MNTG: An Extensible Web-based Traffic Generator

Mohamed F. Mokbél, Louai Alarab?, Jie Bad, Ahmed Eldawy, Amr Magdy?,
Mohamed Sarwéf Ethan Wayta$§ Steven Yackél

1,2,3,4,5.6.7yniversity of Minnesota, Minneapolis, MN 55455, USA
8Microsoft
{nmokbel !, | ouai ?, baoj i €, el dawy*, anr %, sarwat °}@s. urm. edu
wayt 0012@mm. edu” spazardl@i ve. conf

Abstract. Road network traffic datasets have attracted significant attention in the
past decade. For instance, in spatio-temporal databases areachesg harness
road network traffic data to evaluate and validate their research. Colleetihg
traffic datasets is tedious as it usually takes a significant amount of timefand
fort. Alternatively, many researchers opt to generate synthetic tigdtiz using
existing traffic generation tools, e.g., Brinkhoff and BerlinMOD. Utdoiately,
existing road network traffic generators require significant amoutitref and
effort to install, configure, and run. Moreover, it is not trivial to geate traffic
data in arbitrary spatial regions using existing traffic generators. In #pemp
we propose Minnesota Traffic Generator (MNTG); an extensible vestedbroad
network traffic generator that overcomes the hurdles of using existffgctgen-
erators. MNTG does not provide a new way to simulate traffic data. lshsiea
serves as a wrapper over existing traffic generators, making themease,
configure, and run for any arbitrary spatial road region. To geedraffic data,
MNTG users just need to use its user-friendly web interface to specigrtain
trary spatial range on the map, select a traffic generator methodyandtshe
traffic generation request to the server. MNTG dedicated server wéive and
process the submitted traffic generation request, and notify the usemed e
when finished. MNTG users can then download their generated data arsillo
alize it on MNTG map interface. MNTG is extensible in two frontiers: (1) it ca
be easily extended to support various traffic generators. It is alig@gged with
the two most common traffic generators, Brinkhoff and BerlinMOD, itetlso
has the interface that can be used to add new traffic generatorscé®)hie easily
extended to support various road network sources. It is shipped wghTiger
files and Open Street Map, yet, it also has the interface that can be uadd to
other sources. MNTG is launched as a web service for public uset@ype can
be accessed viattp : //mntg.cs.umn.edu.

1 Introduction

Road network traffic data consist of a set of spatial locati@ported by a set of objects
moving over a road network. Traffic data have been alreadsrég®ed by researchers
in different areas, e.g., spatial-temporal databasessp@atation, urban computing and
data mining. The process of extracting real traffic data iregunstalling and config-
uring many GPS-enabled devices and continuously mongdtie locations of such
devices, which is a cumbersome task. For instance, Geotdjeqi [1] took more than

four years to collect 17,621 trajectories dataset with tivelivement of 182 volunteers
in Beijing. Alternatively, many researchers opt to genemanthetic road network traf-
fic data. As a consequence, several efforts have been dadlicadevelop road network
traffic generators, e.g., Brinkhoff [2] and BerlinMOD [3].

Even though existing traffic generators are quite usefuietieeless, most of them
suffer from the following: (1) It may take the user signifitamount of effort to install
and configure the traffic generation tool. For example, ireotd run BerlinMOD, the
user needs to first install a moving object database, i.eCCB¥DO [4], and then get
familiar with the script commands used to install it. Afteetinstallation, users still need
to understand an extensive list of configuration paramdtereach traffic generator.
(2) It is not trivial to generate traffic data in arbitrary §phregions using existing
traffic generators. For example, to be able to use BrinkhoBerlinMOD generators
for a different city than the default shipped one (Oldenkaud Berlin for Brinkhoff and
BerlinMOD generators, respectively), the user needs to dibgain the road network
information for the city of interest, which is a tedious tdmkitself. For example, to get
the road network information for the city of Munich, a usernynm@ed to understand the
format of OpenStreetMap [5], and then write a program th&aets the road network
of Munich from OpenStreetMap. After obtaining the new roatwork data, the user
will then need to understand how to modify the obtained fdrtmanatch the required
one by either Brinkhoff or BerlinMOD. Such set of tedious mgi®ns made it hard for
casual users to use these traffic generators for arbitratjasreas. As a testimony,
one can observe that almost all the literature that have thesg generators for traffic
data have used it for their default cities.

In this paper, we propose Minnesota Traffic Generator (MN BB)extensible web-
based road network traffic generator that overcomes thddsuoflusing existing traffic
generators. MNTG is basically a wrapper around existinffie¢rgenerators, with the
mission of enabling an easy usage of all existing traffic ¢ggoes, and hence help all
researchers worldwide in validating and benchmarking tiesiearch techniques against
various workloads of movings objects over real road netaork

MNTG has three main features that significantly help in aghg its goals:
(1) MNTG is a web service with an easy-to-use user-friendgprmterface. Behind
the scenes, MNTG carries the burden of configuring and rgnexisting traffic gen-
erators. Thus, MNTG users do not need to install or confignyghéng on their local
machines. This is in contrast to the traditional usage afilBroff and BerlinMOD gen-
erators that require various installations as mentionedeh(2) MNTG can be used
for any arbitrary city or spatial area worldwide. Users cast jnavigate through the
map interface, and mark their area of interest with a rectlmgrea. Once the traffic
generation request is submitted, MNTG is responsible ftiaeking the road network
information for the requested area and generating thediaffthe extracted area using
one of the existing traffic generators. This is in contrash#&traditional usage of exist-
ing traffic generators that is hard to be tailored for arbjticties. (3) MNTG users do
not need to worry about the processing time or computinguress, where MNTG has
its own dedicated server machine that (a) receives a traffjgast from the user, (b) in-
ternally processes the request in a multi-core multi-ttheelaprogram, and (c) emails
the user back when the requested data is generated. Thgmpgimail includes a link

to download the data as well as an option to visualize the rgéeek data. This is in
contrast to the traditional usage of existing traffic getwgathat may take significant
portion of the user time and computing resources.

