Invited Paper

DBSJ Journal Vol. 13, No. 1
March 2015

The Era of Big Spatial Data:
A Survey

Ahmed ELDAWY *
Mohamed F. MOKBEL °

The recent explosion in the amount of spatial data calls for spe-
cialized systems to handle big spatial data. In this paper, we sur-
vey and contrast the existing work that has been done in the area
of big spatial data. We categorize the existing work in this area
from three different angles, namely, approach architecture and
components (1) The approaches used to implement spatial query
processing can be categorized am-top, from-scratchand built-in
approaches. (2) The existing works follow differentarchitectures
based on the underlying system they extend such as MapReduce,
key-value stores, or parallel DBMS. (3) We also categorize the ex-
isting work into four main components, namely,language index-
ing, query processingand visualization We describe each com-
ponent, in details, and give examples of how it is implemented in
existing work. At the end, we give cast studies of real applications
that make use of these systems to provide services for end users.

1. Introduction

In recent years, there has been an explosion in the amounts of sp
tial data produced by several devices such as smart phones, space tel
scopes, medical devices, among others. For example, space telescopé

a - . . Lo L
éa_mguage indexing query processingandvisualization We give in-

take any advantage of the properties of spatial and spatio-temporal
data, hence resulting in sub-par performance.

The importance of big spatial data, which is ill-supported in the
systems mentioned above, motivated many researchers to extend these
systems to handle big spatial data. In this paper, we survey the ex-
isting work in the area of big spatial data. The goal is to cover the
different approaches of processing big spatial data in a distributed en-
vironment which would help both existing and future researchers to
pursue reasearch in this important area. First, this survey helps exist-
ing researchers to identify possible extensions to their work by check-
ing the broad map of all work in this area. Second, it helps future
researchers who are going to explore this area by laying out the state
of the art work and highlighting open research problems.

In this survey, we explore existing work from three different an-
gles, namelyimplementation approachunderlying architectureand
spatial componentsTheimplementation approachese classified as
on-top from-scratch andbuilt-in. The on-topapproach uses an ex-
isting system for non-spatial data as a black box while spatial queries
are implemented through user-defined functions (UDFs). This makes
it simple to implement but possibly inefficient as the system is still
internally unaware of spatial data. Tfrem-scratchapproach is the
other extreme where a new system is constructed from scratch to han-
dle a specific application which makes it very efficient but difficult to
build and maintain. Théuilt-in approach extends an existing system
by injecting spatial data awareness in its core which achieves a good
performance while avoiding building a new system from scratch. The
underlying architecturesf most surveyed systems follow that of ex-
isting systems for non-spatial data such as MapReduce [23], Resilient
Distributed Dataset (RDD) [65], or Key-Value stores [22]. We also
categorize thepatial componentsnplemented by these systems into

éghts of how each of these components are supported using different
implementation approaches and in different architectures. Finally, we

generate up to 150 GB weekly spatial data [12], medical devices pro-
duce spatial images (X-rays) at a rate of 50 PB per year [14], a NASA
archive of satellite earth images has more than 500 TB and is in-) ; i o
creased daily by 25 GB [15], while there are 10 Million geotagged ~ 1N€ rest of this paper is organized as follows. We start by givin

tweets issued from Twitter every day as 2% of the whole Twitter fire- an overview of the surveyed work in Section . Section describes the

hose [7,13]. Meanwhile, various applications and agencies need tothree different approaches to handle big spatial data. Section dis-
process an unprecedented amount of spatial data. For example, thguss.es. the dlffere.nt underlying archlteptgres and how spatial quer.les
Blue Brain Project [45] studies the brain’s architectural and functional @€ implemented in each one. The existing works of the four spatial
principles through modeling brain neurons as spatial data. Epidemiol- ©©MPonents, namelignguage indexing query processingandvisu-
ogists use spatial analysis techniques to identify cancer clusters [51],2/ization are provided in Sections -. After that, Section provides a
track infectious disease [19], and drug addiction [57]. Meteorologists €W €xamples of end-user applications that work with big spatial data.
study and simulate climate data through spatial analysis [30]. News Finally, Section concludes the paper.
reporters use geotagged tweets for event detection and analysis [53]. .

Unfortunately, the urgent need to manage and analyze big spa-2. Overview
tial data is hampered by the lack of specialized systems, techniques, Table 1 provides a high level overview of the works discussed in
and algorithms to support such data. For example, while big data isthis paper. Each row in the table designates a system for big spatial
well supported with a variety of Map-Reduce-like systems and cloud data while each column represents one aspect of the system. This sec-
infrastructure (e.g., Hadoop [3], Hive [58], HBase [8], Impala [9], tion provides an overview of these systems and highlights the main
Dremel [46], Vertica [54], and Spark [66]), none of these systems differences between them. The rest of this paper delves into the de-
or infrastructure provide any special support for spatial or spatio- tails of each aspect (i.e., column) and provide more insight about the
temporal data. In fact, the only way to support big spatial data is to different work done from that aspect.
either treat it as non-spatial data or to write a set of functions as wrap- Approach. The three implementation approaches used in related
pers around existing non-spatial systems. However, doing so does noyork areon-top from-scratch andbuilt-in. Due to its simplicity, the

provide some key applications of big spatial data that combine differ-
ent components in one system to provide services for end-users.

¥ Nonmember

sity of Minnesota, Twin Cities
eldawy@cs.umn.edu

¢ Nonmember

sity of Minnesota, Twin Cities
mokbel@cs.umn.edu

Department of Computer Science and Engineering, Univer-

Department of Computer Science and Engineering, Univer-

on-topapproach is used more than anything else. On the contrary, only
a few systems are built from scratch and their features are very limited
compared to other systems. Due to their complexity, most of them are
not active in research anymore. Only SciDB is still active, however,
it is designed mainly for scientific applications dealing with multidi-
mensional arrays rather than spatial applications dealing with lines and

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

Table 1: Case studies of systems

Approach Architecture Language | Indexes Queries Visualizatiory
[21] On-top MapReduce - R-tree Image quality -
[62,68,69] On-top MapReduce - R-tree RQ, KNN, S8J,| -
ANN
[33] On-top MapReduce - - Multiway SJ -
[60] On-top MapReduce - - - Single level
[71] On-top MapReduce - - K-means -
[17] On-top MapReduce - - \oronoi, KNN, | -
RNN, MaxRNN
[42] On-top MapReduce - - KNN Join -
[67] On-top MapReduce - - KNN Join -
BRACE [61] From-scratch| MapReduce BRASIL Grid SJ -
PRADASE [43] Built-in MapReduce - Grid RQ
ScalaGiST [41] Built-in MapReduce - GIST RQ, KNN -
SpatialHadoop [26-29] Built-in MapReduce Pigeon* Grid, R-tree, R+-treel RQ, KNN, SJ, CG | Single
level,
Multilevel
Hadoop GIS [16] Built-in MapReduce QLSP Grid RQ, KNN, SJ -
ESRI Tools for Hadoop [4,63] Built-in MapReduce HiveQL* PMR Quad Tree RQ, KNN -
MD-HBase [48] Built-in Key-value store| - Quad Tree, K-d tree | RQ, KNN -
GeoMesa [32] Built-in Key-value store| CQL* Geohash RQ Through
GeoServer
Paradise [24] From-scratch| Parallel DB SQL-Like Grid RQ, NN, SJ -
Parallel Secondo [40] Built-in Parallel DB SQL-Like Local only RQ, SJ -
SciDB [52, 56] From-scratch| Array DB AQL, AFL K-d tree RQ, KNN Single level
[64] On-top RDD + Impala | Scala-based On-the-fly SJ -
GeoTrellis [6, 36] On-top RDD Scala-based - Map Algebra -
[70] From-scratch| Other - K-d tree, R-tree RQ -

x OGC-compliant

polygons. The built-in approach is used with a few systems and mostvides more details about the language component.
of them are based on MapReduce due to the popularity of Hadoop.

