
Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

The Era of Big Spatial Data:
A Survey

Ahmed ELDAWY ♥

Mohamed F. MOKBEL ♦

The recent explosion in the amount of spatial data calls for spe-

cialized systems to handle big spatial data. In this paper, we sur-

vey and contrast the existing work that has been done in the area

of big spatial data. We categorize the existing work in this area

from three different angles, namely,approach, architecture, and

components. (1) The approaches used to implement spatial query

processing can be categorized ason-top, from-scratchand built-in

approaches. (2) The existing works follow differentarchitectures

based on the underlying system they extend such as MapReduce,

key-value stores, or parallel DBMS. (3) We also categorize the ex-

isting work into four main components, namely, language, index-

ing, query processing, and visualization. We describe each com-

ponent, in details, and give examples of how it is implemented in

existing work. At the end, we give cast studies of real applications

that make use of these systems to provide services for end users.

1. Introduction
In recent years, there has been an explosion in the amounts of spa-

tial data produced by several devices such as smart phones, space tele-
scopes, medical devices, among others. For example, space telescopes
generate up to 150 GB weekly spatial data [12], medical devices pro-
duce spatial images (X-rays) at a rate of 50 PB per year [14], a NASA
archive of satellite earth images has more than 500 TB and is in-
creased daily by 25 GB [15], while there are 10 Million geotagged
tweets issued from Twitter every day as 2% of the whole Twitter fire-
hose [7, 13]. Meanwhile, various applications and agencies need to
process an unprecedented amount of spatial data. For example, the
Blue Brain Project [45] studies the brain’s architectural and functional
principles through modeling brain neurons as spatial data. Epidemiol-
ogists use spatial analysis techniques to identify cancer clusters [51],
track infectious disease [19], and drug addiction [57]. Meteorologists
study and simulate climate data through spatial analysis [30]. News
reporters use geotagged tweets for event detection and analysis [53].

Unfortunately, the urgent need to manage and analyze big spa-
tial data is hampered by the lack of specialized systems, techniques,
and algorithms to support such data. For example, while big data is
well supported with a variety of Map-Reduce-like systems and cloud
infrastructure (e.g., Hadoop [3], Hive [58], HBase [8], Impala [9],
Dremel [46], Vertica [54], and Spark [66]), none of these systems
or infrastructure provide any special support for spatial or spatio-
temporal data. In fact, the only way to support big spatial data is to
either treat it as non-spatial data or to write a set of functions as wrap-
pers around existing non-spatial systems. However, doing so does not

♥ Nonmember Department of Computer Science and Engineering, Univer-
sity of Minnesota, Twin Cities

eldawy@cs.umn.edu
♦ Nonmember Department of Computer Science and Engineering, Univer-
sity of Minnesota, Twin Cities

mokbel@cs.umn.edu

take any advantage of the properties of spatial and spatio-temporal
data, hence resulting in sub-par performance.

The importance of big spatial data, which is ill-supported in the
systems mentioned above, motivated many researchers to extend these
systems to handle big spatial data. In this paper, we survey the ex-
isting work in the area of big spatial data. The goal is to cover the
different approaches of processing big spatial data in a distributed en-
vironment which would help both existing and future researchers to
pursue reasearch in this important area. First, this survey helps exist-
ing researchers to identify possible extensions to their work by check-
ing the broad map of all work in this area. Second, it helps future
researchers who are going to explore this area by laying out the state
of the art work and highlighting open research problems.

In this survey, we explore existing work from three different an-
gles, namely,implementation approach, underlying architecture, and
spatial components. The implementation approachesare classified as
on-top, from-scratch, andbuilt-in. The on-topapproach uses an ex-
isting system for non-spatial data as a black box while spatial queries
are implemented through user-defined functions (UDFs). This makes
it simple to implement but possibly inefficient as the system is still
internally unaware of spatial data. Thefrom-scratchapproach is the
other extreme where a new system is constructed from scratch to han-
dle a specific application which makes it very efficient but difficult to
build and maintain. Thebuilt-in approach extends an existing system
by injecting spatial data awareness in its core which achieves a good
performance while avoiding building a new system from scratch. The
underlying architecturesof most surveyed systems follow that of ex-
isting systems for non-spatial data such as MapReduce [23], Resilient
Distributed Dataset (RDD) [65], or Key-Value stores [22]. We also
categorize thespatial componentsimplemented by these systems into
language, indexing, query processing, andvisualization. We give in-
sights of how each of these components are supported using different
implementation approaches and in different architectures. Finally, we
provide some key applications of big spatial data that combine differ-
ent components in one system to provide services for end-users.

The rest of this paper is organized as follows. We start by givin
an overview of the surveyed work in Section . Section describes the
three different approaches to handle big spatial data. Section dis-
cusses the different underlying architectures and how spatial queries
are implemented in each one. The existing works of the four spatial
components, namely,language, indexing, query processing, andvisu-
alization, are provided in Sections -. After that, Section provides a
few examples of end-user applications that work with big spatial data.
Finally, Section concludes the paper.

2. Overview
Table 1 provides a high level overview of the works discussed in

this paper. Each row in the table designates a system for big spatial
data while each column represents one aspect of the system. This sec-
tion provides an overview of these systems and highlights the main
differences between them. The rest of this paper delves into the de-
tails of each aspect (i.e., column) and provide more insight about the
different work done from that aspect.

