if D is fixed
w.r.t. each ϕ in Σ.

Consider our example in Section 2. After steps (a)-(d), we

obtain a modified database D′. While one violation still re-
mains, i.e., tuples (r1, r3) w.r.t. rule ϕ4, it has no candidate
fixes. Hence, the database D′ is said to be fixed, although it
is inconsistent, e.g., it does not satisfy the rule ϕ4 in Σ.

Unresolved violations. Note that, in our system, Dr

must be fixed but may contain unresolved violations, i.e.,
Dr may be inconsistent w.r.t. Σ. As opposed to traditional
approaches that compute a fix D′r that must be consistent,
i.e., vio(D′r, ϕ) is also empty for each ϕ in Σ, the problem
we study only repairs dirty data for which candidate fixes
are known. This is based on the fact that in practice and for
some rules, there may not exist sufficient knowledge on how
to resolve the corresponding violations; neither the users
know a priori nor the data cleaning system could guess.
Heuristically resolving such violations may introduce more
errors, triggering a disastrous domino effect.

Further data quality aspects. There are several fun-
damental problems associated with quality rules. The con-
sistency problem is to determine, given Σ and schemas R,
whether there exists a nonempty instance D (each table
in D is nonempty) of R such that D |= Σ. The implica-
tion problem is to decide, given Σ and another data quality
rule ψ, whether Σ implies ψ. In simpler terms, the consis-
tency problem is to decide whether the data quality rules are
dirty themselves, and the implication problem is to decide
whether a data quality rule is redundant. When treating
the rules as black-boxes, it is difficult, if not impossible, to
check whether they are internally consistent.

It has been verified in [14] that given CFDs only, or for
CFDs and MDs taken together, the consistency (resp. im-
plication) problem is NP-complete (resp. coNP-complete).
However, when either the database schema is predefined or
no attributes involved in the CFDs have a finite domain, the
consistency check for CFDs is PTIME [14], which actually
covers many practical applications. For the previous case or
when the number of rules (e.g., CFDs) is small, several algo-
rithms have been proposed to check their consistency [12].
It is worth mentioning that we have implemented default
classes for CFDs (FDs) and MDs; the consistency of such
particular rules can be checked by these algorithms. In the
following of this work, we assume collections of Σ and D
that are consistent.

4. VIOLATION DETECTION
We describe a basic approach to compute violations as well

as optimization techniques, namely partitioning and com-
pression, that are possible under some restricted settings.

4.1 Finding Violations and Candidate Fixes
Given a database D and a set Σ of data quality rules, the

method for violation detection, referred to as GetVio, returns
a set V of violations and a set F of candidate fixes, where
V (resp. F) is the union of the violations (resp. candidate
fixes) of Vϕ (resp. Fϕ) for each ϕ in Σ. A straightforward
way to compute V and F for each ϕ, is to invoke the func-
tions vio(s) and vio(s1, s2) for each single tuple and each
pair of tuples on which ϕ is defined, respectively. The fix()
function will be invoked for each violation returned by vio(s)
or vio(s1, s2). Since the quadratic time pairwise comparison
for any two tuples is inherently expensive, we will discuss in
Section 4.2 partitioning and compression as two techniques
to improve its performance.

Rules Violations Candidate fixes
ϕ1 V1: {r4[CC, country]} F1: r4[country]←Netherlands

ϕ2 V2:{t1[FN, LN, St, city, tel], F2: r3[phn]← t1[tel]

r3[FN, LN, str, city, phn]}
ϕ3 V3: {r1[CC, country], F3: r1[country] ← r3[country]

r3[CC, country]} F4: r3[country] ← r1[country]

ϕ3 V4: {r2[CC, country], F5: r2[country] ← r3[country]

r3[CC, country]} F6: r3[country] ← r2[country]

Figure 4: Sample violations and candidate fixes

CC country ...
r1 44 UK ...
r2 44 UK ...
r3 44 Netherlands ...
r4 31 UK ...

Rule3
LHS() = {CC}

RHS()={country}
Partition 1: r1, r2, r3

Partition 2: r4

Partitions

Compressed cells

Violations

(c1, c2, c3, c4)

Original
violations

V3
(r1[CC, country],
r3[CC, country])
V4
(r2[CC, country],
r3[CC, country])

c1 (r1[CC], r2[CC])
c2 (r1[country], r2[country])
c3 (r3[CC])

c5 (r4[CC])
c6 (r4[country])

c4 (r3[country])

r12} {

Figure 5: Partitioning and compression for a rule

Example 1: Consider steps (a-c) of the example in Sec-
tion 2. There are 4 violations and 6 candidate fixes, as shown
in Fig. 4. By applying ϕ1 (resp. ϕ2), we find a violation V1

(resp. V2) with two cells (resp. ten cells) involved from tu-
ple r4 (resp. tuples t1 and r3). The violation V1 (resp. V2)
has a candidate fix F1 (resp. F2) that assigns Netherlands
to r4[country] (resp. t1[tel] to r3[phn]). Moreover, attribute
values from tuples r1 and r3 (resp. r2 and r3) violate ϕ3,
i.e., violation V3 (resp. V4), leading to two candidate fixes
F3 and F4 (resp. F5 and F6). Note that no violations of ϕ4

exist before resolving the violations of ϕ2. 2

4.2 Optimizations for Violation Detection
In the general case, NADEEF has to trade in performance

for generality and extensibility. For instance, violation de-
tection upon all pairs of tuples using the vio() function is
inherently expensive. However, it should be possible to do
better in more restricted settings. One typical optimization
is to divide large sets of input tuples into groups, referred
to as partitions, such that violations are detected on each
partition, provided that some information is known about
the rules. For example, if we are resolving country code
(CC) violations (e.g., Rule3 in Fig. 3), we may be able to
divide them using the CC attribute. Thus, violations of tu-
ples with the same CC but different country values need to
be only detected inside each partition.