_ b - " ! Indexes. Spatial indexes allow system to store the data in the file
More details about the different approaches are given in Section .

system in a spatial manner taking the spatial attributes into consid-
Architecture. Most system discussed in this survey are built on eration. The goal is to allow queries to run faster by making use of
existing systems for big data and, hence, they follow their architec- the index. The indexes implemented in systems vary and they include
tures. We can notice in the table that this column is quite diverse asboth flat indexes (grid and geohash) and hierarchical indexes (R-tree,
it contains MapReduce-based systems, key-value stores, parallel DBR+-tree, Quad tree, PMR Quad tree and K-d tree). Notice that some
Array DB, resilient distributed dataset (RDD), and others. This shows systems implement local-only indexes by creating an index in each
a great interest of processing spatial data across a wide range of syseluster node. This technique is relatively easy but is also limited as it
tems. It is worth mentioning that we did not find any notable work for cannot be used in queries where nearby records need to be processed
integrating spatial data into the core of a distributed column-oriented together. This means that it has to access all file partitions to pro-
database such as Vertica [54], Dremel [46], or Impala [9]. Although cess each query which is more suitable for the parallel DB architecture
these systems can process points and polygons due to their extensibilsuch as Parallel Secondo [40]. SpatialSpark provides an on-the-fly in-
ity, this kind of processing is done as an on-top approach while the dex which is constructed in an ad-hoc manner to answer a spatial join
core system does not understand the properties of spatial data [64]query but is never materialized to HDFS. This allows each machine to
The different architectures are described in details in Section . speed up the processing of assigned partitions but it cannot be used to
Language.A high level language allows non-technical users to use prune p_artitio_ns as the data is sto_red as heap files on disk. This leaves
the system without much knowledge of the system internal design. SPatial indexing in the RDD architecture an open research problem.
The Open Geospecial Consortium (OGC) defines standard data type§ect|on gives more details about the distributed spatial indexes.
and functions to be supported by such a high level language. While Queries. The main component of any system for big data process-
many systems provide a high level language for spatial processing,ing is the query processing component which encapsulates the spatial
only three of them provide OGC-compliant data types and functions. queries supported by the system. The queries supported by the systems
Most of them are declerative SQL-like languages including HiveQL, cover a wide range of categories includibgsic queriesuch as range
Contextual Query Language (CQL), Secondo SQL-like language, andquery anckNN; join queriesincluding spatial join and kNN joingom-
Array Query Language (AQL). Other languages are based on Scalaputational goemetryjueries such as polygon union, skyline, convex
and Pig Latin which are both procedural languages. Although there hull and Voronoi diagram constructiodata miningqueries such as
might not be a deep research in providing an OGC-compliant lan- K-means; andaster operationsuch as image quality. The underlying
guage, it is very important for end users to adopt the system especiallyarchitecture affects the choice of operations to implement. For exam-
that many users are not from the computer science field. Section pro-ple, Hadoop, is geared towards analysis operations such as kNN join

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

and spatial join, while HBase and Accumulo are designed for point spatial join algorithm which resembles the partition based spatial-
gueries which make them more suitable for interactive queries such asmerge (PBSM) join algorithm for distributed environments. In this
point queries and nearest neighbor queries. SciDB works natively with algorithm, the map function partitions the data according to a uniform
multidimensional arrays which makes it more suitable for raster oper- grid while the reduce function finds overlapping records in each grid
ations working with satellite data. Section gives more details about cell.
the supported queries. This technique is used in other systems as well. For example, ESRI
Visualization. Visualization is the process of creating an image that proposes a set of user-defined functions (UDFs) [4] which extends
describes an input dataset such as a heat map for temperature. Thendive to support standard data types and operations. This allows writ-
are mainly two types of imagesingle leveimage which is generated ing SQL-like queries to process spatial data in a similar way to spatial
with a fixed size and users cannot zoom in to see more details, anddatabase systems such as PostGIS and Oracle Spatial. A similar tech-
multilevelimage which is generated as multiple images at different nique is used to build Pigeon [27], an extension to Pig Latin [49] to
zoom levels to allow users to zoom in and see more details. Unlike write spatial MapReduce queries. The spatial join operation is imple-
all other aspects, visualization is only supported by a few systems andmented in a similar way to the method described above in Hive [16],
only one of them covers both single level and multilevel images. No- Spark, and Impala [64]. Raster operations have been also scaled out
tice that the two systems that work with raster data support visualiza- on Spark by combining it with GeoTrellis [36]
tion as raster data is naturally a set of images which makes it reason-
able to support visualization. GeoMesa supports visualization through 3- 2 From-scratch Approach
GeoServer [5], a standalone web service for visualizing data on maps.The second approach to support big spatial data in a distributed en-
This means that GeoMesa provides a plugin to allow GeoServer to re-Vironment is to build a new systefrom scratchto support a specific
trieve the data from there while the actual visualization process runs application. This gives the full flexibility to design the best technique
on the single machine running GeoServer. This technique works only to store the data and process it. However, it has two main drawbacks.
with small datasets but cannot handle very large datasets due to theirst, the system requires a huge effort to build and maintain as all
limited capabilities of a single machine. The other approach is to in- components have to be created from scratch. Second, users that al-
tegrate the visualization algorithm in the core system which makes it ready use existing systems to process non-spatial attributes do not
more scalable by parallelizing the work over a cluster of machines asWwant to throw away their systems and use a new one to process spa-
done in [29,52,60]. More details about visualization are given in Sec- tial attributes, rather, they want one system to process both spatial and

tion . non-spatial attributes.
One of the early systems that were designed from scratch to support
3. Implementation Approach spatial data is Paradise [24]. It was proposed as a parallel DBMS for

In this section, we describe the different approaches of implement- SPatial data and was designed to support both vector and raster data.
ing a system for big spatial data. There are mainly three different Unfortunately, it is no longer active in research and was not updated

approaches used in existing works, namelytop from-scratch and in more than a decade. A more recent system is BRACE [61] which

built-in. as detailed below. is proposed to perform behavioral simulations based on the MapRe-
duce architecture and it consists of three layers. [@hguagelayer

3.1 On-top Approach contains a high level language, termed BRASIL, for defining the logic

In the on-topapproach, an underlying system for big data is used as a of the simulation. Thestoragelayer stores the data in a distributed
black box while spatial data awareness is added through user-definedyrid index stored in the main memory of cluster machines. diery
functions which are writtermn top of the system. The advantage of processindayer, termed BRACE, applies a series of distributed spa-
this approach is its simplicity as we do not need to delve into the im- tja| joins to perform the behavioral simulation. Although this system
plementation details of the system. Most existing system are flexible js very efficient, it is not suitable to perform any queries other than the
and provide an easy way to add third party logic through standard pehavioral simulation which makes it very limited. Similarly, another
APIs. For example, Hadoop can be extended by defining custam system is built from scratch which stores data in distributed K-d trees
andreducefunctions [23]. In Spark [66], developers can write custom and R-trees and perform both point and range queries [70]. SciDB [56]
logic in Java or Scala through the resilient distributed dataset (RDD) is another example of a system build from scratch to handle multidi-
abstraction [65]. Hive [58] exposes a SQL-like language which can mensional data. It is originally designed for scientific applications
also be extended through UDFs. with high-dimensional data which means it can handle two or three

This approach is used to implement several queries using the brutedimensional spatial data such as satellite [52] or astronomic data [59].
force technique in Hadoop. In this case, all input records are scanned

using a MapReduce program to compute the answer. For example3- 3 Built-in Approach

a range query operation scans the whole file and tests each record he third approach to build a system for big spatial data isth-in
against the query range [68]. Similar techniques are used to imple-approach in which an existing system is extended by injecting spa-
ment other operations such as k-nearest neighbor [68], image qua|itytia| data awareness inside the core of the system. This is expected to
computation [21], and computational geometry operations [26]. Bi- combine the advantages of the two other approaches. First, it is rela-
nary operations are done in a similar fashion wherepailis of records tively easier than building a new system from scratch as it makes use
are scanned. For example, in spatial join, even pair of records is testecdf an existing system. Second, it achieves a good performance as the
with the join predicate to find matching pairs. Due to the huge sizes core of the system is aware of spatial data and handles it efficiently.
of input files, scanning all pairs is usually unpractical. Therefore, An extended system with built-in spatial support should be backward
an alternative technique is employed where the files are spatially co-compatible with the original system which means it can still handle
partitioned on-the-fly, such that each partition can be processed inde-non-spatial data as before but it adds special handling for spatial data.
pendently. This technique is used to answer spatial join query [69], all For example, PRADASE [43] extends Hadoop to work with trajec-
nearest neighbor (ANN) [68], approximate [67] and exact [42] kNN- tory data where the data is stored in HDFS as a grid and an efficient
join queries. For example, SIMR [69] is proposed as a MapReducespatio-temporal range query is implemented onMD-HBase [48]