Minnesota Traffic Generator (MNTG) is extensible in two fiiers: (1) It can be
easily extended to support various traffic generators titrdiew deterministic func-
tions. Currently, MNTG is shipped with the two most commoaffic generators,
Brinkhoff and BerlinMOD, yet, it also has the interface tlcan be used to add new
traffic generators. As a proof of concept, we extend it witlardiom generator which
generates some kind of random walks over the road netwoykt ¢an be easily ex-
tended to support various road network sources. It is ctiyrehipped with the support
for U.S. Tiger files [6] and OpenStreetMap [5], yet, it alsa liae interface that can be
used to add other sources for road network data.

MNTG is equipped with three main components, listed as fedto(1) Road Net-
work Converterthat extracts the road network for the area of interest fedimer US.
Tiger files or OpenStreetMap, and converts it to match the&brof the underlying
traffic generator. (2Jraffic Processarthat schedules and executes the received traffic
generation requests. The traffic processor processesabmiing requests in parallel
using a multi-threading paradigm to increase the overallesy throughput. Both the
road network converter and traffic processor provide anfade for the system users
to incorporate a newly developed traffic generator. To plug-newly developed traffic
generator, MNTG defines a set of abstract functions thasusesd to implement. The
implemented functions deal with converting/extracting thad network data, executing
the traffic generator, and preparing the generated traffipupuOnce a traffic genera-
tor is plugged-in, users may leverage it to generate traffta.d3)System Front-End
which contains a web interface for users to submit trafficegation requests, an email
notifier to send messages or natifications to the user, antat saols for the user to
download and visualize the generated traffic data.

A preliminary version of MNTG is launched as a web service gablic use; a
prototype can be accessed Vi&tp : //mntg.cs.umn.edu. The preliminary version
supports Brinkhoff, BerlinMOD and the random traffic gertera on both U.S TIGER
files and OpenStreetMap data. The extensibility interfaceflding more generators or
other road network sources is currently working internaetigler our support. Yet, these
functionalities will be released to public use in our nextsien. Since its launch last
month, MNTG has received more than 1000 traffic generatiquests from researchers
world wide. All requests have been efficiently satisfied, aslilts were sent back to the
requesting users. We envision that MNTG will be the de fataodard for generating
road network data for researchers in spatial and spatipdesthdatabases worldwide.

The rest of this paper is organized as follows: Section 2liggts related work. Sec-
tion 3 gives an overview of MNTG. Sections 4 and 5 describéwlemain components
in the system back-end; (1) road network converter and é¥)drmodels, respectively.
Section 6 provides the description of the system front-eiil detailed usage guide.
Finally, Section 7 concludes the paper with pointers toriituork.

Environment Generators
Free Movement |Pfoser and Theodoridis [7], Oporto [8], GSDT [9], G-TERD [{L0]
Brinkhoff [2] , BerlinMOD [3], ST-ACTS [11] , GAMMA [12],

SUMO [13], Micro Simulators [14]
Multi Environments MWGen [15]

Road Network

Table 1. Existing Moving Objects Generators.

2 Related Work

Road network traffic data (i.e., moving objects data) havenbeidely used by
researchers to test and validate their techniques in \&spatio-temporal data man-
agement problems. This includes objects tracking [16]diptere queries [17], range
queries [18] kNN queries [19], continuous queries [20], data uncertajaty, and lo-
cation privacy [22]. As a consequence, several efforts Faugsed on creating standard
benchmarks for evaluating research on moving objects @ag8{27]. As part of cre-
ating such benchmarks, generating synthetic moving abpata gained considerable
attention in the literature.

Table 1 gives a summary of existing moving objects data g¢oes. Based on the
spatial environment where the objects move on, existingingoebjects data generators
can be classified into the following three main categories:

1. Free movemenit7—10]. This category assumes that objects can move freedy i
two-dimensional Euclidean space. The GSTD generator [8¢igees data for ei-
ther moving points or rectangular regions, where it alloissusers to control the
lifetime of each moving object. The GSTD generator is lai¢ereded to incorpo-
rate real-life behaviors like group and obstructed movemgt}. G-TERD [10] has
introduced new features to traffic generators, where usergenerate arbitrary-
shaped objects with tuning parameters that control objeetd, color, and rotation
over time. Unlike all other moving objects generators, @p§8] is particularly
concerned with generating the movement of ships, whichmldpen fishing sce-
narios where ships head to fish shoals and avoid storms.

2. Road networks [2, 3,28,11-13, 29, 14]his category is mainly concerned with
generating moving objects data in a road network envirotn@onstrained by
the predefined road network paths, they basically generaffictdata based on
real-life trip planning scenarios that simulate the humeahavior. Brinkhoff [2],
SUMO [13] and micro simulators [14] depend on short-termeobations, where
representative human behavior is observed for short déstrips. On the other
hand, BerlinMOD [3] and ST-ACTS [11] rely on long-term obgstions where
human behavior is observed for several consecutive days.

3. Multi-Environments[15]. This category considers moving objects in multi-
environments, e.g., Indooer walk — Bus — walk. MWGen [15] surpassed the
typical functionality of generating data only for a singleveéonment and extends
it to support multiple environments, i.e., indoors and ootd, at the same time.

Traffic generation request Download/visualize
—_— e —— ——— e — — ————
traffic results I

I
| Traffic Data Users
A I
I ' R
A 4

Status INotification

~

Download/
Web Interface Email Notifier Visualization
Tools

System
Frontend

A
Status | Notification

Road Network . Resuts
—>| Traffic Processor—>
Converter

Brinkhoff
Traffic Requests 4 BerlinMOD

System
Backend

Traffic Results

Random
’_New Generator !