Approach. The three implementation approaches used in related
work areon-top, from-scratch, andbuilt-in. Due to its simplicity, the
on-topapproach is used more than anything else. On the contrary, only
a few systems are built from scratch and their features are very limited
compared to other systems. Due to their complexity, most of them are
not active in research anymore. Only SciDB is still active, however,
it is designed mainly for scientific applications dealing with multidi-
mensional arrays rather than spatial applications dealing with lines and

1



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

Table 1: Case studies of systems

Approach Architecture Language Indexes Queries Visualization
[21] On-top MapReduce - R-tree Image quality -
[62,68,69] On-top MapReduce - R-tree RQ, KNN, SJ,

ANN
-

[33] On-top MapReduce - - Multiway SJ -
[60] On-top MapReduce - - - Single level
[71] On-top MapReduce - - K-means -
[17] On-top MapReduce - - Voronoi, KNN,

RNN, MaxRNN
-

[42] On-top MapReduce - - KNN Join -
[67] On-top MapReduce - - KNN Join -
BRACE [61] From-scratch MapReduce BRASIL Grid SJ -
PRADASE [43] Built-in MapReduce - Grid RQ
ScalaGiST [41] Built-in MapReduce - GiST RQ, KNN -
SpatialHadoop [26–29] Built-in MapReduce Pigeon* Grid, R-tree, R+-tree RQ, KNN, SJ, CG Single

level,
Multilevel

Hadoop GIS [16] Built-in MapReduce QLS P Grid RQ, KNN, SJ -
ESRI Tools for Hadoop [4,63] Built-in MapReduce HiveQL* PMR Quad Tree RQ, KNN -
MD-HBase [48] Built-in Key-value store - Quad Tree, K-d tree RQ, KNN -
GeoMesa [32] Built-in Key-value store CQL* Geohash RQ Through

GeoServer
Paradise [24] From-scratch Parallel DB SQL-Like Grid RQ, NN, SJ -
Parallel Secondo [40] Built-in Parallel DB SQL-Like Local only RQ, SJ -
SciDB [52,56] From-scratch Array DB AQL, AFL K-d tree RQ, KNN Single level
[64] On-top RDD + Impala Scala-based On-the-fly SJ -
GeoTrellis [6,36] On-top RDD Scala-based - Map Algebra -
[70] From-scratch Other - K-d tree, R-tree RQ -

∗ OGC-compliant

polygons. The built-in approach is used with a few systems and most
of them are based on MapReduce due to the popularity of Hadoop.
More details about the different approaches are given in Section .

Architecture. Most system discussed in this survey are built on
existing systems for big data and, hence, they follow their architec-
tures. We can notice in the table that this column is quite diverse as
it contains MapReduce-based systems, key-value stores, parallel DB,
Array DB, resilient distributed dataset (RDD), and others. This shows
a great interest of processing spatial data across a wide range of sys-
tems. It is worth mentioning that we did not find any notable work for
integrating spatial data into the core of a distributed column-oriented
database such as Vertica [54], Dremel [46], or Impala [9]. Although
these systems can process points and polygons due to their extensibil-
ity, this kind of processing is done as an on-top approach while the
core system does not understand the properties of spatial data [64].
The different architectures are described in details in Section .

Language.A high level language allows non-technical users to use
the system without much knowledge of the system internal design.
The Open Geospecial Consortium (OGC) defines standard data types
and functions to be supported by such a high level language. While
many systems provide a high level language for spatial processing,
only three of them provide OGC-compliant data types and functions.
Most of them are declerative SQL-like languages including HiveQL,
Contextual Query Language (CQL), Secondo SQL-like language, and
Array Query Language (AQL). Other languages are based on Scala
and Pig Latin which are both procedural languages. Although there
might not be a deep research in providing an OGC-compliant lan-
guage, it is very important for end users to adopt the system especially
that many users are not from the computer science field. Section pro-

vides more details about the language component.

Indexes. Spatial indexes allow system to store the data in the file
system in a spatial manner taking the spatial attributes into consid-
eration. The goal is to allow queries to run faster by making use of
the index. The indexes implemented in systems vary and they include
both flat indexes (grid and geohash) and hierarchical indexes (R-tree,
R+-tree, Quad tree, PMR Quad tree and K-d tree). Notice that some
systems implement local-only indexes by creating an index in each
cluster node. This technique is relatively easy but is also limited as it
cannot be used in queries where nearby records need to be processed
together. This means that it has to access all file partitions to pro-
cess each query which is more suitable for the parallel DB architecture
such as Parallel Secondo [40]. SpatialSpark provides an on-the-fly in-
dex which is constructed in an ad-hoc manner to answer a spatial join
query but is never materialized to HDFS. This allows each machine to
speed up the processing of assigned partitions but it cannot be used to
prune partitions as the data is stored as heap files on disk. This leaves
spatial indexing in the RDD architecture an open research problem.
Section gives more details about the distributed spatial indexes.

Queries. The main component of any system for big data process-
ing is the query processing component which encapsulates the spatial
queries supported by the system. The queries supported by the systems
cover a wide range of categories including;basic queriessuch as range
query andkNN; join queriesincluding spatial join and kNN join;com-
putational goemetryqueries such as polygon union, skyline, convex
hull and Voronoi diagram construction;data miningqueries such as
K-means; andraster operationssuch as image quality. The underlying
architecture affects the choice of operations to implement. For exam-
ple, Hadoop, is geared towards analysis operations such as kNN join

2



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

and spatial join, while HBase and Accumulo are designed for point
queries which make them more suitable for interactive queries such as
point queries and nearest neighbor queries. SciDB works natively with
multidimensional arrays which makes it more suitable for raster oper-
ations working with satellite data. Section gives more details about
the supported queries.