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

introduces a K-d tree and quad tree inside HBase [8] and uses it tofor two reasons. First, users of Hadoop might occasionally need to
run both range and kNN queries efficiently. GeoMesa [32] follows a run this type of queries and it would be better to run them as effi-
similar approach in Accumulo by building a geohash index. Hadoop- cient as possible. Second, as mentioned above, Hadoop has been the
GIS [16] extends Hive with a grid index and efficient query processing main system for distributed processing for a few years and it is worth,
for range and self-join queries. SpatialHadoop [28] extends Hadoop from a research point of view, to test it with all types of queries.
with grid index, R-tree, and R+-tree, and uses them to provide efficient The implemented queries include range queries [16, 21, 28, 43, 63],
algorithms for range query, kNN, spatial join, and a humber of com- kNN queries [16,17, 21, 28, 63], and reverse nearest neighbor queries
putational geometry operations [26]. ScalaGiST [41] is an attempt to (RNN) [17]. Although most of these systems optimize the MapRe-
provide a wide range indexes in Hadoop using a GiST-like abstraction. duce job to return the result as fast as possible, there is a significant
Parallel Secondo [40] extends a spatial DBMS, Secondo, to provide aoverhead in starting the query making all of them unsuitable for an

parallel spatial DBMS system with a SQL-like query language. interactive application. As a work around, some systems construct a
spatial index using MapReduce and process it directly from the HDFS
4. Architecture to avoid the overhead of the MapReduce job [29, 44].

There are different architectures used in systems for big spatial data. ~Similar to interactive queries, some iterative spatial queries can be
Since most of these systems extend existing systems for big data, theyalso implemented in MapReduce. For example, the k-means clustering
follow their underlying architecture. The features and limitations of algorithm was implemented in Hadoop [71] where each iteration runs
each system affect the scope of spatial applications and queries tha@s a separate MapReduce job. As expected, the significant overhead
can be supported in it. For example, systems that are designed foron each iteration makes the algorithm not very scalable with cluster
large analytical queries, such as Hadoop, Hive, and Impala, are moresize. For example, as reported in [71], using four machines reduces
suitable to handle long-running spatial queries such as spatial join andthe processing time by onB5% instead of the ideal5%.
kNN join. On the other hand, systems that are designed for interac- There is only one system that uses the MapReduce engine to pro-
tive queries, such as key-value stores, are better to use if we want tocess spatial iterative queries efficiently for behavioral simulation [61].
support small queries such as point or nearest neighbor queries. InHowever, this system does not use Hadoop at all as it builds a sys-
this section, we categorize the existing work in big spatial data ac- tem from scratch for this application where all data resides in memory
cording to the underlying system architecture and highlight the types which reduces the total overhead. This at least shows that the limita-
of queries that are better suited for each system architecture and howtions are coming from the Hadoop environment not the MapReduce
they are implemented. abstraction.

4.1 MapReduce 4.2 Key-value Store

In the MapReduce architecture, the data sits in a distributed file sys- An alternative architecture is the key-value store where data is ab-
tem while the query processing is done through the MapReduce ab-stracted as a set of key-value records. This architecture is used in some
straction [23]. Typically, thenapfunction scans the whole file and gpen source systems such as HBase [8] and Accumulo [2] and was in-
generates a set of intermediate key-value pairs. These pairs are shufgpired by BigTable [22] designed by Google. In this architecture, data
fled across machines and grouped by the key where each group is rejs manipulated in a per-record basis where each record is identified by
duced separately. Although this abstraction is very generic and can beg key and holds one or more values. Unlike Hadoop, HBase and Accu-
applied in different system architectures, it was originally designed muylo allow modifying and deleting records. In addition, they provide
to handle long-running analytical queries. There are three notable quick access to a single record by keeping all records sorted by the key.
open source systems that support this architecture for non-spatial dataynfortunately, this efficiency with single records makes them less effi-
namely, Hadoop [3], the original open source MapReduce system, cient than Hadoop in accessing (i.e., scanning) a very large file making
Hive [58], a data warehousing system built on-top of Hadoop, and them less efficient with analytical queries.

Pig Latin [49], a high level language for Hadoop. There are two main jng this architecture, it was possible to implement spatial indexes
limitations to these systems which limit its applicability for different - support insertions and deletions in real-time including K-d tree,
queries. (1) They all use the Hadoop Distributed File System (HDFS) g5 tree [48], and Geohash index [32]. In both cases, the underly-
which does not support file edits making it suitable for static data. j,4 order of key-value pairs is exploited by linearizing spatial records
(2) There is a significant overhead for starting each MapReduce job using a space filling curve, such as the Z-curve or Geohash, and us-
making it unsuitable for interactive queries which should run in a sub- ing the linearized value as part of the key. This ensures that spatially

second, and iteratlive algorithms where hundreds of iterations mightnearby records are stored close together on disk. On-top of these in-
run for each algorithm and the overhead accumulates for each |tera-dexesy point, range and kNN queries were implemented efficiently by

tion (i.e., MapReduce job). Since Hadoop was the first open SOUTCe|miting the search space to a very small range of keys in the index.
system for distributed processing that is relatively easy to install and

use, most work in big spatial data is based on it. 4.3 Parallel Database

As Hadoop is designed for analytical jobs, most operations built In parallel database architecture, there is one master node and multi-
for Hadoop are long-running analytical jobs. This includes spatial ple slave nodes where the master node issues the query and the slave
index construction [16, 21, 28, 39, 43, 63], image quality computa- nodes execute the query. Each slave node runs a spatial DBMS in-
tion for raster data [21], all nearest neighbor (ANN) [21], spatial stance which acts as a storage and guery processing engine. For ex-
join [16, 28, 69], and kNN join [42,67]. Also, several computational ample, Parallel Secondo [40] runs multiple Secondo, a spatial DBMS,
geometry queries are implemented for Hadoop [26] including poly- instances as one per node while using the task scheduler of Hadoop
gon union, skyline, convex hull, farthest and closets pairs. In addi- to coordinate these nodes. In this case, HDFS and MapReduce query
tion, visualization techniques have been proposed for spatial data inprocessing are both overridden by Secondo storage and query process-
the Hadoop environment [29, 60] ing engine. This makes it easy to parallelize embarrasingly parallel

Although Hadoop is not designed for interactive queries, some problems to multiple nodes but this solution is still limited as it does
works proposed MapReduce algorithms for a few interactive queries not incorporate global indexes.

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

4.4 Array Database Extending a language to support spatial data incorporates the in-
Array databases were proposed mainly for scientific applications troduction ofspatial data typesnd spatial operations The Open
which deal with high dimensional data [55]. Since spatial data is Geospatial Constortium (OGC) [10] defines standards for spatial data
natively multi-dimensional, systems that employ this architecture can types and spatial operations to be supported by this kind of systems.
also support spatial data. In particular, raster data is a good candidateSince these standards are already adopted by existing spatial databases
to be supported in such architecture as each raster layer can be repréncluding PostGIS [11] and Oracle Spatial [37], it is recommended
sented as a two-dimensional array. The main queries that are supportetb follow these standards in new systems to make it easier for users
by array databases include selection (i.e., N-dimensional range query}o adopt. It also makes it possible to integrate with these existing
and analytical queries using linear algebra. A drawback with this data systems by exporting/importing data in OGC-standard formats such
model is that it cannot efficiently support lines or polygons as they as Well-Known Text (WKT). OGC standards are already adopted in
cannot be directly stored in a common array structure. three languages for big spatial data, Pigeon [27] which extends Pig
SciDB implements efficient multidimensional selection queries us- Latin, ESRI Tools for Hadoop [4] which extends HiveQL, and the
ing a K-d tree index. In addition, its array data model makes it more contextual query language (CQL) used in GeoMesa [32]. Hadoop-
suitable for raster datasets, such as satellite images, which are natuGIS [16] propose®QLSP which extends HiveQL but it does not fol-
rally represented as a two-dimensional array. For raster datasets, ifow the OGC standards. In [61], an actor-based high level language,
supports aggregation queries, iterative algorithms, and convolution op-termed BRASIL, which is designed specifically for behavioral sim-
erations which combine multiple images [59]. ulations. SciDB provides an array query language (AQL) which is
4.5 Resilient Distributed Dataset (RDD) not designed specifically for spatial data but can be extended through