Another way to reduce the number of pairwise compar-
isons is to merge tuples. Specifically, two tuples t1 and t2
can be merged for a rule ϕ, if (1) (t1, t2) do not violate ϕ;
and (2) for any t3, (t1, t3) 6|= ϕ iff (t2, t3) 6|= ϕ. Intuitively,
the second condition requires that t1 and t2 can be merged
if for any tuple t3, they either both violate ϕ with t3, or
neither violates ϕ with t3. This method is referred to as
compression for violations.

In order to apply the above two techniques, we need users
to provide some knowledge about their rules and how they
use the attributes. Concretely, the system needs to know
(a) the set of attributes that are used to indicate why two
tuples should be compared; and (b) the set of attributes that
need to be modified when there is a violation. We provide
two functions LHS(ϕ) and RHS(ϕ) that the users need to

Algorithm ParComVio
Input: a database D, a set Σ of data quality rules.
Output:the set V of all violations.

1. V = ∅;
2. for each data quality rule ϕ in Σ do
3. P = Partition(D, ϕ);
4. C = Compress(P, ϕ);
5. V = V ∪ DetectViolation(P, C, ϕ);
6. while ∃ca, cb ∈ V such that ext(ca) ∩ ext(cb) 6= ∅

and ext(ca) 6= ext(cb) do
7. V = ExpandViolation (ca, ϕa, cb, ϕb);
8. return V;

Figure 6: Algorithm for partitioning and compres-
sion for multiple quality rules

implement to return the set of attributes for the above (a)
and (b), respectively. For example, consider Rule3 (ϕ3) in
Fig. 4, we have LHS(ϕ3) = {CC} and RHS(ϕ3) = {country}.

Next, we first discuss the case for one data quality rule,
and then extend to multiple quality rules. For simplicity, in
the following, we focus our discussion on equality compar-
ison. For various similarity comparisons, several blocking-
based techniques are already in place and can be leveraged
within NADEEF (see e.g., [7, 25]).

Single data quality rule. For a single data quality rule ϕ,
partitioning groups all tuples whose LHS(ϕ) attribute values
are the same. Using a hash table, the partitioning can be
performed in linear time, assuming that a hash table requires
a constant cost per operation.

For compression, two tuples t1 and t2 are merged into
t12 w.r.t. ϕ if t1[LHS(ϕ) ∪ RHS(ϕ)] = t2[LHS(ϕ) ∪ RHS(ϕ)].
When they are merged, their cell values related to attributes
LHS(ϕ) ∪ RHS(ϕ) are the same and will be compressed as
t12[LHS(ϕ) ∪ RHS(ϕ)] = t1[LHS(ϕ) ∪ RHS(ϕ)]. We use the
term super cell for a compressed cell. A super cell c is a
cell with a set of identifers of original cells, referred to as
the extension of cell c, denoted by ext(c). For the attributes
that are irrelevant to ϕ, their cell values in t12 are set to
null, and their extensions are empty.

It deserves to note that when similarity comparisons are
considered, two cells whose values are similar cannot be com-
pressed, if the similarity function is not transitive.

Example 2: Consider the database in Fig. 2 and the rule
Rule3 (ϕ3) in Fig. 3. Figure 5 illustrates how the parti-
tioning and compression techniques work. Here, LHS(ϕ3) =
{CC} and RHS(ϕ3) = {country}.

Partitioning table tran leads to two partitions: Partition1
with three tuples r1–r3 since their CC values are the same
i.e., 44, and Partition2 with one tuple r4.

For compression, since r1[CC, country] = r2[CC, country],
the two tuples r1 and r2 (shaded tuples) will be merged
into r12. Their cells r1[CC] and r2[CC] (resp. r1[country]
and r2[country]) are merged into a super cell c1 (resp. c2)
in r12 whose extension is ext(c1) = {r1[CC], r2[CC]} (resp.
ext(c2) = {r1[country], r2[country]}). The other cells of r12,
which are irrelevant to ϕ3, have empty extensions and are
omitted here. The other tuples (r3 and r4) are not com-
pressed, and their cells c3–c6 are shown in Fig. 5.

From Partition1 and after compression (tuples r12 and
r3), one violation with four cells, i.e., {c1, c2, c3, c4}, is de-
tected. Note that this violation was originally represented
by two violations as given in Fig. 5. There are no violations
from Partition2. 2

Violations

Va: (c1(r1[CC], r2[CC]), c2(r1[country],
r2[country]), c3(r3[CC]), c4(r3[country]))

Vb: (c7(r1[phn]), c8(r1[country]),
c9(r2[phn]), c10(r2[country]))

Violations after expansion
Va': (c11(r1[CC]), c12(r1[country]),
c3(r3[CC]), c4(r3[country]))

Vb: (c7(r1[phn]), c8(r1[country]),
c9(r2[phn]), c10(r2[country]))

Va'': (c13(r2[CC]), c14(r2[country]),
c3(r3[CC]), c4(r3[country]))

expand

Figure 7: Expanding violations

Multiple data quality rules. The algorithm for detect-
ing violations for multiple rules, referred to as ParComVio,
is given in Fig. 6. Given a database D and a set Σ of data
quality rules as input, the algorithm computes and returns
a set V of all violations. It first creates partitions for each
data quality rule (lines 2-3). It then compresses tuples for
each partition (line 4). The violations for each rule will be
computed within its partitions (line 5; see Example 2). Af-
ter computing all violations, the algorithm needs to expand
violations that have intersections across different rules (see
Example 3 below) (lines 6-7). The violations are then re-
turned (line 8).