Visualization. Visualization is the process of creating an image that
describes an input dataset such as a heat map for temperature. There
are mainly two types of images,single levelimage which is generated
with a fixed size and users cannot zoom in to see more details, and
multilevel image which is generated as multiple images at different
zoom levels to allow users to zoom in and see more details. Unlike
all other aspects, visualization is only supported by a few systems and
only one of them covers both single level and multilevel images. No-
tice that the two systems that work with raster data support visualiza-
tion as raster data is naturally a set of images which makes it reason-
able to support visualization. GeoMesa supports visualization through
GeoServer [5], a standalone web service for visualizing data on maps.
This means that GeoMesa provides a plugin to allow GeoServer to re-
trieve the data from there while the actual visualization process runs
on the single machine running GeoServer. This technique works only
with small datasets but cannot handle very large datasets due to the
limited capabilities of a single machine. The other approach is to in-
tegrate the visualization algorithm in the core system which makes it
more scalable by parallelizing the work over a cluster of machines as
done in [29,52,60]. More details about visualization are given in Sec-
tion .

3. Implementation Approach
In this section, we describe the different approaches of implement-

ing a system for big spatial data. There are mainly three different
approaches used in existing works, namely,on-top, from-scratch, and
built-in, as detailed below.

3. 1 On-top Approach
In theon-topapproach, an underlying system for big data is used as a
black box while spatial data awareness is added through user-defined
functions which are writtenon topof the system. The advantage of
this approach is its simplicity as we do not need to delve into the im-
plementation details of the system. Most existing system are flexible
and provide an easy way to add third party logic through standard
APIs. For example, Hadoop can be extended by defining custommap
andreducefunctions [23]. In Spark [66], developers can write custom
logic in Java or Scala through the resilient distributed dataset (RDD)
abstraction [65]. Hive [58] exposes a SQL-like language which can
also be extended through UDFs.

This approach is used to implement several queries using the brute-
force technique in Hadoop. In this case, all input records are scanned
using a MapReduce program to compute the answer. For example,
a range query operation scans the whole file and tests each record
against the query range [68]. Similar techniques are used to imple-
ment other operations such as k-nearest neighbor [68], image quality
computation [21], and computational geometry operations [26]. Bi-
nary operations are done in a similar fashion where allpairsof records
are scanned. For example, in spatial join, even pair of records is tested
with the join predicate to find matching pairs. Due to the huge sizes
of input files, scanning all pairs is usually unpractical. Therefore,
an alternative technique is employed where the files are spatially co-
partitioned on-the-fly, such that each partition can be processed inde-
pendently. This technique is used to answer spatial join query [69], all
nearest neighbor (ANN) [68], approximate [67] and exact [42] kNN-
join queries. For example, SJMR [69] is proposed as a MapReduce

spatial join algorithm which resembles the partition based spatial-
merge (PBSM) join algorithm for distributed environments. In this
algorithm, the map function partitions the data according to a uniform
grid while the reduce function finds overlapping records in each grid
cell.

This technique is used in other systems as well. For example, ESRI
proposes a set of user-defined functions (UDFs) [4] which extends
Hive to support standard data types and operations. This allows writ-
ing SQL-like queries to process spatial data in a similar way to spatial
database systems such as PostGIS and Oracle Spatial. A similar tech-
nique is used to build Pigeon [27], an extension to Pig Latin [49] to
write spatial MapReduce queries. The spatial join operation is imple-
mented in a similar way to the method described above in Hive [16],
Spark, and Impala [64]. Raster operations have been also scaled out
on Spark by combining it with GeoTrellis [36]

3. 2 From-scratch Approach
The second approach to support big spatial data in a distributed en-
vironment is to build a new systemfrom scratchto support a specific
application. This gives the full flexibility to design the best technique
to store the data and process it. However, it has two main drawbacks.
First, the system requires a huge effort to build and maintain as all
components have to be created from scratch. Second, users that al-
ready use existing systems to process non-spatial attributes do not
want to throw away their systems and use a new one to process spa-
tial attributes, rather, they want one system to process both spatial and
non-spatial attributes.

One of the early systems that were designed from scratch to support
spatial data is Paradise [24]. It was proposed as a parallel DBMS for
spatial data and was designed to support both vector and raster data.
Unfortunately, it is no longer active in research and was not updated
in more than a decade. A more recent system is BRACE [61] which
is proposed to perform behavioral simulations based on the MapRe-
duce architecture and it consists of three layers. Thelanguagelayer
contains a high level language, termed BRASIL, for defining the logic
of the simulation. Thestoragelayer stores the data in a distributed
grid index stored in the main memory of cluster machines. Thequery
processinglayer, termed BRACE, applies a series of distributed spa-
tial joins to perform the behavioral simulation. Although this system
is very efficient, it is not suitable to perform any queries other than the
behavioral simulation which makes it very limited. Similarly, another
system is built from scratch which stores data in distributed K-d trees
and R-trees and perform both point and range queries [70]. SciDB [56]
is another example of a system build from scratch to handle multidi-
mensional data. It is originally designed for scientific applications
with high-dimensional data which means it can handle two or three
dimensional spatial data such as satellite [52] or astronomic data [59].