RDD [65] is a programming paradigm designed to support complex user-defined functions (UDFs).
analytical queries using distributed in-memory processing. In this pro- .
gramming model, data is loaded from a distributed file system, goes6' Indexmg
through a pipeline of multiple in-memory operations, and the result Inputfiles in a typical system for big data are not spatially organized
is finally stored back in the distributed file system. This is mainly Wwhich means that the spatial attributes are not taken into consideration
proposed as an improvement to Hadoop to avoid the huge overheado decide where to store each record. While this is acceptable for tra-
associated with MapReduce programs by avoiding excessive interac-ditional applications for non-spatial data, it results in sub-performance
tion with disk. This makes it more suitable with iterative queries by for spatial applications. There is already a large number of index struc-
processing the iterations while data is in memory and finally writing tures designed to speed up spatial query processing (e.g., R-tree [34],
the answer to disk. However, it still suffers from the limitations of Grid File [47], and Quad Tree [31]). However, migrating these in-
HDFS as it is used as the main file system. dexes to other systems for big data is challenging given the different
The main system that uses RDD is Spark [66] which is available architectures used in each one. In this section, we survey the existing
as open source. Since this system is relatively newer than Hadoopwork in spatial indexing in distributed systems for big data. First, we
there has not been much work done in the area of big spatial data usdescribe the general layout of distributed spatial indexes used in most
ing Spark. In [64], a spatial join query is implemented in Spark by Systems. Then, we describe the existing techniques for spatial index-
implementing a variation of the PBSM algorithm [50] to distribute the ing in three categories, nameiidex bulk loadingdynamic indexing
work across machines and then it uses a GPU-based algorithm to d@ndsecondary indexeginally, we give a brief discussion of how such
the join on each machine. In [36], Spark is combined with GeoTrel- an index is made available to query processing.
lis [6], a system for raster data processing, to parallelize raster opera-g 1
tions. This is particularly useful for raster operations because most of __
them are very localized and embarrassingly parallel. Although Spark
is optimized for iterative processing, we did not find any work propos-
ing RDD implementations for iterative spatial operations such as the
k-means clustering algorithm.

Index Layout
The general layout of spatial indexes created in distributed systems

is a two-layer index of one global index and multiple local indexes.
The global index determines how the data is partitioned across ma-
chines while local indexes determine how records are stored in each
machine. This two-layer index lends itself to the distributed environ-
5 L ment where there is one master node that stores the global index and
- Language)] multiple slave nodes that store local indexes. These two levels are or-
As most users of systems for big spatial data are not from com- ,,qonal which means a system can implement a global-only index, a
puter science, it is urgent for these systems to provide an easy-t0-Us§qca|-only index, or both. Besides, there is a flexibility in choosing any
high level language which hides all the complexities of the system. tyne of index at each of the two levels. Figure 1 gives an example of
Although providing a language for spatial data might not be of great 4, R-tree global index constructed on a 400GB dataset that represents
|ntere§t to researchers due to the limited research challenges, it is of 3ne road network in the whole world. The blue points in the figure
greatimportance for end-users to adopt the system especially that mosferesent road segments while the black rectangles represent partition
of them are not from the computer science field. Most systems for o ndaries of the global index. As shown in figure, this index handles
big non-spatial data are already equipped with a high level language,ihe skewness very well by adjusting the size of the partitions such that
such as, Pig Latin [49] for Hadoop, HiveQL for Hive [58], AQL for g4ch partition contains, roughly, the same amount of data. For exam-
SciDB [56], and Scala-based language for Spark [66]. It makes more e gense areas in Europe contain very small rectangles while sparse

sense to reuse these existing languages rather than proposing a conyyeas in the oceans contain very large rectangles.
pletely new language for two reasons. First, it makes it easier to adopt

by existing users of these systems as they do not need to learn a to6. 2 Index Bulk Loading

tally new language. Second, it makes it possible to process data thafThe most common file system used in open source distributed systems
has both spatial and non-spatial attributes through the same progranis the Hadoop Distributed File System. It is already used in Hadoop,
because the introduction of spatial constructs should not disable anyHive, HBase, Spark, Impala and Accumulo. HDFS has a major limi-
of its existing features of the language. tation that files can only be written in a sequential manner and, once

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

Figure 1: R-tree partitioning of a 400GB road network data

written, cannot be further modified. This rules out most traditional in- In [63], a slightly modified technique is used to build a PMR Quad
dex building techniques as they rely on inserting records one-by-onetree. First, a random sample is drawn form the file, linearized using
or in batches and the index structure evolves as records are inserteda Z-curve, and partitioned into partitions. Then, without spatially
Since HDFS is designed mainly for static data, most techniques focuspartitioning the file, each machine loads part of the file and builds
on bulk loading the index which are described below. an in-memory PMR Quad tree for that partition. The nodes of each
To overcome the limitations of HDFS, most bulk loading techniques partial quad tree are partitioned inipartitions based on their Z-curve
use a three-phase approach. In the first phase, the space is subdivide¢lues. After that, each machine is assigned a partition and merges all
into n partitions by reading a sample of the input file which is then nodes in that partition intolacally consistenguad tree. Finally, these
partitioned inton partitions of roughly equal sizes. It is expected that locally consistentjuad trees are merged into one final PMR Quad tree.
the sample is a good representative of the data distribution in the orig- .
inal file. In the second phase, the input file is scanned in parallel, and6' 3 Dynamic Indexes
each record is assigned to one or more partitions based on its locatiorSome applications require a dynamic index that accommodates inser-
and the index type. Records in each partition are then loaded into ations and deletions of highly dynamic data, such as geotagged tweets,
separatdocal index which is stored in the file system. It is expected moving objects, and sensor data. In this case, static indexes con-
that the size of each partition is small enough to be indexed by a sin- structed using bulk loading cannot work. HBase [8] and Accumulo [2]
gle machine. In the third phase, tleeal indexes are grouped under provide a layer on top of HDFS that allows key-value records to be
a commorglobal index based on their corresponding MBRs; i.e., the dynamically inserted and deleted. Modification of records is accom-
MBR of the root node of each local index. modated by using a multi-versioning system where each change is ap-

In [16, 28], a uniform grid index is constructed by subdividing the Pended with a new timestamp. In addition, these systems keep all
space using a uniform grid. Notice that in this case, no sample needs'ecords sorted by the key which allows efficient access to a single
to be drawn from the input file as the space is always divided using a record or small ranges of consecutive records. These systems are uti-
uniform grid. Then, each record is assigned to all overlapping parti- lized to build dynamic indexes for spatial data as follow.
tions and each partition is written as a heap file; i.e., no local indexing MD-HBase [48] extends HBase to support both quad tree and K-d
is required. Finally, the global index is created by building a simple tree indexes where the index contains points only. In this approach,
in-memory lookup table that stores where each grid cell is stored on each point is inserted as a record in HBase where the key is calculated
disk. by mapping the two-dimensional point location to a single value on the

This technique is also used in [21] to build an R-tree where the Z-curve. This means that all points are sorted based on the Z-curve.
space is subdivided by mapping each point in the random sample toAfter that, the properties of the Z-curve allows the sorted order to be
a single number, using a Z-curve, sorting them based on the Z value,viewed as either a quad tree or a K-d tree. This structure is utilized
and then subdividing the sorted range intpartitions equal to num- to run both range and kNN queries efficiently. This technique is also
ber of machines in the cluster. A similar technique is used in [28] to applies in [32] to build a geohash index in Accumulo but it extends
build both R-tree and R+-tree, whemes first determined by dividing the work in two directions. First, it constructs a spatio-temporal index
the file size over the HDFS block capacity to calculate the expected by interleaving the time dimension with the geohash of the spatial di-
number of blocks in the output file. Then, the sample is bulk loaded mensions. Second, it supports polygons and polylines by replicating
into an in-memory R-tree using the STR bulk loading algorithm [38]. each record to all overlapping values on the Z-curve. Although these
While partitioning the file, if R-tree is used, each record is assigned to systems provide dynamic indexes, they are designed and optimized for
exactly one partition, while in R+-tree, each record is assigned to all point queries which inserts or retrieves a single record. They can still
overlapping partitions. This technique is further generalized in [41] to run a MapReduce job on the constructed index, but the performance is
bulk load any tree index described by the GIST abstraction [35]. relatively poor compared to MapReduce jobs in Hadoop.