Notably, a super cell is originally related to one rule
(line 4), and all the cells in one super cell have the same
value. Hence, extensions of any two super cells should be
either the same, or disjoint, such that the value assignment
to different super cells, for any cleaning algorithm, should be
irrelevant. Otherwise, we need to expand these super cells
(lines 6-7). We illustrate how the expansion works with the
example below.

Example 3: For table tran (Fig. 2), assume that there is
another rule ϕ5 that states country uniquely determines phn.
For simplicity, we only show one violation of ϕ5, which is Vb

as shown in Fig. 7. The violation Va in Fig. 7 is the one
derived in Fig. 5. Note that the two cells, c2 in Va and c8
in Vb are not the same but overlap on r1[country]. Hence,
violation Va needs to be expanded to V ′a and V ′′a , as depicted
in Fig. 7. 2

One can derive original tuples from a compressed tuple,
by uncompressing their super cells. Similarly, one can derive
original violations from the violations given by super cells.

Complexity. The first loop (lines 2-5) runs in O(|D|2|Σ|)
time, by employing a hash table for partitioning, which is
the worst case to detect violations pairwise without any
compression. Similarly, the second loop runs in O(|D|2|Σ|)
time. In total, algorithm ParComVio runs in O(|D|2|Σ|)
time, where |Σ| is typically small in practice.

Although the worst case complexity is the same as a brute
force method, Fig. 8 shows the benefits of partitioning and
compression using a 10K tuples hosp data. Without any
optimization, it requires 1 billion pairwise comparisons and
produces 100K violations. With partitioning and compres-
sion, it requires only 4.4K pairwise comparisons and pro-
duces 4.4K violations.

5. DATA REPAIRING
In this section, we describe two algorithms for the data re-

pairing module (implemented in NADEEF), referred to as
GetFix. The first algorithm, which is designed to achieve
higher accuracy, encodes a data cleaning problem to a
variable-weighted conjunctive normal form (CNF) such that
existing MAX-SAT solvers can be invoked to compute re-
pairs with minimum cost. The second algorithm, which is
designed to be more efficient, heuristically computes repairs
by extending the idea of equivalence classes employed by

Method Comparisons Violations
Brute force 1,199,880,000 130,038
Partitioning 6,797,429 130,038
Compression 52,512,009 4,434
Part. + Comp. 4,434 4,434

Figure 8: Benefits of partitioning and compression

many existing data cleaning algorithms. These two imple-
mentations illustrate the extensibility of our system using
different repairing approaches. Better still, users can over-
ride these core classes with their own implementations.

5.1 A Variable-Weighted MAX-SAT Solver
based Algorithm

Given a set V of violations and a set F of candidate fixes,
the algorithm computes a set F ′ of fixes with the target
that (1) when F ′ is applied to a database D, the updated
database D′ is fixed, and (2) the overhead cost(D,D′) of
changing D to D′ is minimum.

We propose to achieve the above target by converting our
problem to a variable-weighted MAX-SAT problem, a well
studied NP-hard problem. Given a CNF where each variable
has an associated weight, this problem is to decide a set of
Boolean assignments of variables such that (1) the maxi-
mum number of clauses can be satisfied (the whole CNF
being satisfied translates to D′ being fixed); and (2) the to-
tal weight of variable assignments to true is minimum, which
translates to the cost of changing D to D′ being minimum.
Several high-performance tools for SAT (SAT-solvers) are
in place [4] and have proved to be effective in areas such as
software verification, AI, and operations research.

Weighted variables. Each assignment t[A] ← a in a can-
didate fix F is represented by a Boolean variable xat[A]. We
denote by wt(xat[A]) the weight of xat[A]. Intuitively, a variable
xat[A] is true means that the attribute value of t[A] should
be changed to value a and if this update is applied to the
database the cost is wt(xat[A]). Naturally, if t[A] = a, we
have wt(xat[A]) = 0. Note that the compression technique
discussed in Section 4 can be readily applied here. For each
variable in a CNF corresponding to a super cell c, its weight
is the cost of changing a normal cell multiplied by the car-
dinality of the super cell, i.e., |ext(c)|.
Clauses. The clauses are designed to represent three dif-
ferent semantics: (a) inclusive assignments: each cell that
causes a violation should be assigned a (possibly) new value;
(b) exclusive assignments: each cell can be assigned only one
value; and (c) violation avoidance: cells that cause a viola-
tion cannot coexist with current values.

Given a set F of candidate fixes, let val(F , t[A]) denote
{t[A]} ∪ {ai | (t[A] ← ai) ∈ F}, i.e., the set of all values
that t[A] can be assigned to, including its current value.
For example, for the candidate fix F1 in Fig. 4, we have
val({F1}, r4[country]) = {UK, Netherlands}.
(a) Inclusive assignments. For each cell t[A] such that
val(F , t[A]) satisfies n > 1 where n = |val(F , t[A])|, we gen-
erate a clause with the form (xa1

t[A] ∨ · · · ∨ x
an
t[A]). Intuitively,

this clause is to ensure that at least one of the values should
be assigned to t[A].

(b) Exclusive assignments. For each cell t[A] such that
val(F , t[A]) satisfies n > 1 where n = |val(F , t[A])|, we gen-
erate n(n− 1)/2 clauses, where each clause is in the form of
(¬xai

t[A] ∨ ¬x
aj

t[A]), for each ai, aj ∈ val(F , t[A]), and ai 6= aj .

Intuitively, these clauses assure that at most one of the val-
ues can be assigned to t[A].

(c) Violation avoidance. For each violation that consists
of a set of n cells in the form of ti[Ai] = ai for i ∈ [1, n], Ai

an attribute in ti and ai the current cell value of ti[Ai], we
generate a clause (¬xa1

t1[A1]∨· · ·∨¬x
an
tn[An]). Intuitively, this

clause assures that these values cannot all be true simulta-
neously since they cause a violation when putting together.