3. 3 Built-in Approach
The third approach to build a system for big spatial data is thebuilt-in
approach in which an existing system is extended by injecting spa-
tial data awareness inside the core of the system. This is expected to
combine the advantages of the two other approaches. First, it is rela-
tively easier than building a new system from scratch as it makes use
of an existing system. Second, it achieves a good performance as the
core of the system is aware of spatial data and handles it efficiently.
An extended system with built-in spatial support should be backward
compatible with the original system which means it can still handle
non-spatial data as before but it adds special handling for spatial data.

For example, PRADASE [43] extends Hadoop to work with trajec-
tory data where the data is stored in HDFS as a grid and an efficient
spatio-temporal range query is implemented on it.MD-HBase [48]

3



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

introduces a K-d tree and quad tree inside HBase [8] and uses it to
run both range and kNN queries efficiently. GeoMesa [32] follows a
similar approach in Accumulo by building a geohash index. Hadoop-
GIS [16] extends Hive with a grid index and efficient query processing
for range and self-join queries. SpatialHadoop [28] extends Hadoop
with grid index, R-tree, and R+-tree, and uses them to provide efficient
algorithms for range query, kNN, spatial join, and a number of com-
putational geometry operations [26]. ScalaGiST [41] is an attempt to
provide a wide range indexes in Hadoop using a GiST-like abstraction.
Parallel Secondo [40] extends a spatial DBMS, Secondo, to provide a
parallel spatial DBMS system with a SQL-like query language.

4. Architecture
There are different architectures used in systems for big spatial data.

Since most of these systems extend existing systems for big data, they
follow their underlying architecture. The features and limitations of
each system affect the scope of spatial applications and queries that
can be supported in it. For example, systems that are designed for
large analytical queries, such as Hadoop, Hive, and Impala, are more
suitable to handle long-running spatial queries such as spatial join and
kNN join. On the other hand, systems that are designed for interac-
tive queries, such as key-value stores, are better to use if we want to
support small queries such as point or nearest neighbor queries. In
this section, we categorize the existing work in big spatial data ac-
cording to the underlying system architecture and highlight the types
of queries that are better suited for each system architecture and how
they are implemented.

4. 1 MapReduce
In the MapReduce architecture, the data sits in a distributed file sys-
tem while the query processing is done through the MapReduce ab-
straction [23]. Typically, themap function scans the whole file and
generates a set of intermediate key-value pairs. These pairs are shuf-
fled across machines and grouped by the key where each group is re-
duced separately. Although this abstraction is very generic and can be
applied in different system architectures, it was originally designed
to handle long-running analytical queries. There are three notable
open source systems that support this architecture for non-spatial data,
namely, Hadoop [3], the original open source MapReduce system,
Hive [58], a data warehousing system built on-top of Hadoop, and
Pig Latin [49], a high level language for Hadoop. There are two main
limitations to these systems which limit its applicability for different
queries. (1) They all use the Hadoop Distributed File System (HDFS)
which does not support file edits making it suitable for static data.
(2) There is a significant overhead for starting each MapReduce job
making it unsuitable for interactive queries which should run in a sub-
second, and iterative algorithms where hundreds of iterations might
run for each algorithm and the overhead accumulates for each itera-
tion (i.e., MapReduce job). Since Hadoop was the first open source
system for distributed processing that is relatively easy to install and
use, most work in big spatial data is based on it.

As Hadoop is designed for analytical jobs, most operations built
for Hadoop are long-running analytical jobs. This includes spatial
index construction [16, 21, 28, 39, 43, 63], image quality computa-
tion for raster data [21], all nearest neighbor (ANN) [21], spatial
join [16, 28, 69], and kNN join [42, 67]. Also, several computational
geometry queries are implemented for Hadoop [26] including poly-
gon union, skyline, convex hull, farthest and closets pairs. In addi-
tion, visualization techniques have been proposed for spatial data in
the Hadoop environment [29,60]

Although Hadoop is not designed for interactive queries, some
works proposed MapReduce algorithms for a few interactive queries

for two reasons. First, users of Hadoop might occasionally need to
run this type of queries and it would be better to run them as effi-
cient as possible. Second, as mentioned above, Hadoop has been the
main system for distributed processing for a few years and it is worth,
from a research point of view, to test it with all types of queries.
The implemented queries include range queries [16, 21, 28, 43, 63],
kNN queries [16, 17, 21, 28, 63], and reverse nearest neighbor queries
(RNN) [17]. Although most of these systems optimize the MapRe-
duce job to return the result as fast as possible, there is a significant
overhead in starting the query making all of them unsuitable for an
interactive application. As a work around, some systems construct a
spatial index using MapReduce and process it directly from the HDFS
to avoid the overhead of the MapReduce job [29,44].

Similar to interactive queries, some iterative spatial queries can be
also implemented in MapReduce. For example, the k-means clustering
algorithm was implemented in Hadoop [71] where each iteration runs
as a separate MapReduce job. As expected, the significant overhead
on each iteration makes the algorithm not very scalable with cluster
size. For example, as reported in [71], using four machines reduces
the processing time by only25% instead of the ideal75%.

There is only one system that uses the MapReduce engine to pro-
cess spatial iterative queries efficiently for behavioral simulation [61].
However, this system does not use Hadoop at all as it builds a sys-
tem from scratch for this application where all data resides in memory
which reduces the total overhead. This at least shows that the limita-
tions are coming from the Hadoop environment not the MapReduce
abstraction.