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

SciDB [56] supports an efficient dynamic K-d tree index as it is tions, computational geometry operations, data mining operations, and
designed for high dimensional data. Similar to HBase, SciDB uses raster operations.
multi-versioning to accommodate updates and records are kept sorted7 . .
using their keys. However, unlike HBase and Accumulo, the key is " 1 Basic Query Operations
allowed to be multidimensional which makes it ready to store spatial The basic spatial query operations include, point, range, and nearest
points. This technique is not directly applicable to lines or polygons N€ighbor queries. We give examples of how these operations are im-
as a line or polygon cannot be assigned a single key. plemented in different systems, with, and without indexes.
Point and Range Queries:In a range query, the input is a set of
6.4 Secondary Indexes recordsR a rectangular query rang® while the output is the set of
Similar to traditional DBMS, distributed systems can build either a g records inR overlappingA. A point query is a special case where
primary index or a secondary index. In the primary index, records the query range has a zero width and height. In [68], a brute force
are physically reordered on the disk to match the index, while in sec- algorithm for range queries is implemented in MapReduce by scan-
ondary index, records are kept in their original order while the index ning the whole file and selecting records that match the query area.
points to their offset in the file. In HDFS, secondary indexes perform |, 116, 28, 63], the constructed index is utilized where the global index
very poorly due to the huge overhead associated with random file ac-js fjrst used to find partitions that overlap the query range and then
cess [39]. Therefore, most existing indexing techniques focus on pri- the |ocal indexes, if constructed, are used to quickly find records in
mary indexing. There are only two notable works that implement sec- he final answer. The reference point [25] duplicate avoidance tech-
ondary indexes [41, 63]. In both cases, the index is bulk loaded as pjgue is used to eliminate redundant records in the answer if the index
described earlier but instead of storing the whole record, it only stores -gntains replication. Although this technique is efficient in design, it
the offset of each record in the file. As clearly shown in [63], the per- performs bad for point queries and small ranges as it suffers from the
formance of the secondary index is very poor compared to a primary gyerhead of starting a MapReduce job. This overhead is avoided in
index and is thus not recommended. However, it could be inevitable to geoMesa [32] ancMD-HBase [48], as they run on a key-value store
have a secondary index if users need to build multiple indexes on the\yhich is more efficient for this kind of queries. In Hadoop, some ap-
same file. plications [18,29,44] achieve an interactive response for range queries
6.5 Access Methods by bypassing the MapReduce engine and running the query against the

Creating the index on disk is just the first part of the indexing process, "dex on the file system directly.

the second part, which completes the design, is adding new compo-nearest neighbor (NN) queries:There are different variations of NN
nents which allow the indexes to be used in query processing. Withoutdueries but the most common one is the kNN query. The kNN query
these components, the query processing layer will not be able to usdakes a set of point3, a query poinQ, and an integek as input while
these indexes and will end up scanning the whole file as if there were the output is the closest points irP to Q. In [16, 68], a brute force

no index constructed. Most of the works discussed above do not men-teéchnique is implemented in MapReduce where the input is scanned,
tion clearly the abstraction they provide to the query processing logic the distance of each poipte P to Qs calculated, points are sorted
and describe their query processing directly. This is primarily because based on distance, and finally top-k points are selected. In [28,48,63],
they focus on specific queries and they describe how they are imp|e_the C(_)nstructed mdex_es are used by flrst_ searching the partition that
mented. However, it is described in [28] that the index constructed in contains the query point and then expanding the search, as needed, to
Hadoop is made accessible to MapReduce programs through two com&djacent partitions until the answer is complete. In [17], a different
ponents, namely, SpatialFileSplitter and SpatialRecordReader. The2PProach is used where a \Voronoi diagram is constructed for the input
SpatialFileSplitter accesses the global index with a user-defined filter file first, and then the properties of this diagram is used to answer kNN
function to prune file partitions that do not contribute to answer (e.g., duéries. In addition to kNN query, this Voronoi diagram is also used to
outside the user-specified query range). The SpatialRecordReader ig@nswer both reverse NN (RNN) and maximal reverse NN (MaxRNN)

used to process non-pruned partitions efficiently by using the local in- Gueries. In [62], the all nearest neighbor (ANN) query is implemented
dex stored in each one. in MapReduce which finds the nearest neighbor for each point in a

O|given set of points. It works as two MapReduce jobs where the first

This separation between the index structure on the file system an - ; _
the access methods used in query processing provides the flexibility to®n€ Partitions the data using a Z-curve to group nearby points together,

reuse indexes. For example, all of Hadoop, Hive, Spark, and Impalaand finds the answer for points which are colocated with their NN in
can read their input from raw files in HDFS. This means that one index the same partition. The second MapReduce job finds the NN for all

appropriately stored in HDFS can be accessed by all these systems ifémaining points using the brute-force technique.
the correct access methods are implemented. This also means thatwg 2 join Operations
can, for example, construct the index using a Hadoop MapReduce job

. . . _ 'Spatial Join: In spatial join, the input is two seBandS and a spatial
and query that index from Hive using HiveQL. P P J P P

join predicated (e.g., touches, overlaps or contains), and the output
i is the set of all pairgr, sy wherer € R, s € S and the join predi-
7. Querying cated is true for(r, s). If the input files are not indexed, the partition

A main part of any system for big spatial data is the query process- based spatial-merge (PBSM) join algorithm is used where the input
ing engine. Different systems would probably use different process- files are copartitioned using a uniform grid and the contents of each
ing engines such as MapReduce for Hadoop and Resilient Distributedgrid cell are joined independently. This technique is implemented in
Dataset (RDD) for Spark. While each application requires a differ- Hadoop [69], Impala and Spark [64], without major modifications. A
ent set of operations, the system cannot ship with all possible spatialmore efficient algorithm is provided in [16] for the special case of
queries. Therefore, the query processing engine should be extensibleelf-join when the input file is indexed using a uniform grid. In this al-
to allow users to express custom operations while making use of thegorithm, the partition step is avoided and the records in each grid cell
spatial indexes. To give some concrete examples, we will describe fiveare directly joined. In [28], a more efficient algorithm is implemented
categories of operations, namely, basic query operations, join opera-which provides a more general join algorithm for two files when one

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

it would require to process the whole file. This algorithm is improved
in [26] by applying a pruning step, based on the global index, to avoid
processing partitions that do not contribute to answer. A partd;iés
pruned ifall points in this partition are dominated by at least one point
in another partitiort;, in which case we say thaf dominates:;. For
example in Figure 2;; is dominated bys because the top-right corner
of ¢, (i.e., best point) is dominated by the bottom-left corneedi.e.,
worst point). The transitivity of the skyline domination rule implies
thatanypoint incs dominatell points inc;. In addition, the partition
Figure 2: Pruning in skyline ¢, is dominated bycs because the top-right corner of is dominated
or both files are indexed. If both files are indexed, it finds every pair PY the top-left corner o€s which means that any point along the top
of overlapping partitions and each pair is processed independently byedge ofcs dominates all points is. Since the boundaries of each
a map task which applies an in-memory spatial join algorithm, such as Partition are tight, there has to be at least one point along each edge.
the plane-sweep algorithm. If only one file is indexed, it partitions the Convex Hull. In the convex hull operation, the input is a set of points
other file on-the-fly such that each partition corresponds to one par- P, and the output is the points that form the minimal convex polygon
tition in the indexed file. This allows a one-to-one mapping between that contains all points iR?. To apply the pruning step in convex hull,
the partitions of the two files making it very efficient to join each pair We utilize a property which states that a point on the convex hull must
independently. be part of one of the four skylines (min-min, min-max, max-min, and
kNN Join: Another join operation is the kNN join where the input Mmax-max). Therefore, we apply the skyline pruning technique four
is two datasets of poinﬂg andS, and we want to find for each point times for the four Skylines, and prune partitions that do not contribute
r € R, its k nearest neighbors B. In [67], a brute force technique is to any of the four skylines. Apparently, if a partition does not con-
proposed which calculates all pairwise distances between every pair oftribute to any of the four skylines, it cannot contribute to the convex
pointst € Rands € S, sorts all of them, and finds the top-k for each hull.
pointr. A more efficient technique is proposed in the same work but 7.4 Spatial Data Mining Operations

it provides an approximate answer. The later technique first partitions
. ' . .. Most data mining techniques rely on iterative processing where the
all points based on a Z-curve, and finds the kNN for each point within .) : ; . .
. L answer is refined in each iteration until an answer of an accepted qual-
its partition. In [42] an efficient and exact algorithm is provided forthe . .)
ity is reached. For a long time, Hadoop was the sole player in the

kNN join query which runs in two MapReduce jobs. In the first job, area of big data. Unfortunately, Hadoop is ill-equipped to run iterative

all data is partitioned based on a Voronoi diagram and a partial answer . S . . .
. . . . ; . algorithm due to the significant overhead associated with each itera-
is computed only for points which are colocated with their kNN in the . N

tion [20]. Therefore, there is no much work in this area for Hadoop.