Recall that the cost of each variable is determined by a
function cost(c, v1, v2) that returns a value representing the
cost of changing the value of cell c from v1 to v2. By default,
it returns 1 (i.e., unit update) when v1 6= v2 and 0 otherwise.

Example 4: To better understand how the variable-
weighted MAX-SAT solver works, we consider the six can-
didate fixes shown in Fig. 4. The variables with weight 1
are shown in the table below, e.g., the variable xNetherlands

r4[country]

indicates that r4[country] can be changed to Netherlands.
The variables with weight 0 are omitted.(
xNetherlands
r4[country] x66700543

r3[phn] xNetherlands
r1[country] xNetherlands

r2[country] xUK
r3[country]

We generate five inclusive (resp. exclusive) clauses, cor-
responding to the above five non-zero weight variables, as
shown in the table below.

Inclusive assignments Exclusive assignments(
(xUK

r4[country] ∨ xNetherlands
r4[country]) (¬xUK

r4[country] ∨ ¬xNetherlands
r4[country])(

(x66700541
r3[phn] ∨ x66700543

r3[phn]) (¬x66700541
r3[phn] ∨ ¬x66700543

r3[phn])(
(xUK

r1[country] ∨ xNetherlands
r1[country]) (¬xUK

r1[country] ∨ ¬xNetherlands
r1[country])(

(xUK
r2[country] ∨ xNetherlands

r2[country]) (¬xUK
r2[country] ∨ ¬xNetherlands

r2[country])(
(xUK

r3[country] ∨ xNetherlands
r3[country]) (¬xUK

r3[country] ∨ ¬xNetherlands
r3[country])

Moreover, four clauses are generated to avoid the four
violations from Fig. 4, as shown in the table below, where
“12 . . .” is the abbreviation for “12 Holywell Street”.

Avoid violations(
(¬x31

r4[CC] ∨ ¬xUK
r4[country])(

(¬xDavid
t1[FN] ∨ ¬xJordan

t1[LN] ∨ ¬x12...
t1[St] ∨ ¬x

Oxford
t1[city] ∨ ¬x

66700543
t1[tel]

∨¬xDavid
r3[FN] ∨ ¬xJordan

r3[LN] ∨ ¬x12...
r3[str] ∨ ¬x

Oxford
r3[city] ∨ ¬x

66700541
r3[phn])(

(¬x44
r1[CC] ∨ ¬xUK

r1[country] ∨ ¬x44
r3[CC] ∨ ¬xNetherlands

r3[country])(
(¬x44

r2[CC] ∨ ¬xUK
r2[country] ∨ ¬x44

r3[CC] ∨ ¬xNetherlands
r3[country])

A variable-weighted MAX-SAT solver will take the con-
junction of all the above clauses as input. There are two
possible ways to fix the database, i.e., the whole CNF is
satisfiable, with a cost of 4 and 3 resp. as shown below.

Cost Truth assignments of non-zero weight variables

4
(
xUK
r4[country], x

66700543
r3[phn] , xNetherlands

r1[country] , xNeterlands
r2[country]

3
(
xUK
r4[country], x

66700543
r3[phn] , xUK

r3[country]

The variable-weighted SAT solver will choose the second
option above, which will update three cells, i.e., changing
r4[country] to UK, r3[phn] to 66700543 and r3[country] to
UK, since it has the lowest total cost 3. 2

5.2 An Equivalence Class based Algorithm
An alternative implementation of our core algorithm for

data repairing is based on equivalence classes [8]. These

were originally designed for FD and CFD violations. We
first revise this notion and then present our strategy.

Equivalence classes. An equivalence class consists of a set
E of cells. In a database D, each cell c has an associated
equivalence class, denoted by eq(c). An equivalence class
E is associated with a set of candidate values, denoted by
cand(E), and a unique target value, denoted by targ(E).

Given a set V of violations and a set F of candidate fixes as
input, we build equivalence classes and find fixes as follows:

(i) Initialization. Each cell c involved in V is an equivalence

class eq(c), and its candidate value is its current cell value.

(ii) Merge equivalence classes. (a) If there are two candi-
date fixes c1 ← c2 and c2 ← c1 in F , the two equiva-
lence classes for eq(c1) and eq(c2) will be merged into one,
and the new set of candidate values is the union of the
two sets of candidate values from eq(c1) and eq(c2), i.e.,
cand(eq(c1))∪cand(eq(c2)). (b) If there is only one candidate
fix c1 ← c2 (i.e., c2 ← c1 is not a candidate fix), the candi-
date values of eq(c1) will become cand(eq(c1))∪cand(eq(c2)).

(iii) Assign a target value. For each equivalence class E,

select one target value targ(E) from its candidate values
cand(E), such that the total cost of changing all cell val-
ues in E to targ(E) is minimum.

Using equivalence classes, we separate the decision of
which cell values should be the same from the decision of
what target value should be assigned to an equivalence class.
We defer the assignment of targ(E) as late as possible to re-
duce poor local decisions. Note again that the compression
technique discussed in Section 4 can be readily applied here.
The cost of making a super cell value change in an equiv-
alence class is multiplied by |ext(c)|, the cardinality of the
super cell (see Section 4.2).

6. EXPERIMENTAL STUDY
Using two real-life datasets, we evaluated our data clean-

ing system NADEEF along with four dimensions: (1) Gen-
erality: the programming interface of NADEEF can be used
to specify multiple types of rules. (2) Extensibility: different
core algorithms can be used to detect errors and clean data.
(3) Effectiveness: while aiming to be generic, our method
can find a fixed database with high accuracy compared with
existing techniques. (4) Efficiency: our system can work on
data in reasonable sizes.