4. 2 Key-value Store
An alternative architecture is the key-value store where data is ab-
stracted as a set of key-value records. This architecture is used in some
open source systems such as HBase [8] and Accumulo [2] and was in-
spired by BigTable [22] designed by Google. In this architecture, data
is manipulated in a per-record basis where each record is identified by
a key and holds one or more values. Unlike Hadoop, HBase and Accu-
mulo allow modifying and deleting records. In addition, they provide
quick access to a single record by keeping all records sorted by the key.
Unfortunately, this efficiency with single records makes them less effi-
cient than Hadoop in accessing (i.e., scanning) a very large file making
them less efficient with analytical queries.

Using this architecture, it was possible to implement spatial indexes
that support insertions and deletions in real-time including K-d tree,
quad tree [48], and Geohash index [32]. In both cases, the underly-
ing order of key-value pairs is exploited by linearizing spatial records
using a space filling curve, such as the Z-curve or Geohash, and us-
ing the linearized value as part of the key. This ensures that spatially
nearby records are stored close together on disk. On-top of these in-
dexes, point, range and kNN queries were implemented efficiently by
limiting the search space to a very small range of keys in the index.

4. 3 Parallel Database
In parallel database architecture, there is one master node and multi-
ple slave nodes where the master node issues the query and the slave
nodes execute the query. Each slave node runs a spatial DBMS in-
stance which acts as a storage and query processing engine. For ex-
ample, Parallel Secondo [40] runs multiple Secondo, a spatial DBMS,
instances as one per node while using the task scheduler of Hadoop
to coordinate these nodes. In this case, HDFS and MapReduce query
processing are both overridden by Secondo storage and query process-
ing engine. This makes it easy to parallelize embarrasingly parallel
problems to multiple nodes but this solution is still limited as it does
not incorporate global indexes.

4



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

4. 4 Array Database
Array databases were proposed mainly for scientific applications
which deal with high dimensional data [55]. Since spatial data is
natively multi-dimensional, systems that employ this architecture can
also support spatial data. In particular, raster data is a good candidate
to be supported in such architecture as each raster layer can be repre-
sented as a two-dimensional array. The main queries that are supported
by array databases include selection (i.e., N-dimensional range query)
and analytical queries using linear algebra. A drawback with this data
model is that it cannot efficiently support lines or polygons as they
cannot be directly stored in a common array structure.

SciDB implements efficient multidimensional selection queries us-
ing a K-d tree index. In addition, its array data model makes it more
suitable for raster datasets, such as satellite images, which are natu-
rally represented as a two-dimensional array. For raster datasets, it
supports aggregation queries, iterative algorithms, and convolution op-
erations which combine multiple images [59].

4. 5 Resilient Distributed Dataset (RDD)
RDD [65] is a programming paradigm designed to support complex
analytical queries using distributed in-memory processing. In this pro-
gramming model, data is loaded from a distributed file system, goes
through a pipeline of multiple in-memory operations, and the result
is finally stored back in the distributed file system. This is mainly
proposed as an improvement to Hadoop to avoid the huge overhead
associated with MapReduce programs by avoiding excessive interac-
tion with disk. This makes it more suitable with iterative queries by
processing the iterations while data is in memory and finally writing
the answer to disk. However, it still suffers from the limitations of
HDFS as it is used as the main file system.

The main system that uses RDD is Spark [66] which is available
as open source. Since this system is relatively newer than Hadoop,
there has not been much work done in the area of big spatial data us-
ing Spark. In [64], a spatial join query is implemented in Spark by
implementing a variation of the PBSM algorithm [50] to distribute the
work across machines and then it uses a GPU-based algorithm to do
the join on each machine. In [36], Spark is combined with GeoTrel-
lis [6], a system for raster data processing, to parallelize raster opera-
tions. This is particularly useful for raster operations because most of
them are very localized and embarrassingly parallel. Although Spark
is optimized for iterative processing, we did not find any work propos-
ing RDD implementations for iterative spatial operations such as the
k-means clustering algorithm.

5. Language
As most users of systems for big spatial data are not from com-

puter science, it is urgent for these systems to provide an easy-to-use
high level language which hides all the complexities of the system.
Although providing a language for spatial data might not be of great
interest to researchers due to the limited research challenges, it is of a
great importance for end-users to adopt the system especially that most
of them are not from the computer science field. Most systems for
big non-spatial data are already equipped with a high level language,
such as, Pig Latin [49] for Hadoop, HiveQL for Hive [58], AQL for
SciDB [56], and Scala-based language for Spark [66]. It makes more
sense to reuse these existing languages rather than proposing a com-
pletely new language for two reasons. First, it makes it easier to adopt
by existing users of these systems as they do not need to learn a to-
tally new language. Second, it makes it possible to process data that
has both spatial and non-spatial attributes through the same program
because the introduction of spatial constructs should not disable any
of its existing features of the language.