same partition. In the second phase, the kNN of all remaining points The K-Means clustering algorithm is implemented in a straight for-

is calculated using the brute-force technique. . : L

ward manner in MapReduce where each iteration is implemented as
7.3 Computational Geometry Operations a separate MapReduce job [71]. However, the performance was very
The area of computational geometry is rich with operations that are poor due to the overhead imposed by Hadoop in each iteration. Al-
used extensively when processing spatial data, such as, polygon unionthough Spark was proposed as an alternative system with better sup-
skyline and convex hull. Traditional CG algorithms rely on a single port to this kind of algorithms, we did not find any notable work for
machine which makes them unscalable for big spatial data. A spa-spatial data mining with Spark which leaves this area open for re-
tial index constructed in a distributed environment provide a room for search.
improvement if the algorithms are redesigned to make use of them. .
Many computational geometry operations have a divide and conquer7' ° Raster_Operatlorjs . .
algorithm which can be adapted to work in a distributed environment All the operations described above are vector operations which deal
where the problem is divided over cluster nodes, each node generate¥/ith Point, lines and polygons. Another class of operations are the
a partial answer, and a single machines combines all these in one fina[2Ster Operations which are used with raster data such as images. Un-
answer. If the input file is spatially indexed, this algorithm can be im- like vector_opera_tloqs, raster o_peranons are much easier to paralle_llze
proved by pruning partitions that do not contribute to the answer. In due to their locality in processing. Most of these operations deal with
the following part, we describe a Voronoi diagram construction algo- & Single pixel or a few pixels that are close to each other. This makes
rithm which does not use a spatial index, and then give two examplesthese operations embarrassingly parallel and can be easily parallelized

of pruning techniques used with skyline and convex hull operations. "' @ Shared-nothing system. In [36], GeoTrellis, a system for raster
Voronoi Diagram. A Voronoi diagram for a set of vertices is a par-

data processing, is combined with Spark to parallelize the computa-
titioning of the space into disjoint polygons where each polygon is

tion over a cluster of machines. In [52, 59], raster operations are par-
associated with one vertex in the input. All points inside each polygon allelized using SciDB, an array database, where each raster dataset is
are closer to the associated vertex than any other vertex in the input.

represented as a two-dimensional array. Each of these systems imple-

In [17], the Voronoi diagram is constructed using a MapReduce job ment specific raster ope_rations but it would be inFeresting to build a
where each mapper constructs a partial Voronoi diagram for a parti- system that supports a wide range of raster operations over a cluster of
tion, and one reducer merges them all into one final Voronoi diagram. machines.

The drawback of this method is that the machine that merges them . . .

could be a bottleneck for very large datasets. 8. Visualization

Skyline. In the skyline operation, the input is a set of poiRtend The visualization process involves creating an image that describes
the output is the set afon-dominategboints. A pointp dominates a an input dataset. This is a natural way to explore spatial datasets as it
pointqif pis greater than in all dimensions. There exist a divide and allows users to spot interesting patterns in the input. Traditional visu-
conquer algorithm for skyline which can be ported to MapReduce but alization techniques rely on a single machine to load and process the

DBSJ Journal Vol. 13, No. 1

Invited Paper March 2015

(a) No-cleaning (b) Cleaned data

Figure 3: Single level visualization

data which makes them unable to handle big spatial data. GPUs are
used to speed up the processing but they are still limited to the mem-
ory and processing capacity of a single machine and cannot scale out
to multiple machines. We can categorize the visualization techniques
based on the structure of the generated image into two categgiries,

gle level imagesand multilevel images In single level images, the groups many points in one partition. The drawback is that the grid size

produced image consists of one file that contains an image of a specimust be chosen carefully to ensure load balancing and avoid too many
fied resolution. In multilevel images, the generated image consists of arecords in one partition.

set ofimage tilesat different zoom levels which allows users to zoom
in to see more details.

Figure 4: Mutlilevel Image

8.2 Multilevel Image Visualization

8.1 Single Level Image Visualization

The quality of a single level image is limited by its resolution which

In single level image visualization, the input dataset is visualized as a Means users cannot zoom in to see more details. On the other hand,

single image of a user-specified image siigth x height) in pixels.
Existing visualization algorithms for single level image can be cate-
gorized based on the partitioning technique they applyntel-level
partitioning andgrid-levelpartitioning.

multilevel images provide multiple zoom levels which allows users to

zoom in and see more details in a specific region. Figure 4 gives an
example of a multilevel image of three zoom levels 0, 1, and 2, where
each level contains 1, 4, and 16 image tiles, respectively. Each tile

is a single image of a fixed resoluti@®6 x 256. Most modern web
maps (e.g., Google Maps and Bing Maps) use this technique where all
image tiles are generated in an offline phase while the web interface

lite data [52] using SciDB. In [60], 3D triangles are partitioned and Provides a convenient way to view the generated image by allowing
grouped by the pixel they affect in the image. In other words, a parti- the user to zoom in/out and pan through the image. The goal of the
tion is created for every pixel in the generated image and it contains all Multilevel image visualization algorithm is to generate all these image
triangles that could possibly determine the color of that pixel. In each {iles efficiently for an input dataset.
partition, triangles are sorted by theidimension and the color of the The input to this algorithm is a dataset and a range of zoom levels
pixel is determined based on the triangle on the top. In [52], satel- [z;,, Zwx] and the output is all image tiles in the specified range of lev-
lite data from multiple raster layers are partitioned and grouped using els. A nave approach is to use any of the single level image algorithms
pixel-level-partitioning. For each partition, the values are combined to generate each tile independently but this approach is infeasible due
together, using some user-defined logic, into an RGB value which rep-to the excessive number of jobs to run. For example, at zoom level
resents the color of the corresponding pixel. Finally, all pixel values 10, there will be more than one million images which would require
are compiled into the final image. The pixel-level-partitioning tech- running one million jobs to generate all of them. A more efficient
nique is suitable for applications where there is some complex compu-MapReduce algorithm is provided in [29] where the map function par-
tation associated with each value that needs to be done for each pixetitions the data using pyramid-partitioningtechnique where it repli-
separately. The drawback is that it might create too many partitions, cates each point to every overlapping tile in all zoom levels. For exam-
as one per pixel, which can be overwhelming for large images. ple, in Figure 4, the poinp is replicated to three tiles in the three zoom

In grid-levelpartitioning, records are partitioned according to a uni- levels. The reduce function groups points by tile and generates a sin-
form grid such that each grid cell covers a part of the image. In [29], gle image that corresponds to that tile. A drawback to this technique
a MapReduce algorithm is proposed to visualize satellite data (e.g.,is that tiles at lower zoom levels (e.g., zoom level zero) would have
temperature) as a heat map. Records are first partitioned using a unitoo many records as they cover larger regions in the input. To solve
form grid. For each grid cell, a preprocessing step is applied to recoverthis problem, an adaptive sampling technique [29] is applied which
missing values in the input data which are caused due to clouds block-down-samples the data according to the zoom level such that there is
ing satellite sensors or misalignment of satellites. Figure 3 shows anan average of one point per pixel in each tile. This ensures that each
example of a heat map for temperature before and after recovery oftile contains roughly the same number of records while covering the
missing points. The recovery technique uses a two-dimensional in- whole space.
terpolation function which estimates missing values based on other
nearby value_s. After tha_t, a partlgl h(_aat map is created for_eac_h grldg' Applications
cell by mapping each point to a pixel in the image and coloring it ac-
cording to the temperature value. Finally, the partial heat maps are This section provides a few case studies of applications that use
stitchedtogether to form the final image. This technique reduces the some of the techniques described throughout this paper to handle big
number of partitions by applying the coarser-grained grid partitioning. spatial data. These applications help readers understand how these
Furthermore, it allows the interpolation technique to be applied as it systems are used in a real end-user application.