Experimental Setting. We used two real-life datasets.

(1) hosp data was taken from us Department of Health &
Human Services (http://www.hospitalcompare.hhs.gov).
It has 100K records with 9 attributes used in data qual-
ity rules: Provider Number (PN), zip, city, state, phone,
Measure Code (MC), Measure Name (MN), condition, and
stateAvg. We also downloaded another table of us zip
codes from (http://databases.about.com/od/access/a/
zipcodedatabase.htm). The table has 43K tuples with two
attributes: zip and state.

(2) bus data is a one table dataset obtained by joining 8
tables using primary-foreign key relationships. These ta-
bles were from the uk government public datasets (http:
//data.gov.uk/data). The table has 160K tuples with 16
attributes relevant to data quality rules: Locality Code (LC),
Locality Name (LN), Locality Name Language (LL), Admin-
istrative Area Code (AC), Area District Code (AD), Cre-

zip

city state

phn 1

PN MC

StateAvgMN condition

zip

state

=

<-

2 3 4
5

6 7 8

9

10

LC

LN LL AC AD DN

DC

AN
RC

RN

ZC

country
CT MT

RN MD

1
2 3 4 5 6

7 8

9

10

11

(a) HOSP dataset (b) BUS dataset

HOSP

ZIP BUS

Figure 9: Data quality rules

ation DateTime (CT), Modification DateTime (MT), Revi-
sion Number (RN), Modification (MD), Area Name (AN),
Region Code (RC), Region Name (RN), District Code (DC),
District Name (DN), Bus Zone Code (ZC) and country.

Dirty datasets. Dirty data was generated as follows. For
any dataset D, we first cleaned D to get D′ by using some
cleaning algorithms followed by careful manual check, ensur-
ing that D′ is consistent w.r.t. the defined rules. We treated
D′ as the ground truth. We then added noise to D′, which
is controlled by noise rate noi%. Note that, we only added
noise to the attributes that are used in data quality rules.

Data quality rules. All data quality rules have been de-
signed manually (see Exp-1 below for details).

Algorithms. The system NADEEF was implemented in
C++, including the following: (i) The algorithm for vio-
lation detection, using partitioning and compression tech-
niques (Section 4.2) by default, referred to as GetVio.
(ii) The algorithm for computing fixes using the variable-
weighted SAT-solver (see Section 5.1), referred to as WSAT.
We used a variable-weighted MAX-SAT solver from [22].
(iii) The algorithm for computing fixes using equivalence
classes (Section 5.2), referred to as EQU. For comparison,
we obtained the implementation of two algorithms for FD

repairing, a cost-based heuristic method [5], referred to as
HEU, and a vertex cover based approach [20], referred to as
VER. Both approaches were implemented in Java.

We conducted all experiments on a Windows machine
with an Intel 3.4GHz Intel CPU and 8GB of Memory.

Measuring Quality. To assess the accuracy of data clean-
ing algorithms, we used precision, recall and F-measure, which
are commonly used in measuring the result of repairs, where

F-measure = 2 · (precision · recall)/(precision + recall).

Here, precision is the ratio of attributes correctly updated
to the number of all the attributes that have been updated,
and recall is the ratio of correctly updated attributes to the
number of all erroneous attributes.

Experimental Results. We now report our findings for
the four dimensions mentioned earlier.

Exp-1: Generality. We show the generality of our frame-
work by demonstrating that it can be used to specify mul-
tiple types of data quality rules. Fig. 9(a) depicts the rules
defined for hosp dataset and Fig. 9(b) depicts the rules for
bus dataset.

We defined 10 rules over the hosp dataset, where rules 1-9
are all FDs and rule10 is an MD. For example, rule1 (resp.
rule9) states that in table hosp, phn (resp. MC and state)
determines zip (resp. StateAvg). Rule10 states that if two

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

F
-m

ea
ur

e

noi% from active domain

WSAT
EQU
HEU
VER

(a) HOSP

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5 10 15 20 25

F
-m

ea
ur

e

noise % from active domain

WSAT
EQU
HEU
VER

(b) BUS

Active domain WSAT EQU HEU VER

0 132/186 137/187 73/73 39/220
2 141/195 141/195 72/553 40/237
4 137/199 139/199 70/606 42/374
6 127/178 126/250 67/612 39/265
8 132/204 136/301 59/1749 38/260
10 121/199 122/461 72/1543 26/189

Figure 10: Accuracy when the noise is from the ac-
tive domain

zip code values from table hosp and table zip are the same,
but their state values are different, then the state value from
zip table is more reliable. All of these data quality rules are
defined over a pair of tuples.

There are 11 rules defined over the bus dataset, where
rules 1-10 are FDs, and rule11 is a customized rule. Rule11
states that, for each tuple, if its Creation DateTime (CT)
and Modification DateTime (MT) are the same, then its
Revision Number (RN) must be 0, and its status Modifica-
tion (MD) must be new. We can use rule11 to fix erroneous
cells as well as capturing missing values since the values for
many RN and MD cells are missing. Remark that rules 1-10
are defined for a pair of tuples, and rule11 is defined on a
single tuple.

For the rule classes that the users have to implement, FDs

(resp. MDs) only require 65 and 34 (resp. 45 and 46) lines
of code to define the functions for detecting violations and
generating candidate fixes, respectively. For the customized
rule (i.e., rule11 for bus data), the users need to write 50
lines of code in total. We see that using the concept of
programming interface as defined in NADEEF, users will
have to write only a few lines of code for data quality rules
that are relevant to their dataset, without having to write an
entire data cleaning system specially crafted for these rules.
Note that for the FDs mentioned above, we assign them a
default dynamic semantics of fixing errors by changing the
values from the right hand side of the rules (see e.g., Rule2
in Fig. 3).