(. 4 J

Road Network Data Sources l

Traffic Generator
; Developers

New Data Source OpenStreetMaps US Tiger Files

Fig. 1. MNTG System Overview.

GMOBench simulates a scenario like an employee moving inMoek building,
then walks to the parking lot to drive her car all the way to lepthen walks again
to enter home and move indoors.

Minnesota Traffic Generator (MNTG) distinguishes itsetinfr all the work men-
tioned above as it does not provide yet another techniquédtfic data generation.
Instead, it is an extensible wrapper built around any of thistiag traffic generators
in the second category mentioned above (road network mavgn#es an extensible
easy-to-use wrapper, MNTG enables a practical use of all neawvork traffic genera-
tors developed over the last two decades. Due to its simplMiNTG is expected to
give a boost to existing traffic generators by gaining widsgricommunity.

3 System Overview

Figure 1 gives an overview of the MNTG system architectures@r interacts with
MNTG through its system front-end that includes three maimgonents: (1yVeb In-
terface which allows users to submit traffic generation requestsdigcting a geo-
graphical area on the map and setting the correspondingnpéges in a very intuitive
way, (2)Email Notifier, which retrieves the status updates from the back-end agjubke
users posted on their traffic generation request prograss(3 Download and Visu-
alization tools which allow users to download their generated traffic data text file
and/or visualize the generated traffic data on the map. Ttelslef the system front-
end, with its three components, will be discussed in Se@&ion

Internally, the system back-end of MNTG processes incontiaffic generation
requests and generates traffic data for the system usersy$tean back-end consists
of the following two main components:

1. Road Network Convertewhich is responsible for extracting the road network data
from the traffic generation request. It receives a rectarggpatial area with two
corner coordinates, each represented adaditude, longitude>. Then, theroad
network converteexploits its underlying road network data source, US Tidesfi
or OpenStreetMaps, to extract the information of the setberea, and convert it
into an appropriate format understood by the requestefictggnerator. Theoad
network converteis extensible to support other road network data sourcesruky
its default ones, US tiger files and OpenStreetMaps. Devéitee road network
converterwill be discussed in Section 4.

2. Traffic Processarwhich takes the road network data from tlead network con-
verter and feed it to the requested traffic generator, which is otlgresither
Brinkhoff or BerlinMOD. The traffic processor is implemedt& a multi-threading
paradigm to: (a) allow multiple requests to be served caeatly, and (b) avoid the
starving of small traffic generation requests waiting fogéarequests to finish. The
traffic processoliis highly extensible as it is equipped with modules thatvaltbe
traffic model developers to easily plug-in a new traffic gat@r Details of the
traffic processowmwill be discussed in Section 5.

4 Road Network Converter

Despite the abundance of road network data sources, sucB agyer files and Open-
StreetMap, none of them provides an intuitive way to extraatl network paths, i.e.,
nodes and edges, for an arbitrary geographical area. MNm@eother hand, needs
to generate road network traffic data for any geographiesd aelected by the user. To
achieve that, MNTG employsraad network convertethat is responsible for extracting
the road network data for each incoming traffic generatiguest. Moreover, The road
network converter is designed to support a wide variety aflnoetwork data sources.

In this section, we first discuss the main idea behind the residiork converter.
Then, we provide two detailed case studies featuring twd restwork data sources,
which are currently implemented in MNTG: US Tiger Files ange@StreetMap. Fi-
nally, we discuss the extensibility of the road network @ter to support new road
network data sources.

4.1 Main ldea

The road network converter is responsible for extractirgginoetwork nodes and edges
from different sources and transforming the extracted oataa standard format that
can be utilized by different traffic generators. The funuélity of the road network con-
verter doemotdepend on the underlying traffic model (e.g., Brinkhoff orlBéVOD).
Instead, it heavily depends on the underlying data sourge (@S Tiger files or Open-
StreetMap). To achieve its goals, the road network conveeeforms the following
two steps for each traffic generation request:

1. Step 1. Extracting Road Networkhe input to this step is :(a) a rectangular spa-
tial area, defined by two cornetlatitude longitude> coordinates, and (b) the
road network data source (e.g., US Tiger files or OpenStragiMIhe output of
this step is the road network information of the selecte@,abased on the se-
lected road network data source. This is done through amaab$tinction, called
Ext r act RoadNet wor k, that exploits the underlying road network data source
to: (a) prune all information that are outside the selectsdangular spatial area,
and (b) prune the non road network information from the setbrectangular area.
We do so because each road network data source provides difatient formats;
for example, US Tiger Files are stored in a binary format weittra information
about zip codes, rivers, demographics, etc, while OpeaBti@ stores data in an
XML format with extra information about buildings, parksaffic lights, etc.

2. Step 2. Preparing Standard Outptithe input to this step is: (a) The road net-
work information of the selected rectangular spatial area, the output of the
Ext r act RoadNet wor k abstract function, and (b) the road network data source.
The output of this step is two standard text road network fles: node. t xt
and edge. t xt, which contain the final set of nodes and edges in the se-
lected spatial area, respectively. This is done throughbatract function, called
Pr epar eSt andar dQut put , that is aware of the data format of the underlying
data source and converts it to our standard output format.

We opt to transform the road network information into a staddext format, to
make it portable to various traffic generators. Each traffinegator uses its own dif-
ferent input file format and perhaps different spatial comate system. For example,
Brinkhoff generator uses binary files to store nodes and £dgkereas BerlinMOD
expects one text file with two bracketed locations to repreagoad segment. More-
over, Brinkhoff generator uses its own spatial coordinategtem, where th&atitude
andlongitudeof a location are the offsets instead of absolute values.