In pixel-levelpartitioning, records are partitioned according to the
image pixel they affect in the final image. This technique is used
to render 3D triangles [60] using Hadoop and to visualize satel-

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

(a) SHAHED (b) EarthDB (c) TAREEG (d) TAGHREED

Figure 5: Application case studies

9.1 SHAHED OpenStreetMap. Using a standard PostGIS database to store and index
SHAHED [29] is a MapReduce system for analyzing and visualizing the contents of that file takes days on a single machine. To process it
satellite data. It supports two main features, spatio-temporal selectionefficiently, TAREEG uses Pigeon, the spatial high level language of
and aggregate queries, and visualization. It makes these features availSpatialHadoop, to extract all map features using MapReduce in stan-
able through a user-friendly web interface as shown in Figure 5(a). In dard format (e.g., Point, Line, and Polygon). The extracted files are
this interface, users can navigate to any area on the map and choosthen indexed using R-tree indexes to serve user requests more effi-
either a specific point or a rectangle on the map. In addition, they canciently. The extraction and indexing steps happen once in an offline
choose a time range from the date selectors. Based on user choicephase and it takes only a few hours on a 20-node cluster instead of
the system runs a spatio-temporal selection query to retrieve all valuesdays. In the online phase, the system issues range queries on the cre-
(e.g., temperature) in the specified range, a spatio-temporal aggregatated indexes based on user request. The retrieved values are then putin
query to retrieve the minimum, maximum, and average in the range, or standard file format and is sent back to the user in an email attachment.
visualizes all values in the specified range as a temperature heat mapg 4 TAGHREED

SHAHED internally uses SpatialHadoop where all input datasets tagUREED [44] is a system for querying, analyzing and visualiz-
are indexed using a uniform grid index as the data is uniformly dis- ,, entagged tweets. It continuously collects geotagged tweets from
t_rlk_)uted. A_SpatlaIHad_oop MapReduce 10*? constructs t_he |nde>$es e'f'Twitter [13] and indexes them using SpatialHadoop. Since Spatial-
ficiently while the queries are processed dlrectly on thg |ndex, without Hadoop does not support dynamic indexes, it creates a separate index
MapReduce, to provide real-time answers while avoiding the over- for each day and periodically merges them into bigger indexes (say,

head of MapReduce. For example, it runs an aggregate query for aweekly or monthly) to keep them under control. In addition to the

small area over a dataset of total size 2TB in less than a second. Temépatial index, TAGHREED also constructs an inverted index to search

perature heat maps are generated using the visualization componeny,q tex; of the tweets. The users are presented with a world map (Fig-
of SpatialHadoop. If one day is selected, the generated heat map i§ o 5(d)) where they can navigate to any area of the world, choose a
visualized as a still image, while if a range of dates is selected, an im- ;o range and a search text. TAGHREED automatically retrieves all
age is created for each day and they are then compiled into @ video.eet in the specified spatio-temporal range matching the search text,
The efficiency O_f Fhe V|s_uaI|_zat|0n component_ allows it to visualize a and runs some analyses on the retrieved tweets, such as, top hashtags
dataset of 6.8 Billion points in around three minutes. and most popular users. Both the tweets and the analyses are visu-
9.2 EarthDB alized on the user interface where users can interact with them, e.g.,
EarthDB [52] is another system that deals with satellite data and it useschoose a tweet to see more details.

SciDB as an underlying framework. It uses the functionality provided)

by SciDB to process satellite data and visualize the results as animagel0. Conclusion

(Figure 5(b)). It supports two queries, (1) it reconstructs the true-color In this paper, we surveyed the state-of-the-art work in the area of
image by combining the values of the three components RGB, (2) it big spatial data. We studied the existing system from three different
generates a vegetation heat map from raw satellite data. In both ex-angles,implementation approaghunderlying architectureand spa-
amples, the query and visualization are expressed in SciDB’s Array tial components We categorized the spatial components of a system
Query Language (AQL) which processes the data in parallel and gen-for big spatial data into four components, namédénguage index-
erates the desired image. The use of AQL allows users to play with theing, query processingand visualization For each component, we
query in an easy way to make more advanced processing techniquesighlighted the recent work and described the different approaches to
or produce a different image. support each one. We also identified several open research problems
9.3 TAREEG which could be highly important for researchers pursuing research in

) this area. Finally, we provide some real applications that use those

TAREEG [18] is a MapReduce system for extracting Open- systems to handle big spatial data and provide end-user functionality.

StreetMap [1] data using SpatialHadoop. It provides a web inter-
face (Figure 5(c)) in which the user can navigate to any area in the
world, select a rectangular area, and choose a map feature to extracACk.nOWIe.dgment))))
(e.g., road network, lakes, or rivers). TAREEG automatically retrieves 1 NiS work is supported in part by the National Science Foundation,
the required data and sends it back to the user via email in standard?SA, under Grants 11S-0952977 and 11S-1218168.

data formats such as CSV file, KML and Shapefile. The challenge

in this system is extracting all map features from a single extremely [Bibliography]

large XML file provided by OpenStreetMap, called Planet.osm file. [1] http://www.openstreetmap.org/

The Planet.osm file is a 500GB XML file which is updated weekly by [2] Accumulo.

10

Invited Paper

DBSJ Journal Vol. 13, No. 1
March 2015

(3]
(4]

5]
(6]
[7]
(8]
9]
(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]
(25]
(26]
(27]
(28]

[29]

(30]

(31]

Apache. Hadoophttp://hadoop.apache.org/

ESRI Tools for Hadoop. http://esri.github.io/
gis-tools-for-hadoop/ .

GeoServerhttp://geoserver.org/
GeoTrellis. http://geotrellis.io/ .

GnipBlog. https://blog.gnip.com/tag/
geotagged-tweets/ .

HBase. http://hbase.apache.org/
Impala. http://impala.io/

Open Geospatial Consortium.
http://www.opengeospatial.org/

PostGIS http://postgis.net/

Telescope Hubbel site: Hubble Essentials:
htt| ://hubblesne.org/the_telescoEe/
hubble_essentials/quick_facts.php

Twitter. The About webpagehttps://about.twitter.
com/company .

European XFEL: The Data Challenge, Sept. 201Attp:
[lwww.eiroforum.org/activities/scientific_
highlights/201209_XFEL/index.html

MODIS Land Products Quality Assurance
Part:1, 2012. https://lpdaac.usgs.gov/sites/
default/files/public/modis/docs/MODIS_LP_
QA_Tutorial-1.pdf .

A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.
Hadoop-GIS: A High Performance Spatial Data Warehousing
System over MapReduce. \LDB, 2013.

A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Sha-
habi. Voronoi-based Geospatial Query Processing with MapRe-
duce. InCLOUDCOM 2010.

L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel.
TAREEG: A MapReduce-Based System for Extracting Spatial
Data from OpenStreetMap. IBIGSPATIAL Dallas, TX, Nov.
2014.

A. Auchincloss, S. Gebreab, C. Mair, and A. D. Roux. A Review
of Spatial Methods in Epidemiology: 2000-20hnual Review
of Public Health 33:107-22, Apr. 2012.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HalLoop: effi-
cient iterative data processing on large clustésceedings of
the VLDB Endowmen8(1-2):285-296, 2010.

A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on
Processing Spatial Data with MapReduce SBDBM 2009.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A Distributed Storage System for Structured Daf&CM Trans.
Comput. Syst26(2), 2008.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Cluster€ommunications of ACM1, 2008.

D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J. Yu. Client-
Server Paradise. MLDB, pages 558-569, 1994.

J. Dittrich and B. Seeger. Data Redundancy and Duplicate Detec-
tion in Spatial Join Processing. I6DE, pages 535-546, 2000.

A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan. G&adoop:
Computational Geometry in MapReduce SIGSPATIAL.2013.

A. Eldawy and M. F. Mokbel. Pigeon: A Spatial MapReduce
Language. INCDE, 2014.

A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce
Framework for Spatial Data. fCDE, 2015.

A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and
S. Ghani. SHAHED: A MapReduce-based System for Querying
and Visualizing Spatio-temporal Satellite Data.l@DE, 2015.