Extending a language to support spatial data incorporates the in-
troduction ofspatial data typesand spatial operations. The Open
Geospatial Constortium (OGC) [10] defines standards for spatial data
types and spatial operations to be supported by this kind of systems.
Since these standards are already adopted by existing spatial databases
including PostGIS [11] and Oracle Spatial [37], it is recommended
to follow these standards in new systems to make it easier for users
to adopt. It also makes it possible to integrate with these existing
systems by exporting/importing data in OGC-standard formats such
as Well-Known Text (WKT). OGC standards are already adopted in
three languages for big spatial data, Pigeon [27] which extends Pig
Latin, ESRI Tools for Hadoop [4] which extends HiveQL, and the
contextual query language (CQL) used in GeoMesa [32]. Hadoop-
GIS [16] proposesQLS P which extends HiveQL but it does not fol-
low the OGC standards. In [61], an actor-based high level language,
termed BRASIL, which is designed specifically for behavioral sim-
ulations. SciDB provides an array query language (AQL) which is
not designed specifically for spatial data but can be extended through
user-defined functions (UDFs).

6. Indexing
Input files in a typical system for big data are not spatially organized

which means that the spatial attributes are not taken into consideration
to decide where to store each record. While this is acceptable for tra-
ditional applications for non-spatial data, it results in sub-performance
for spatial applications. There is already a large number of index struc-
tures designed to speed up spatial query processing (e.g., R-tree [34],
Grid File [47], and Quad Tree [31]). However, migrating these in-
dexes to other systems for big data is challenging given the different
architectures used in each one. In this section, we survey the existing
work in spatial indexing in distributed systems for big data. First, we
describe the general layout of distributed spatial indexes used in most
systems. Then, we describe the existing techniques for spatial index-
ing in three categories, namely,index bulk loading, dynamic indexing,
andsecondary indexes. Finally, we give a brief discussion of how such
an index is made available to query processing.

6. 1 Index Layout
The general layout of spatial indexes created in distributed systems
is a two-layer index of one global index and multiple local indexes.
The global index determines how the data is partitioned across ma-
chines while local indexes determine how records are stored in each
machine. This two-layer index lends itself to the distributed environ-
ment where there is one master node that stores the global index and
multiple slave nodes that store local indexes. These two levels are or-
thogonal which means a system can implement a global-only index, a
local-only index, or both. Besides, there is a flexibility in choosing any
type of index at each of the two levels. Figure 1 gives an example of
an R-tree global index constructed on a 400GB dataset that represents
the road network in the whole world. The blue points in the figure
represent road segments while the black rectangles represent partition
boundaries of the global index. As shown in figure, this index handles
the skewness very well by adjusting the size of the partitions such that
each partition contains, roughly, the same amount of data. For exam-
ple, dense areas in Europe contain very small rectangles while sparse
areas in the oceans contain very large rectangles.

6. 2 Index Bulk Loading
The most common file system used in open source distributed systems
is the Hadoop Distributed File System. It is already used in Hadoop,
Hive, HBase, Spark, Impala and Accumulo. HDFS has a major limi-
tation that files can only be written in a sequential manner and, once

5



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

Figure 1: R-tree partitioning of a 400GB road network data

written, cannot be further modified. This rules out most traditional in-
dex building techniques as they rely on inserting records one-by-one
or in batches and the index structure evolves as records are inserted.
Since HDFS is designed mainly for static data, most techniques focus
on bulk loading the index which are described below.

To overcome the limitations of HDFS, most bulk loading techniques
use a three-phase approach. In the first phase, the space is subdivided
into n partitions by reading a sample of the input file which is then
partitioned inton partitions of roughly equal sizes. It is expected that
the sample is a good representative of the data distribution in the orig-
inal file. In the second phase, the input file is scanned in parallel, and
each record is assigned to one or more partitions based on its location
and the index type. Records in each partition are then loaded into a
separatelocal index which is stored in the file system. It is expected
that the size of each partition is small enough to be indexed by a sin-
gle machine. In the third phase, thelocal indexes are grouped under
a commonglobal index based on their corresponding MBRs; i.e., the
MBR of the root node of each local index.

In [16, 28], a uniform grid index is constructed by subdividing the
space using a uniform grid. Notice that in this case, no sample needs
to be drawn from the input file as the space is always divided using a
uniform grid. Then, each record is assigned to all overlapping parti-
tions and each partition is written as a heap file; i.e., no local indexing
is required. Finally, the global index is created by building a simple
in-memory lookup table that stores where each grid cell is stored on
disk.

This technique is also used in [21] to build an R-tree where the
space is subdivided by mapping each point in the random sample to
a single number, using a Z-curve, sorting them based on the Z value,
and then subdividing the sorted range inton partitions equal to num-
ber of machines in the cluster. A similar technique is used in [28] to
build both R-tree and R+-tree, wheren is first determined by dividing
the file size over the HDFS block capacity to calculate the expected
number of blocks in the output file. Then, the sample is bulk loaded
into an in-memory R-tree using the STR bulk loading algorithm [38].
While partitioning the file, if R-tree is used, each record is assigned to
exactly one partition, while in R+-tree, each record is assigned to all
overlapping partitions. This technique is further generalized in [41] to
bulk load any tree index described by the GiST abstraction [35].

In [63], a slightly modified technique is used to build a PMR Quad
tree. First, a random sample is drawn form the file, linearized using
a Z-curve, and partitioned inton partitions. Then, without spatially
partitioning the file, each machine loads part of the file and builds
an in-memory PMR Quad tree for that partition. The nodes of each
partial quad tree are partitioned inton partitions based on their Z-curve
values. After that, each machine is assigned a partition and merges all
nodes in that partition into alocally consistentquad tree. Finally, these
locally consistentquad trees are merged into one final PMR Quad tree.