An example of the standard format of our generatede. t xt file is as follows:

Node_| D Lat Lng
54956254019183 44.85923581362268 -92. 989281234375
19567871005131 45.032414105220745 -93.2028993984375
27380416518383 44.99418225712112 -93. 4431044765625

Node_I Dis a unique identifier for the node on the road networks, wdsrat and
Lng are the latitude and longitude coordinates that reprebergeographical location
of the node, respectively.

Similarly, an example of our generatedge. t xt file is as follows:

Edge_|I D Node_1 Node_2 Tags

0 33352568523324 33481417542144 hi ghway
1 35667555893384 38510824242033 oneway
2 34881576878577 35839354585144

Edge_l Dis a unique identifier for the edge on the road networks, wdsxede 1
andNode_2 are node IDs contained in tmode. t xt file. It means that the two nodes
(Node_1 andNode_2) are connected by the edgelge_| D. Tags attach extra infor-
mation to road edges which can be used by some generators.

4.2 Case Study 1: US Tiger File

US Topologically Integrated ®ographic_Bcoding and Rferencing (Tiger) Files [6]
are published by US census bureau on a yearly basis to pridwdmost recent in-
formation about US geographical data, which include cityrmtaries, road networks,
address information, water features, and many more. In MNi&focus on extracting
the road network information from thHeoad directory of Tiger files.

A very unique feature of US Tiger Files is that the files areifjaned and orga-
nized based on US counties. In other words, all roads in atg@ia packed in a com-
pressed file with a unique file identifier, e.gl,_2010_01001_r oads. zi p, where
t I means tiger line2010 indicates the publishing year of the da@#4,001 is a unique
identifier for the county (in this case Autauga, Alabamg andr oads represents the
type of data.

The tricky part of the road network conversion with US tigéediis that a user
may select a geographical area that covers multiple caurifiiés means that the road
network converter needs to access road network data thas spaltiple files. Hence,
the most important step here is to find the corresponding t@sicovered by the
user-selected area. To this end, we extract a minimum bognrlolbx Upper Lat ,
Upper Lng and Lower Lat, Lower Lng) for each US county. Then, we create a
database table to store the bounding box correspondingtoceaunty ID.

When a traffic generation request is received, we retrieveoenetwork data from
US Tiger Files by first selecting all counties that overlaghwine spatial region selected
by the user. Then, we load the road network files for all oygréal counties and filter
out the nodes and edges based on the user specified aredy, Minalrite the qualified
nodes and edges in the standard output format.

4.3 Case Study 2: OpenStreetMap

OpenStreetMap is a project that aims at digitizing geogragbhlata for the whole world
by providing geographical data that is free to use, distepband manipulate. Since it
is maintained by volunteers, data in OpenStreetMap is epda¢quently, whereas the
data quality may not be as good as the data extracted fromn otimemercial/official
data sources. OpenStreetMap maintains a very large filePi.anet . osm to record
all spatial objects in the whole world, e.g., road netwolksldings, rivers, etc. Essen-
tially, pl anet . osmis one large XML (Extensible Markup Language) file that cetssi
of the following four primitive data types:

— Node that represents a spatial point by its latitude and lonigittoordinates.

— Way, that consists of a sequencemafdeswhich, connected together, form a line or
a polygon.

— Relation that specifies the relation betwewmaysand nodes For example, two
waysare connected together.

— Tags that provides description for any of the other data typesle way, or rela-
tion, using a key-value pair.

We carry out the extraction of OSM data in three phases, nampaising index-
ing and queryingwhere the first two phases are offline and the third phase isenl

In the parsing phase, the XMpl anet . osmfile is processed to extract node and
edge files for the whole world in the format discussed in ®aci.1. All nodes are ex-
tracted and stored in omede file. Ways are filtered on the fly based on the associated
tags and only those associated to the road network are ®drd€ach way is stored
as a sequence of edges in auyge file. The indexing phase preprocessestiloele
andedge files (56GB and 98GB, respectively) to speedup range quérasselects
a particular area. We initially tried to load them in a PoS@atabase with an R-tree
index but the loading process did not finish in a reasonabie {we terminated the
process when it took more than a week). As an alternativdisoluve used Spatial-
Hadoop [30], a MapReduce framework for spatial data, todbail R-tree index in a
cluster of 20 machines which took around four hours. The $tegp is to join the node
and edge files to project coordinates of both ends of an edgeth@n build an index
over the edges based on their minimal bounding rectangl&R@)l Once the R-tree
index is constructed, it is extracted out of the cluster efttrmat of anasteranddata
files where the master file stores the region occupied by eatetfite as an MBR while
the data files store the data records. Tioele- edge joined file ended in 10,000 data
files with an average file size of 12MB. The final phase is theyjng phase in which
range queries are processed on the R-tree to extract nodsdgediles in a particular
area based on a user traffic request. First, the master fikamieed to select the data
files that need to be processed. Next, these data files aregsextto generate the node
and edge files that are then processed by the selected generat

4.4 Extensibility with Other Road Network data Sources

As was pointed out in Figure 1, MNTG is extensible to suppe@ivroad network
data sources. Thanks to the modular design ofrtlagl network converterextending
MNTG with another road network data source is as simple agigirg the contents

of two abstract functions. Assume a service provider that daanew road network
data source, termelMlyRoadNetworkTo include this data into MNTG, we provide

a template java file, where the service provider needs tohildontents of: (a) the
Ext r act RoadNet wor k abstract function which will basically select the informa-
tion of the selected area formMyRoadNetworkas discussed in Section 4.1, and (b) the
Pr epar eSt andar dQut put abstract function that outputs the nodes and edges in-
formation of the selected area in the standard output forasadiscussed in Section 4.1.