J. Faghmous and V. KumaiSpatio-Temporal Data Mining for

Climate Data: Advances, Challen%es, and Opportunitiésl-
vances in Data Mining, Springer, 2013.

R. A. Finkel and J. L. Bentley. Quad Trees: A Data Structure for
Retrieval on Composite Key#cta Inf, 4:1-9, 1974.

Quick Facts.

Tutorial:

11

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

52]
(53]

[54]

A. Fox, C. Eichelberger, J. Hughes, and S. Lyon. Spatio-
temporal Indexing in Non-relational Distributed Databases. In
International Conference on Big Dat8anta Clara, CA, 2013.

H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subrama-
niam, and M. Mohania. Processing multi-way spatial joins on
map-reduce. IProceedings of the 16th International Confer-
ence on Extending Database Technoldg®BT, pages 113-124,
New York, NY, USA, 2013.

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. IrSIGMOD, 1984.

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized

search trees for database systems.VLDB, pages 562-573,
1995.

A. Kini and . Emanuele. Geotrel-
lis: Adding _ Geospatial ~Capabilites to Spark.
http://sPark-summlt.orglz)14/talk/
geotrellis-adding-geospatial-capabilities-

to-spark .

R. Kothuri and S. Ravada. Oracle spatial, geometrie€ncy-
clopedia of GIS.pages 821-826. 2008.

S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A
Simple and Efficient Algorithm for R-Tree Packing. I6DE,
pages 497-506, 1997.

H. Liao, J. Han, and J. Fang. Multi-dimensional Index on
Hadoop Distributed File SystenlCNAS 0, 2010.

J. Lu and R. H. Guting. Parallel Secondo: Boosting Database
Engines with Hadoop. IKCPADS 2012.

P. Lu, G. Chen, B. C. Ooi, H. T. Vo, and S. Wu. ScalaG-
iST: Scalable Generalized Search Trees for MapReduce Sys-
tems.PVLDB, 7(14):1797-1808, 2014.

W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient Processing of
k Nearest Neighbor Joins using MapRedue¥LDB, 2012.

Q. Ma, B. Yang, W. Qian, and A. Zhou. Query Processing of
Massive Trajectory Data Based on MapReduceCLOUDDB,
20009.

A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. Ghanem,
S. Ghani, and M. F. Mokbel. Taghreed: A System for Querying,
Analyzing, and Visualizing Geotagged Microblogs. SIGSPA-
TIAL, Nov. 2014.

H. Markram. The Blue Brain ProjectNature Reviews Neuro-
science7(2):153-160, 2006.

S. Melnik, A. Gubarey, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive Analysis of
Web-scale Dataset€ommun. ACM54(6):114-123, 2011.

J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File:
An Adaptable, Symmetric Multikey File StructurgéODS 9(1),
1984.

S. Nishimura, S. Das, D. Agrawal, and A. El AbbadM®D-
HBase: Design and Implementation of an Elastic Data Infras-
tructure for Cloud-scale Location ServiceBAPD, 31(2):289—
319, 2013.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A Not-so-foreign Language for Data Processing. In
SIGMOD pages 1099-1110, 2008.

J. Patel and D. DeWitt. Partition Based Spatial-Merge Join. In
SIGMOD, 1996.

L. Pickle, M. Szczur, D. Lewis, , and D. Stinchcomb. The Cross-
roads of GIS and Health Information: A Workshop on Develop-
ing a Research Agenda to Improve Cancer Contndérnational
Journal of Health Geographi¢$(1):51, 2006.

G. Planthaber, M. Stonebraker, and J. Frew. EarthDB: Scalable
Analysis of MODIS Data using SciDB. IBIGSPATIAL 2012.

J. Sankaranarayanan, H. Samet, B. E. Teitler, and M. D. L. J.
Sperling. TwitterStand: News in Tweets. SiGSPATIAL2009.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O'Neil,
P. E. O'Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A
Column-oriented DBMS. IrProceedings of the 31st Interna-
tional Conference on Very Large Data Bases, Trondheim, Nor-
way, August 30 - September 2, 20pages 553-564, 2005.

DBSJ Journal Vol. 13, No. 1
Invited Paper March 2015

[55] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The Ar- Innovation Center, Umm Al-Qura University, Saudi Arabia. His cur-
chitecture of SciDB. I'8SDBM 2011. _ rent research interests focus on database systems, GIS, and big spatial
[56] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A data. His research work has been recognized by four best paper awards

Database Management System for Applications with Complex ;]
Analytics. Computing in Science and Engineerjrid(3):54-62, and by the NSF CAREER award 2010. Mohamed is/was general co

2013. chair of SSTD 2011, program co-chair of ACM SIGSPATIAL GIS
[57] Y. Thomas, D. Richardson, and I. Cheung. Geography and Drug 2008-2010, and IEEE MDM 2011, 2014. He is in the editorial board
Addiction. Springer Verlag2009. ' of ACM Transactions on Spatial Algorithms and Systems and ACM

[58] A. Thusoo, J. S. Sen, N. Jain, Z. Shao, P. Chakka, S. Anthony, Transactions on Database Systems. Mohamed has held various visit-
H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing Solu- ~ ing positions at Microsoft Research, USA and Hong Kong Polytech-
tion over a Map-Reduce FramewoRYLDB, pages 1626-1629, nic University. Mohamed is a founding member of ACM SIGSPA-
2009. TIAL and is currently serving as an elected chair of ACM SIGSPA-

[59] J. VanderPlas, E. Soroush, K. S. Krughoff, and M. Balazinska. TIAL for the term 2014-2017. For more information, please visit:
Squeezing a Big Orange into Little Boxes: The AscotDB System v cs.umn.edu/mokbel

for Parallel Processing of Data on a SphetBEE Data Eng.
Bull., 36(4):11-20, 2013.

[60] H. T. Vo, J. Bronson, B. Summa, J. L. D. Comba, J. Freire,
B. Howe, V. Pascucci, and C. T. Silva. Parallel Visualization
on Large Clusters using MapReduce. IFEE Symposium on
Large Data Analysis and Visualization, LDAR011.

[61] G. Wang, M. A. V. Salles, B. Sowell, X. Wang, T. Cao, A. J.
Demers, J. Gehrke, and W. M. White. Behavioral Simulations in
MapReducePVLDB, 3(1):952-963, 2010.

[62] K. Wang, J. Han, B. Tu, J. D. amd Wei Zhou, and X. Song. Ac-
celerating Spatial Data Processing with MapReducéCRADS
2010.

[63] R.T.Whitman, M. B. Park, S. A. Ambrose, and E. G. Hoel. Spa-
tial Indexing and Analytics on Hadoop. BIGSPATIAL2014.

[64] S. You, J. Zhang, and L. Gruenwald. Large-Scale Spatial Join
Query Processing in Cloud. Technical report, The City College
of New York, New York, NY.

[65] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and |. Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. pages 15-28, 2012.

[66] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. 2010.

[67] C. Zhang, F. Li, and J. Jestes. Efficient Parallel kNN Joins for
Large Data in MapReduce. EDBT, 2012.

[68] S.Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial Queries
Evaluation with MapReduce. I6CC, 2009.

[69] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: Paral-
lelizing spatial join with MapReduce on clusters. GhUSTER
2009.

[70] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng. An efficient
multi-dimensional index for cloud data managementCIKM,
pages 17-24, Hong Kong, China, 2009.

[71] W. Zhao, H. Ma, and Q. He. ParallétMeans Clustering Based
on MapReduce. I€loudCom 2009pages 674—679, 2009.

Ahmed ELDAWY

is a fifth year PhD candidate at the department of Computer Science
and Engineering, University of Minnesota. He obtained his B.Sc. and
MS in Computer Science from Alexandria University in 2005 and
2010, respectively. His research interest lies in the broad area of data
management systems. Ahmed released his ongoing PhD work, Spa-
tialHadoop, as an open source project which has been used by sev-
eral companies, organizations and research institutes around the world.
During his PhD, he visited IBM T.J. Watson research center, Microsoft
Research in Redmond, Qatar Computing Research Institute, and GIS
Technology Innovation Center in Saudi Arabia. He has been awarded
the University of Minnesota Doctoral Dissertation Fellowship in 2014.

Mohamed F. MOKBEL

(Ph.D., Purdue University, USA, MS, B.Sc., Alexandria University,

Egypt) is an associate professor at University of Minnesota. He is
also the founding Technical Director of the KACST GIS Technology

12