6. 3 Dynamic Indexes

Some applications require a dynamic index that accommodates inser-
tions and deletions of highly dynamic data, such as geotagged tweets,
moving objects, and sensor data. In this case, static indexes con-
structed using bulk loading cannot work. HBase [8] and Accumulo [2]
provide a layer on top of HDFS that allows key-value records to be
dynamically inserted and deleted. Modification of records is accom-
modated by using a multi-versioning system where each change is ap-
pended with a new timestamp. In addition, these systems keep all
records sorted by the key which allows efficient access to a single
record or small ranges of consecutive records. These systems are uti-
lized to build dynamic indexes for spatial data as follow.

MD-HBase [48] extends HBase to support both quad tree and K-d
tree indexes where the index contains points only. In this approach,
each point is inserted as a record in HBase where the key is calculated
by mapping the two-dimensional point location to a single value on the
Z-curve. This means that all points are sorted based on the Z-curve.
After that, the properties of the Z-curve allows the sorted order to be
viewed as either a quad tree or a K-d tree. This structure is utilized
to run both range and kNN queries efficiently. This technique is also
applies in [32] to build a geohash index in Accumulo but it extends
the work in two directions. First, it constructs a spatio-temporal index
by interleaving the time dimension with the geohash of the spatial di-
mensions. Second, it supports polygons and polylines by replicating
each record to all overlapping values on the Z-curve. Although these
systems provide dynamic indexes, they are designed and optimized for
point queries which inserts or retrieves a single record. They can still
run a MapReduce job on the constructed index, but the performance is
relatively poor compared to MapReduce jobs in Hadoop.

6



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

SciDB [56] supports an efficient dynamic K-d tree index as it is
designed for high dimensional data. Similar to HBase, SciDB uses
multi-versioning to accommodate updates and records are kept sorted
using their keys. However, unlike HBase and Accumulo, the key is
allowed to be multidimensional which makes it ready to store spatial
points. This technique is not directly applicable to lines or polygons
as a line or polygon cannot be assigned a single key.

6. 4 Secondary Indexes
Similar to traditional DBMS, distributed systems can build either a
primary index or a secondary index. In the primary index, records
are physically reordered on the disk to match the index, while in sec-
ondary index, records are kept in their original order while the index
points to their offset in the file. In HDFS, secondary indexes perform
very poorly due to the huge overhead associated with random file ac-
cess [39]. Therefore, most existing indexing techniques focus on pri-
mary indexing. There are only two notable works that implement sec-
ondary indexes [41, 63]. In both cases, the index is bulk loaded as
described earlier but instead of storing the whole record, it only stores
the offset of each record in the file. As clearly shown in [63], the per-
formance of the secondary index is very poor compared to a primary
index and is thus not recommended. However, it could be inevitable to
have a secondary index if users need to build multiple indexes on the
same file.

6. 5 Access Methods
Creating the index on disk is just the first part of the indexing process,
the second part, which completes the design, is adding new compo-
nents which allow the indexes to be used in query processing. Without
these components, the query processing layer will not be able to use
these indexes and will end up scanning the whole file as if there were
no index constructed. Most of the works discussed above do not men-
tion clearly the abstraction they provide to the query processing logic
and describe their query processing directly. This is primarily because
they focus on specific queries and they describe how they are imple-
mented. However, it is described in [28] that the index constructed in
Hadoop is made accessible to MapReduce programs through two com-
ponents, namely, SpatialFileSplitter and SpatialRecordReader. The
SpatialFileSplitter accesses the global index with a user-defined filter
function to prune file partitions that do not contribute to answer (e.g.,
outside the user-specified query range). The SpatialRecordReader is
used to process non-pruned partitions efficiently by using the local in-
dex stored in each one.

This separation between the index structure on the file system and
the access methods used in query processing provides the flexibility to
reuse indexes. For example, all of Hadoop, Hive, Spark, and Impala
can read their input from raw files in HDFS. This means that one index
appropriately stored in HDFS can be accessed by all these systems if
the correct access methods are implemented. This also means that we
can, for example, construct the index using a Hadoop MapReduce job,
and query that index from Hive using HiveQL.

7. Querying
A main part of any system for big spatial data is the query process-

ing engine. Different systems would probably use different process-
ing engines such as MapReduce for Hadoop and Resilient Distributed
Dataset (RDD) for Spark. While each application requires a differ-
ent set of operations, the system cannot ship with all possible spatial
queries. Therefore, the query processing engine should be extensible
to allow users to express custom operations while making use of the
spatial indexes. To give some concrete examples, we will describe five
categories of operations, namely, basic query operations, join opera-

tions, computational geometry operations, data mining operations, and
raster operations.

7. 1 Basic Query Operations
The basic spatial query operations include, point, range, and nearest
neighbor queries. We give examples of how these operations are im-
plemented in different systems, with, and without indexes.