It is important to note that filling the contents of the abstfanctions in the tem-
plate does not really have to be by the service provider oh#dvedata source. Instead,
third parties or volunteers can provide this functionalityother words, crowd sourcing
can play a major role here in extending MNTG to support varimad network data
sources. We have started this by providing the abstracfitiSoTiger files and Open-
StreetMap, as described above in Sections 4.2 and 4.3,ctesgbge Yet, we call for
the efforts of research community and volunteers to suppore data sources within
MNTG.

i ! 1.RoadNetworkConvert
Abstract Class i Traffic Model | 2.TrafficGeneration

/ / """ \; ~~~~~~ 3 TrafficResultConvert
e

Brinkhoff BerlinMOD Random | New Model |

I |

Fig. 2. Traffic Model Class.

5 Traffic Processor

The Traffic Processoin MNTG is responsible for generating the requested tratitad
based on the selected traffic generator. It takes the esttacad network from thad
network convertecomponent (Section 4) and feeds it to the selected traffiergeor.
The challenge here is on how to accommodate the various fopugts, parameters,
and running environments for different traffic generatdisthis end, thelraffic Pro-
cessorcomponent in MNTG provides an abstract way to accommodateustraffic
generators. It currently includes two famous ones, Briffildaod BerlinMOD, however,
its abstract design makes it highly extensible to supporenaffic generators. In this
section, we first discuss the main idea behind the trafficggsor. Then, we provide
three detailed case studies featuring Brinkhoff, BerlinM@nd random walk traffic
generators. Finally, we discuss the extensibility of tlafit processor to support other
traffic generators.

5.1 Main ldea

To generate the traffic data based on a particular traffic rgéore MNTG basically
aims to run the traffic generator as is. However, this is hiedidy the fact that differ-
ent traffic generators: (a) employ different execution radthand (b) require different
configuration files and/or parameters. For example, Briffkinodel is executed with
a java jar file, while BerlinMOD runs with a script file. As thempose of MNTG is to
enclose various traffic generators, it builds a wrapperrzdleach traffic generator to
make them all look the same when it comes to receiving a trgdfineration request and
producing the final result.

The main idea is to create an abstract clasaf fi ¢ Model in MNTG, as de-
picted in Figure 2. Then, all definitions and functions focte&affic generator has to
be incorporated inside this abstract class. In generaie the four key data structures
that should be inherited by all traffic generators in MNTG:

1. Traffic Request IDas the traffic request identifier, which is automaticallpgated
for each submitted request. It is used to link the input/outpaffic data to the

corresponding traffic data requester and to send the traffigltras well as the
status notifications to the submitting user.

2. Traffic Model Namgwhich is another identifier to indicate the type of the stddc
traffic generators, e.g., Brinkhoff or BerlinMOD.

3. Traffic Generation Areawhich is the user selected rectangular area to generate
traffic data in. The area is represented by two corner pointiseoform <latitude,
longitude>.

4. Traffic Generation Parametersvhich includes the parameters (e.g., number of
moving objects and simulation time), specified by the usetsch will be used
for the traffic generation. The parameters may be specifiéetelntly for different
traffic generators.

Additionally, there are three main abstract functions thed¢d to be implemented
for each traffic generator to be included in MNTG:

1. RoadNet wor kConver t : this function converts the standard road network for-
mat received from the Road Network Converter (Section 4héospecific format
used by the traffic generator.

2. Traf fi cGenerati on: this function produces the traffic data based on the vari-
ous parameters specified by the user request. MNTG runsdtifie renerator with
its own scripts or commands.

3. Traf fi cResul t Conver t : this function converts the output of the traffic gen-
eration process into a standard simple output format. Tha reason behind this
function is that different traffic generators produce difet formats of traffic data,
while users may want to use the same program to analyze them.

An example of the standard output format of the traffic preoess as follows:

O D TS Type Lat Lng

0 0 newpoint 44.986362410452 -93.2982044219971
1 0 newpoint 44.998948892253 -93.1812858581543
2 0 newpoint 44.966607085432 -93. 2727378845215
0 1 nove 45. 031348772862 -93.2991374040413
1 1 nove 44.953949943361 -93. 3676484298706

whereQ Dis a unique identifier for the moving objettat andLng are latitude and
longitude coordinates that represent the spatial locatidhe objectTS represents the
time unit at which objecO D was at [at ,Lng) spatial locationType determines
whether the generated point is a new object or an existingebbijat has just moved to
a new location.

5.2 Case Study 1: Brinkhoff Model

Brinkhoff traffic generator is one of most widely used traffenerators [2] (cited 650+
per Google Scholar). The general idea behind Brinkhoff gatoeis to simulate the ob-
ject movements from two random locations using the shopegst To realize Brinkhoff

generator inside MNTG, we have implemented the three altdtractions (introduced
in Section 5.1), as follows:

1. RoadNet wor kConvert. In this function, we convert the output of the
Road Network Convertemto two binary files based on the descriptions in
Brinkhoff documentation®, and rename them asequest | D. node and
request I D. edge.

2. Traf ficCGenerati on. Inthis function, we prepare Brinkhoff configuration file,
i.e.,property. txt,where we update the corresponding path for the input files
(the two generated binary road network files) and the outatlt.rhen, we assem-
ble the command using the parameters specified by the udes irejuest. Finally,
we make the following external call:

java -classpath generator.jar generator2. Defaul t Dat aGener at or Request| D

where the only modification for the original generator istthanow takes the
Request | D, and produces the traffic result accordingly.