Remark. To ease the use of NADEEF, we have imple-
mented some common classes that can be easily reused by
users. Specifically, we have implemented Rule classes for
CFDs (FDs) and MDs. For example, to specify various FDs,
users only need to specify the left- and right-hand side at-
tributes of each FD. We have also implemented some com-
mon similarity functions, with string edit distance by de-
fault.

Exp-2: Extensibility. We have already mentioned (Sec-
tion 5) that we provide two different algorithms for fixing
errors (i.e., GetFix), namely WSAT and EQU. A user can
specify in a configuration file which algorithm to use. Users
can also specify a totally different core algorithm GetFix as
long as that algorithm can take as input sets of violations

 0

 0.2

 0.4

 0.6

 0.8

 1

20K 40K 60K 80K 100K

F
-m

ea
ur

e

number of tuples

EQU
HEU

(a) HOSP

 0

 0.2

 0.4

 0.6

 0.8

 1

20K 40K 80K 120K 160K

F
-m

ea
ur

e

number of tuples

EQU
HEU

(b) BUS

Figure 11: Accuracy when varying the size of data

and candidate fixes, and returns a set of fixes to be applied
to the database. Moreover, not only GetFix, but also the
algorithm for GetVio, can be overridden.

Exp-3: Effectiveness. We evaluated the accuracy of dif-
ferent cleaning algorithms by varying noise rate (noi%) and
the size of data. Noise is added by either introducing typos
to an attribute value or changing an attribute value by an-
other one from the active domain of that specific attribute.

Varying noise from the active domain. In this series of ex-
periments, we fixed the overall noise rate to 1 percent and
then varied the noise rate from the active domain (x-axis in
both charts from Fig. 10). The results of comparing WSAT,
EQU, HEU and VER are given in Fig. 10 (the y-axis repre-
sent F-measure values), where Fig. 10(a) is for hosp data
and Fig. 10(b) is for bus data. We used 10K tuples for both
datasets with FDs only.

Figure 10 shows that when there is no noise from ac-
tive domain, i.e., x-axis value is 0, both WSAT and EQU

have comparable F-measure values with HEU as shown in
Fig. 10(a) and 10(b). However, when there is noise from
active domain, the F-measure values of both EQU and HEU

drop quickly. This tells us that WSAT is not sensitive to noise
from the active domain, while EQU and HEU are sensitive.

We explain the above results as follows: (1) WSAT is not
sensitive to noise from active domain since it treats variables
independently with the target of selecting variables with the
least cost to satisfy the whole CNF or a maximum number of
clauses. (2) EQU is sensitive since when there are erroneous
values from the active domain, the algorithm merges (orig-
inally) irrelevant equivalence classes. Hence, when making
decision to set an equivalence class a target value, many as-
signments are wrong. The case for HEU is similar. (3) VER

is sensitive since when there are errors from the active do-
main, the algorithm will erroneously connect some tuples
using hyper-edges (see [20]) as violations, which might con-
nect two previously irrelevant violations and reduce the ac-
curacy when repairing the data. (4) The reason that our
approaches have higher accuracy is that users have to spec-
ify possible ways to fix errors, which avoids blindly making
the database consistent by only targeting minimality.

We further explain the reason the recall of VER is low
using the table in Fig. 10, the one for bus data is similar and
omitted for space constraints. The first column corresponds
to the x-axis values in Fig. 10(a), i.e., the percentage of
noise from the active domain. Each cell in the table is for
the number of correct changes over the number of changes.
For example, the cell 132/186 represents that WSAT changed
186 values, and 132 of them are correct changes. We notice
that when the noise from the active domain is large, e.g., the
last row, VER made only 189 changes to make the database
consistent, while HEU made 1543 changes. Hence, VER uses
less changes than HEU to compute a consistent database.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
-m

ea
ur

e

noise rate

EQU
HEU

(a) HOSP

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
-m

ea
ur

e

noise rate

EQU
HEU

(b) BUS

Figure 12: Accuracy when varying noise rate

This group of experiments tells us that: (1) The new prob-
lem studied in this paper is meaningful, i.e., instead of trying
to compute a consistent database, we should try to resolve
errors when candidate fixes are known. It highlights the need
for users to provide useful information to guide the process of
repairing data. (2) Equivalence class based solutions, which
cover a large part of existing data cleaning algorithms, are
sensitive to the noise from the active domain.

To favor the other approaches, in the following, we only
consider noise from typos. Since WSAT and VER cannot scale
well, we focus our comparisons mainly on EQU and HEU.
Notice that for WSAT, we need a variable-weighted MAX-
SAT solver. However, most popular SAT solvers are non-
weighted or clause-weighted. While MiniSAT [18] is very
efficient, its effectiveness was too low when we tried it and
thus is not reported in this paper. Whenever a more robust
variable-weighted MAX-SAT solver becomes available, we
will evaluate it within our system.

Noise from typos only. We evaluated the effectiveness of dif-
ferent algorithms when there is only noise from typos. Fig-
ure 11(a) (resp. Fig. 11(b)) shows the case for hosp (resp.
bus) when fixing noi% at 1% while varying the size of the
data from 20K to 100K tuples (resp. 20K to 160K tuples).
Moreover, Fig. 12(a) (resp. Fig. 12(b)) shows the result of
hosp (resp. bus) data when varying the noise rate noi%
from 1% to 10%, with 100K tuples (resp. 40K tuples). The
results for the datasets of different sizes show similar trend,
and hence are omitted here.

Figures 11(a) and 11(b) show that for different sizes of
data, the F-measure values of different algorithms stay al-
most the same if the noise is only from typos, which verifies
the previous group of experiments. The reason that EQU is
better confirms that it is really helpful to have users spec-
ify the dynamic semantics of rules, i.e., telling the system
about the different alternatives to modify attributes when
there is a violation.