3. Traf fi cResul t Convert. In this function, we convert the traffic data pro-
duced by Brinkhoff generator into our standard output fdrmAa example of the
Brinkhoff output is as follows:

Type O D Seq Cass TS X Y Speed Next_X Next_Y
newpoi nt 0 1 0 0 14839.0 10262.0 1093.0 14782 10765
newpoint 1 1 2 0 26319.0 1430.0 922.9 26317 1260
newpoi nt 2 1 0 0O 11443.0 10983.0 1093.0 11431 15703

wherelType determines whether the point is a new object or an existirgcbb
A Dis a unigue identifier for the moving obje&eq is the sequence number for
the moving object, an@l ass determines the type of the moving objets rep-
resents the time unit during the simulation tinxeandY show the location of the
object, as Brinkhoff employs a different coordinating gystthat uses the offsets to
represent the locatiorspeed is the current moving speed of the objddext _X
andNext _Y are the locations for the node in the road networks, wherenthéng
object will pass for the next movement.

As a result, we write a program to: (1) extract only teD, Type, TS from the
original output, and (2) convert th¢andY to be the latitude and longitude coor-
dinates. After that, MNTG is able to generate traffic with aogtd networks using
Brinkhoff model.

5.3 Case Study 2: BerlinMOD

BerlinMOD is another very popular traffic generator [3], wdét simulates human
movements during the weekdays and weekends. Users cafygpeaiwork and home
areas in the road networks, then the generator simulatastre movements based on
two rules: (1) during the weekdays, a user leaves Home in tireing (at 8 a.m.H1),
drives to Work, stays there until 4 p.mH2 in the afternoon, and then returns back

! http://iapg.jade-hs.de/personen/brinkhoff/generator/FormatNetiteskpdf

Home, (2) during the weekends, a user has an 0.4 probalulidp tan additional trip
which may have 1-3 intermediate stops and ends at home.

To run the BerlinMOD traffic generator, a user would need taupea SECONDO
database [4], and uses a set of script instructions to quefy irealize BerlinMOD
generator inside MNTG, we have implemented the three aft$tractions (introduced
in Section 5.1), as follows:

1. RoadNet wor kConvert . In this function, we read the standard road network
files and transform it to the format used in BerlinMOD. Ultitelg, we produce a
data file namedt r eet . dat a with the following information:

(OBJECT streets ()
(rel (tuple ((Vmax real)(geoData line))))
((50. 0(
(-93.276029 45.035464 -93.275936 45.035877)
(-93.275936 45.035877 -93.275764 45.037752)

As a result, BerlinMOD requires us to represent the road sagsnwith a pair of
locations bounded by a set of brackets.

2. TrafficGeneration. In this function, we prepare the script
based on the generation parameters specified by the user,
i.e., BerlinMOD Dat aCener at or _Request | D. SEC, to query the un-
derlying SECONDO database. In MNTG, we prepare a generigptséor
BerlinMOD and replace its parameters based on the userngestqThen, we run
the following command line to execute the BerlinMOD generat
SecondoTTYNT -i BerlinMOD_Dat aCGener at or _Request | D. SEC

3. Traf fi cResul t Convert . In this function, we build a program that converts
the traffic data produced by BerlinMOD into a standard forrAatexample of the
traffic data generated by BerlinMOD is as follows:

Md Tid Tstart Tend Xstart Ystart Xend Yend

1 2 2007-05-26 10:34:40 10:34:42 -93.1767 45.0449 -93. 1767 45. 0448
1 2 2007-05-26 10:34:42 10:34:44 -93.1767 45.0448 -93.1766 45. 0446
1 2 2007-05-26 10:34:44 10:34:46 -93.1766 45.0446 -93. 1765 45. 0444

whereM d is the unique identifer of the moving objed, d is the trip identifer,
Tstart andTend represent the start and end timestamps for the record, while
Xstart, Ystart, Xend,andYend are the corresponding locations when the
object starts and ends during that time period.

As a result, we write a program to: (1) extract only ted, Ti d, Tstart from

the original output to identify the moving objects, and (@heert theXst art and

Yst art to be the latitude and longitude. Then, MNTG is able to geedraffic

with any road networks using BerlinMOD.

5.4 Cast Study 3: Random Generator

As a proof of the concept of generation model extensibilitg,implement a random
generator that generates random walks over the road netwheksimplicity of the

model used in this generator allows it to handle requests laige areas and hundreds
of thousands of objects in a reasonable time. In additioheéadad map of the selected
area, the random generator takes as input two user parametenber of moving ob-
jects and total simulation time. The generator starts bigaswgy an initial position for
each object by selecting a random node in the road networkagl time step, each
object advances one step by selecting a random edge frordgles adjacent to current
node. To avoid going back and forth between two nodes, thevisited node is stored
and is removed from possible choices of next nodes. If arcobpnnot find a possible
next node (i.e., the only next node is the last visited nodé)be next node falls off the
grid, the object is removed from the map and a new object isgoldn a new random
position. This simulates the event of a vehicle ending ifsand a new vehicle starting
a new trip. This also ensures that the total number of objadtse map is fixed at the
user defined parameter. Although this generation model doeaccurately simulate
real life, it is very useful for generating huge traffic dasaai very short time which
allows end users to test the scalability of their systems.

5.5 Extensibility with Other Traffic Generators

As was pointed out in Figure 1, MNTG is extensible to supparious traffic gen-
erators. Extending MNTG with another traffic generators sssanple as provid-
ing the contents of the three abstract functions, defined éati® 5.1. Assume
that a traffic generator developer has invented a new traffieeator, termedRan-
domGeneratar To include theRandomGeneratomto MNTG, we provide a tem-
plate java file, where the traffic generator developer need§lltthe contents of
the three abstract functionrRoadNet wor kConvert , Tr af fi cGener ati on, and
Traf fi cResul t Convert, as described in Section 5.1.

Similar to extending MNTG for new data sources, filling thetsmts of the abstract
functions of a new traffic generator may be done by third parbr volunteers. Again,
crowd sourcing can play a major role here in extending MNTGupport new traffic
generators. We envision that MNTG will act as a vehicle thaegexisting and forth-
coming traffic generators a boost to gain wide users commuiriius, it is to the benefit
of the traffic generator developers and to the research carityrin large to incorporate
new data generation tools within MNTG.