Figures 12(a) and 12(b) show that when there is only noise
from typos, existing algorithms are not sensitive to the noise
rate. On the one hand, typos will only introduce indepen-
dent violations. When treating these violations separately,
the same algorithm will get a similar F-measure value. On
the other hand, when there are errors from the active do-
main, most algorithms will associate (originally) irrelevant
violations. This will negatively affect the results of most
algorithms, which has been verified in Fig. 10.

Interleaving various types of data quality rules. We evalu-
ated the effect of executing various types of data quality
rules together versus executing them sequentially. Recall
Fig. 9(a) for hosp dataset, the MD rule10 overlaps with
other FD rules. However, for bus dataset, the customized
rule11 has no overlap with other FD rules. Hence, we focus
on evaluating the cleaning of hosp in different rule order.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
-m

ea
ur

e

noi%

FD first, then MD
MD first, then FD

MD and FD together

Figure 13: Interleaving various types of rules

For bus, since there is no overlap of rules, executing them
in any order makes no difference.

We ran algorithm HEU on hosp data with 100K tuples,
varying the noise rate noi% from 1% to 10%. To clearly
show the result, we added 5% extra noise to the attributes
that are related to the intersected rules, i.e., attributes zip
and state. The result is shown in Fig. 13. When executing
FDs first followed by MDs, the overall performance is worse
than executing MDs first. Moreover, executing MDs and FDs

together has the same performance as executing MDs first.
This experiment tells us that the order of executing multi-

ple types of rules matters. That is, executing multiple types
of rules in different orders will get different results. However,
in practice, it is impossible to know the optimal order a pri-
ori. Hence, when having to deal with multiple types of rules,
we should treat them holistically, as verified by Fig. 13.

Exp-4: Efficiency. In the last group of experiments, we
studied the efficiency of various algorithms. We start by
comparing EQU and HEU, followed by evaluating WSAT. Fig-
ure 14 shows running time of EQU and HEU: Fig. 14(a) re-
lates to Fig. 11(a), and Fig. 14(b) relates to Fig. 11(b).

In these two figures, the x-axis represents the number of
tuples and the y-axis the running time. We show two com-
ponents of the running time of our method, where the lower
part is for detecting violations (i.e., GetVio) and the upper
part is for repairing errors using EQU. The time for Updater
is in milliseconds and thus not reported here.

The results show the following: (a) EQU and HEU deliver
good results but for different applications, e.g., HEU is faster
for hosp (Fig. 14(a)) while EQU is faster for bus (Fig. 14(b)).
(b) GetVio takes some time, but the time of EQU for com-
puting fixes is quite efficient, which proves the benefit of our
partitioning and compression techniques (see Fig. 8).

We also studied the efficiency of WSAT on hosp and
bus data, where we fixed noi% at 1% while varying the size
of data from 20K to 100K for hosp and 20K to 160K for
bus. The running time is given in Fig. 15. The running
times above 2 hours are not given since they did not run to
completion. The high running times come from the inherent
complexity of the problem of variable-weighted MAX-SAT
problem, which is NP-hard. Thus, using WSAT for the whole
dataset is not practical. However, it opens the opportunities
to design an optimizer that first partitions the whole data
cleaning problem into many smaller independent groups,
then determines which algorithm, e.g., HEU or WSAT, to
invoke for each group.
Summary. From the above experimental study, we con-
clude that: (a) Providing a generalized programming inter-
face, which requires minimum user efforts to specify data
quality rules, is practically needed and is possible (Exp-1).
(b) By making our system extensible, we can benefit from

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

20K 40K 60K 80K 100K

T
im

e
(s

ec
on

ds
)

EQU
GetVio

HEU

(a) HOSP

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

20K 40K 80K 120K 160K

T
im

e
(s

ec
on

ds
)

EQU
GetVio

HEU

(b) BUS
Figure 14: Efficiency study

hosp time (sec) bus time (sec)
20K 617.4 20K 131.8
40K 4759.3 40K 482.1
60K > 2 hours 80K 2473.2
80K > 2 hours 120K > 2 hours
100K > 2 hours 160K > 2 hours

Figure 15: Running time for WSAT

algorithms that expert users implement for their own appli-
cations to replace the default core algorithms, especially for
GetVio and GetFix (Exp-2). (c) Our systems can achieve bet-
ter accuracy than existing methods since the users provide
the system with the dynamic semantics to resolve violations
(Exp-3). (d) Multiple types of data quality rules should be
treated holistically (Exp-3), since in practice, it is difficult
to know a priori the best order of sequential execution for
algorithms designed for different rules. (e) Our system can
work for data in reasonable sizes (Exp-4).

7. RELATED WORK
The first serious discussions and analyses of data repairing

have emerged in [16]. After that, a large and growing body
of literature has investigated ETL tools (see [2] for a survey),
which support data transformations, and can be employed
to merge and repair data [24]. Recently, there has been an
increasing amount of literature on dependency theory (a.k.a.
integrity constraints) to specify data consistency for data re-
pairing, e.g., FDs [28], its extension CFDs [8, 12], MDs [13],
FDs and inds [5], and denial constraints [1]. However, they
are in the class of universally quantified first-order sentences.
Their limited expressiveness often does not allow to state
problems commonly found in real life data as violations of
these dependencies [11]. Through its programming inter-
face, our framework is expressive enough to specify these
problems as well as any of the existing constraints.

Data quality techniques often rely on domain-specific sim-
ilarity and matching operators, beyond pure first-order logic.
While these domain-specific operations may not be them-
selves expressible in any reasonable declarative formalism,
it is still possible to integrate them into the framework of
dependencies, especially for record matching (a.k.a. record
linkage, entity resolution, and duplicate detection, see [10]
for a survey). In contrast to matching rules (e.g., [13,19,27]),
our approach is more general since it also considers data re-
pairing, among other things.

A general approach to tackle the problem of entity reso-
lution is to define two functions, namely match and merge,
over two tuples as proposed in [3], where match identifies du-
plicates and merge combines the two duplicated records into
one. One can easily verify that the match can be naturally
defined using function vio(s1, s2) to find duplicates, and fix()

can be used to merge duplicates. However, merge cannot be
used to represent updates of finer granularity (only some cell
needs to be changed) as what fix() does in our system.

Several repairing algorithms have been proposed [5,8,15,
16, 23, 29]. Heuristic methods have been developed based
on FDs and inds [5], CFDs [12], and editing rules [16]. The
methods of [5, 8] employ confidence values provided by the
users to guide a repairing process. Statistical inference is
studied in [23] to derive missing values. To ensure the accu-
racy of the generate repairs, [23, 29] require consulting the
users. We do not assume the availability of confidence values
in NADEEF. Moreover, while we do not support user in-
teractions in the current implementation of NADEEF, the
metadata we are handling can feed to a data quality dash-
board that can then visualize the necessary information to
understand the current health of the data and eventually
allow the users to intervene to guide the cleaning process.

A number of studies have been proposed to tackle different
data quality rules in one framework. The work [14] studies
the interaction between record matching (MDs) and data
repairing (CFDs). AJAX [17] and TAILOR [9] are toolboxes
for record linkage. In contrast, the proposed system (a)
covers a more general spectrum of data quality rules; (b) is
extensible such that users can plug-in their own cores for
error detection and data repairing, among other things.

8. CONCLUSION
We presented NADEEF, a commodity data cleaning sys-

tem. The main design of NADEEF is to separate a program-
ming interface that allows users to flexibly define multiple
types of data quality rules about both their static semantics
and dynamic semantics, and a core that implements algo-
rithms to detect and repair dirty data by treating multiple
types of quality rules holistically. We have demonstrated
that our interface is general and expressive enough to define
data quality rules beyond the well known ETL rules, CFDs

and MDs. We have also shown the extensibility of NADEEF
by showing that users can plug in other core algorithms, al-
lowing experts to further customize our system.

Several extensions are underway. (1) To handle large
volume of data, we plan to move our system from being
memory-based to being disk-based, using an open source
database e.g., PostgresSQL. (2) We are designing more user
friendly interface (i.e., GUI) to help users define their rules
easier. (3) We plan to incorporate various indices and block-
ing techniques in our framework to efficiently support sim-
ilarity comparisons. (4) We plan to investigate techniques
for partitioning a big cleaning problem into multiple small
ones such that each one of them can be executed separately.
This would provide opportunities for designing an optimizer
to select the appropriate core implementation (i.e., detection
and repairing) for each partition as well running NADEEF
in a parallel and distributed environment. (5) We will de-
sign and implement a live data quality dashboard on top of
NADEEF and explore summarization techniques to more
effectively involve users in the cleaning process.

9. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. TPLP, 3(4-5),
2003.

[2] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Springer, 2006.

[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach
to entity resolution. VLDB J., 18(1), 2009.

[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009.

[5] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, 2005.

[6] L. Bravo, W. Fan, F. Geerts, and S. Ma. Increasing the
expressivity of conditional functional dependencies without
extra complexity. In ICDE, 2008.

[7] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. TKDE, 19(1), 2011.

[8] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving
data quality: Consistency and accuracy. In VLDB, 2007.

[9] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios.
Tailor: A record linkage tool box. In ICDE, 2002.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1), 2007.

[11] W. Fan. Dependencies revisited for improving data quality.
In PODS, 2008.

[12] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. TODS, 33(2), 2008.

[13] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. PVLDB, 2(1), 2009.

[14] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction
between record matching and data repairing. In SIGMOD
Conference, 2011.

[15] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain
fixes with editing rules and master data. VLDB J., 21(2),
2012.

[16] I. Fellegi and D. Holt. A systematic approach to automatic
edit and imputation. J. American Statistical Association,
71(353), 1976.

[17] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.
Saita. Declarative data cleaning: Language, model, and
algorithms. In VLDB, 2001.

[18] E. Giunchiglia and A. Tacchella, editors. Theory and
Applications of Satisfiability Testing, SAT, 2004.

[19] M. A. Hernandez and S. Stolfo. Real-World Data is Dirty:
Data Cleansing and the Merge/Purge Problem. Data
Mining and Knowledge Discovery, 2(1), 1998.

[20] S. Kolahi and L. V. S. Lakshmanan. On approximating
optimum repairs for functional dependency violations. In
ICDT, 2009.

[21] G. M. Kuper. Aggregation in constraint databases. In
PPCP, 1993.

[22] Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An
efficient sat solver. In SAT (Selected Papers), 2004.

[23] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a
database approach for statistical inference and data
cleaning. In SIGMOD, 2010.

[24] F. Naumann, A. Bilke, J. Bleiholder, and M. Weis. Data
fusion in three steps: Resolving schema, tuple, and value
inconsistencies. IEEE Data Eng. Bull., 29(2), 2006.

[25] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and
W. Nejdl. Beyond 100 million entities: large-scale
blocking-based resolution for heterogeneous data. In
WSDM, 2012.

[26] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, 2001.

[27] S. E. Whang, O. Benjelloun, and H. Garcia-Molina. Generic
entity resolution with negative rules. VLDB J., 18(6), 2009.

[28] J. Wijsen. Database repairing using updates. TODS, 30(3),
2005.

[29] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas. Guided data repair. PVLDB, 4(5), 2011.