6 System Front-End

The system front-end provides a set of tools for users torgémand visualize their
requested traffic data. As MNTG is deployed as a web servieesystem front-end
represents a web interface that users can access overeheeintThe web interface is
designed for simplicity where users may generate, downlaad visualize traffic data
with few interactive, rather intuitive, steps.

The system front-end consists of three main modulesMW&p interface which
allows users to easily interact with MNTG in terms of submgttraffic generation re-
quests (Section 6.1), (Bmail Notifier, which acknowledges the receipt of the traffic

M MNTG: Minnesota Web-based ﬂ
LB

Traffic Generator N
ate

Generate | Visuslize Traffic

Minneapols 1 (e
Drag and draw to choose area

| Traffic Generation |
Parameters

L Region | RN L nd:

‘‘‘‘‘‘‘‘‘‘ £10363900.45010, 5574870.41799

Fig. 3. MNTG Web GUI: Traffic Generation

request as well as notifies the user back when the requessisdithwith links to down-
load and visualize the generated data (Section 6.2), arldq@nload & Visualization
tools, which allows the user to download its traffic data in a plaxt format and/or
visualize the generated data in an OpenlLayers map intef&smion 6.3).

6.1 Web interface

Figure 3 depicts MNTG web interface. To generate road nétwmaiffic data, a user
would perform the following four easy steps:

1. Either drag/zoom the map or write an address in the seaglthtb get the sur-
roundings of the geographical area of interest.

2. Draw a rectangle around the area that you want to geneedtfie tvithin. This is
done by two left mouse clicks for rectangle corners.

3. From the drop down menu, select the traffic generator thatyant to use as either
Brinkhoffor BerlinMOD traffic generators.

4. Click on theGeneratébutton, and enter the traffic simulation parameters.

6.2 Email Notifier

MNTG may take a while to process a traffic generation requesivo main reasons:

(1) Depending on the size of the submitted traffic generatguest (e.g., large num-
ber of moving objects or large simulation time), the undedytraffic generator (e.g.,

Brinkhoff or BerlinMOD) may spend significant time in simtileg the requested traffic
parameters, (2) Even though MNTG employs a multi-threagiaadigm where sev-
eral traffic requests can be processed concurrently, thersysay be overloaded when
the number of concurrent requests is more than the numbeadfhble threads. In that

Fig. 4. MNTG Traffic Visualization

case, MNTG employs a waiting queue, where incoming requnests to be enqueued
waiting for a system thread to be available.

To this end, MNTGemail notifierhas two functionalities: (1) when the user submits
a traffic generation request, the email notifier sends anldraek to the user acknowl-
edging the receipt of the request, and (2) Once MNTG finishesgssing the user’s
traffic generation request, the email notifier sends a natiio message that contains
two links; the first one is where the user can download the rge¢ee traffic data as a
text file while the second one is where the user can visudiiegénerated traffic data
on the map.

6.3 Download & Visualization Tools

As mentioned earlier, MNTG produces its output generatéa ithea uniform text for-
mat. Users may download the generated traffic data, ingudlject ids, timestamps,
latitude, and longitude coordinates and/or visualize #veegated traffic data on the map
using MNTG Map interface. MNTG stores the generated traffimdn the unified for-
mat mentioned above inside a MySQL database. Traffic vizatadin in OpenStreetMap
is performed using OpenlLayers v2.12 API for displaying taxes in HTML. The data
is loaded via Javascript into the web page which then createserlay for each time
stamp of the traffic results. Overlays are an OpenLayerseginand can consist of
many different types of data, as shown in Figure 4. In thigcdscument fragments
are created for each object at a time stamp, which is thendaddde overlay for that
time stamp. When the data is being animated, it simply cansistlisplaying the cor-
responding overlay to the time stamp and hiding the remgioirerlays. Overlays are
used instead of traditional markers because of the speelieh they can be loaded in
comparison to the maps built-in markers.

7 Conclusion and Future Work

This paper has proposed Minnesota Traffic Generator (MNE@)extensible web-
based road network traffic generator. MNTG is basically appes that can be built
around existing traffic generators to make them easy-tpagsdigure, and run for any
arbitrary spatial road region. To generate traffic data, NENIsers just need to use its
user-friendly web interface to specify an arbitrary sgatiaa on the map, select a traffic
generator method as one of the two most highly used traffiergeéors, Brinkhoff and
BerlinMOD, and submit the traffic generation request to thevar. MNTG dedicated
server receives and processes the submitted request, aild #ra user back once the
request is fulfilled. Users can then download their gendrdsta and/or visualize it on
MNTG map interface. MNTG is composed of three main compagi) Road Net-
work Convertethat extracts the road network information of the spatiahaof interest
from either US Tiger files or OpenStreetMap, ([@gffic Processothat executes the
submitted request using the selected traffic generator @mextracted road network,
and (3)System Front-Endhat includes the web interface, email notifier, and down-
load/visualasion tools for the traffic result. MNTG is higleixtensible in two frontiers:
(2) It can be easily extended to support various traffic geioes, beyond Brinkhoff and
BerlinMOD, by defining three abstract functions for each m@merator, and (2) It can
be easily extended to support various road network soubessnd US Tiger files and
OpenStreetMap, by defining two abstract functions for eauh data source.

MNTG is still an undergoing project in data management lakthat Univer-
sity of Minnesota. Its first release is already available dopublic use athitp :
//mntg.cs.umn.edu, where it has received and fulfilled over 1000 traffic generat
requests since its release. Future work of MNTG includéssipporting more traffic
generators beyond the two we have for now, Brinkhoff andiB®IOD, and (b) sup-
porting more new data sources beyond US Tiger files and OpestBtap. A distin-
guishing feature in MNTG is that its future plans can be figfilvia crowd sourcing,
where interested developers and researchers world widergah the infrastructure of
MNTG by their contributions of new traffic generators andadsturces. Plug-in func-
tions are available for that purpose. With the increase ainae for traffic generation
requests, we plan to move our server to a more powerful senashine with GPU
cards to support large-volume traffic visualization.

References

1. Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma, “GeoLife2.0: A Locati@ased Social Network-
ing Service,” inMDM, 2009, pp. 357-358.

2. T. Brinkhoff, “A Framework for Generating Network-based Mayidbjects,"Geolnformat-
ica, vol. 6, no. 2, pp. 153-180, 2002.

3. C. Dintgen, T. Behr, and R. H. iing, “BerlinMOD: a Benchmark for Moving Object
Databases,VYLDB Journal vol. 18, no. 6, pp. 1335-1368, 2009.

4. R. H. Qiting, T. Behr, and C. Dntgen, “Secondo: A platform for moving objects database
research and for publishing and integrating research implementatiBE€’Data Engineer-
ing Bulletin, vol. 33, no. 2, pp. 56-63, 2010.

5. “OpenStreetMaps,” http://www.openstreetmap.org/.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30

. “US TIGER LINES,” http://www.census.gov/geo/maps-data/data/tigerhtml.
. D. Pfoser and Y. Theodoridis, “Generating Semantics-basedcloags of Moving Ob-

jects,” Computers, Environment and Urban Systewnas. 27, no. 3, pp. 243-263, 2003.

. J.-M. Saglio and J. Moreira, “Oporto: A realistic scenario generf@iomoving objects,”

Geolnformaticavol. 5, no. 1, pp. 71-93, 2001.

. Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, “On the Geiwmraf Spatiotemporal

Datasets,” ifProceedings of the International Symposium on Advances in Spatiab8sxa,

SSD Springer, 1999, pp. 147-164.

T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos, “@nGleneration of Time-

Evolving Regional Data,Geolnformaticavol. 6, no. 3, pp. 207-231, 2002.

G. Gidbfalvi and T. B. Pedersen, “ST-ACTS: A Spatio-temporal Activity Siatar,” in GIS,

2006, pp. 155-162.

H. Hu and D. L. Lee, “GAMMA: A Framework for Moving Object Sidation,” in SSTD

2005, pp. 37-54.

D. Krajzewicz, G. Hertkorn, C.#&sel, and P. Wagner, “SUMO (Simulation of Urban MObil-

ity): An Open-Source Traffic Simulation,” iRroceedings of the 4th Middle East Symposium

on Simulation and Modelling2002, pp. 183-187.

“SMARTEST: Simulation Modelling Applied to Road Transport Europ&eheme Tests,”

http://lwww.its.leeds.ac.uk/projects/smartest/.

J. Xu and R. H. @ting, “MWGen: A Mini World Generator,” irMDM, 2012, pp. 258-267.

H.-P. Tsai, D.-N. Yang, and M.-S. Chen, “Mining Group MovenBatterns for Tracking

Moving Objects Efficiently,JTEEE TKDE vol. 23, no. 2, pp. 266—-281, 2011.

H.Jeung, Q. Liu, H. T. Shen, and X. Zhou, “A Hybrid Predictionddbfor Moving Objects,”

in ICDE, 2008, pp. 70-79.

M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable Incrental Processing of Con-

tinuous Queries in Spatio-temporal Databases3IBMOD, 2004, pp. 623—634.

W. Wu, W. Guo, and K.-L. Tan, “Distributed Processing of Moving\NKarest-Neighbor

Query on Moving Objects,” ifCDE, 2007, pp. 1116-1125.

M. F. Mokbel and W. G. Aref, “SOLE: Scalable On-line ExecutiorCaintinuous Queries

on Spatio-temporal Data Sream¥[.DB Journa) vol. 17, no. 5, pp. 971-995, 2008.

B. S. E. Chung, W.-C. Lee, and A. L. P. Chen, “Processindditistic Spatio-temporal

Range Queries Over Moving Objects with Uncertainty,BIRBT, 2009, pp. 60-71.

H. Hu, J. Xu, and D. L. Lee, “PAM: An Efficient and Privacy-ave Monitoring Framework

for Continuously Moving ObjectsJEEE TKDE vol. 22, no. 3, pp. 404-419, 2010.

S. Chen, C. S. Jensen, and D. Lin, “A Benchmark for Evaluatingii Object Indexes,”

VLDB Journa] vol. 1, no. 2, pp. 1574-1585, 2008.

A. H. F. Laender, K. A. V. Borges, J. C. P. Carvalho, C. B. ®leas, A. S. da Silva, and

C. A. Davis, “Integrating Web Data and Geographic Knowledge into Spaagibases,” in

Spatial Database2005, pp. 23—47.

C. Shen, Y. Huang, and J. W. Powell, “The Design of a Benchfoai®eo-stream Manage-

ment Systems,” iIGIS, 2011, pp. 409-412.

T. Tzouramanis, “Benchmarking and Data Generation in Moving édbjpatabases,” in

Encyclopedia of Database Technologies and Applicatiafgs, pp. 23-28.

J. Xu and R. H. @ting, “GMOBench: A Benchmark for Generic Moving Objects,"@&iS,

2012, pp. 410-413.

R. H. Giting, V. T. de Almeida, and Z. Ding, “Modeling and Querying Moving Oltgein

Networks,”VLDB Journal vol. 15, no. 2, pp. 165-190, 2006.

M. Vazirgiannis and O. Wolfson, “A Spatiotemporal Model and Lisage for Moving Ob-

jects on Road Networks,” iBSTD 2001, pp. 20-35.

. A. Eldayw and M. F. Mokbel, “A Demonstration of SpatialHadoop: Aficient MapReduce
Framework for Spatial Data,” ifLDB, 2013.