Point and Range Queries:In a range query, the input is a set of
recordsR a rectangular query rangeA while the output is the set of
all records inR overlappingA. A point query is a special case where
the query range has a zero width and height. In [68], a brute force
algorithm for range queries is implemented in MapReduce by scan-
ning the whole file and selecting records that match the query area.
In [16,28,63], the constructed index is utilized where the global index
is first used to find partitions that overlap the query range and then
the local indexes, if constructed, are used to quickly find records in
the final answer. The reference point [25] duplicate avoidance tech-
nique is used to eliminate redundant records in the answer if the index
contains replication. Although this technique is efficient in design, it
performs bad for point queries and small ranges as it suffers from the
overhead of starting a MapReduce job. This overhead is avoided in
GeoMesa [32] andMD-HBase [48], as they run on a key-value store
which is more efficient for this kind of queries. In Hadoop, some ap-
plications [18,29,44] achieve an interactive response for range queries
by bypassing the MapReduce engine and running the query against the
index on the file system directly.

nearest neighbor (NN) queries:There are different variations of NN
queries but the most common one is the kNN query. The kNN query
takes a set of pointsP, a query pointQ, and an integerk as input while
the output is thek closest points inP to Q. In [16, 68], a brute force
technique is implemented in MapReduce where the input is scanned,
the distance of each pointp ∈ P to Q is calculated, points are sorted
based on distance, and finally top-k points are selected. In [28,48,63],
the constructed indexes are used by first searching the partition that
contains the query point and then expanding the search, as needed, to
adjacent partitions until the answer is complete. In [17], a different
approach is used where a Voronoi diagram is constructed for the input
file first, and then the properties of this diagram is used to answer kNN
queries. In addition to kNN query, this Voronoi diagram is also used to
answer both reverse NN (RNN) and maximal reverse NN (MaxRNN)
queries. In [62], the all nearest neighbor (ANN) query is implemented
in MapReduce which finds the nearest neighbor for each point in a
given set of points. It works as two MapReduce jobs where the first
one partitions the data using a Z-curve to group nearby points together,
and finds the answer for points which are colocated with their NN in
the same partition. The second MapReduce job finds the NN for all
remaining points using the brute-force technique.

7. 2 Join Operations
Spatial Join: In spatial join, the input is two setsR andS and a spatial
join predicateθ (e.g., touches, overlaps or contains), and the output
is the set of all pairs〈r, s〉 wherer ∈ R, s ∈ S and the join predi-
cateθ is true for〈r, s〉. If the input files are not indexed, the partition
based spatial-merge (PBSM) join algorithm is used where the input
files are copartitioned using a uniform grid and the contents of each
grid cell are joined independently. This technique is implemented in
Hadoop [69], Impala and Spark [64], without major modifications. A
more efficient algorithm is provided in [16] for the special case of
self-join when the input file is indexed using a uniform grid. In this al-
gorithm, the partition step is avoided and the records in each grid cell
are directly joined. In [28], a more efficient algorithm is implemented
which provides a more general join algorithm for two files when one

7



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

c1

c2

c3

c4

c5 c6

Figure 2: Pruning in skyline

or both files are indexed. If both files are indexed, it finds every pair
of overlapping partitions and each pair is processed independently by
a map task which applies an in-memory spatial join algorithm, such as
the plane-sweep algorithm. If only one file is indexed, it partitions the
other file on-the-fly such that each partition corresponds to one par-
tition in the indexed file. This allows a one-to-one mapping between
the partitions of the two files making it very efficient to join each pair
independently.
kNN Join: Another join operation is the kNN join where the input
is two datasets of pointsR andS , and we want to find for each point
r ∈ R, its k nearest neighbors inS . In [67], a brute force technique is
proposed which calculates all pairwise distances between every pair of
pointsr ∈ R ands ∈ S , sorts all of them, and finds the top-k for each
point r. A more efficient technique is proposed in the same work but
it provides an approximate answer. The later technique first partitions
all points based on a Z-curve, and finds the kNN for each point within
its partition. In [42] an efficient and exact algorithm is provided for the
kNN join query which runs in two MapReduce jobs. In the first job,
all data is partitioned based on a Voronoi diagram and a partial answer
is computed only for points which are colocated with their kNN in the
same partition. In the second phase, the kNN of all remaining points
is calculated using the brute-force technique.

7. 3 Computational Geometry Operations
The area of computational geometry is rich with operations that are
used extensively when processing spatial data, such as, polygon union,
skyline and convex hull. Traditional CG algorithms rely on a single
machine which makes them unscalable for big spatial data. A spa-
tial index constructed in a distributed environment provide a room for
improvement if the algorithms are redesigned to make use of them.
Many computational geometry operations have a divide and conquer
algorithm which can be adapted to work in a distributed environment
where the problem is divided over cluster nodes, each node generates
a partial answer, and a single machines combines all these in one final
answer. If the input file is spatially indexed, this algorithm can be im-
proved by pruning partitions that do not contribute to the answer. In
the following part, we describe a Voronoi diagram construction algo-
rithm which does not use a spatial index, and then give two examples
of pruning techniques used with skyline and convex hull operations.
Voronoi Diagram. A Voronoi diagram for a set of vertices is a par-
titioning of the space into disjoint polygons where each polygon is
associated with one vertex in the input. All points inside each polygon
are closer to the associated vertex than any other vertex in the input.
In [17], the Voronoi diagram is constructed using a MapReduce job
where each mapper constructs a partial Voronoi diagram for a parti-
tion, and one reducer merges them all into one final Voronoi diagram.
The drawback of this method is that the machine that merges them
could be a bottleneck for very large datasets.
Skyline. In the skyline operation, the input is a set of pointsP and
the output is the set ofnon-dominatedpoints. A pointp dominates a
pointq if p is greater thanq in all dimensions. There exist a divide and
conquer algorithm for skyline which can be ported to MapReduce but

it would require to process the whole file. This algorithm is improved
in [26] by applying a pruning step, based on the global index, to avoid
processing partitions that do not contribute to answer. A partitionci is
pruned ifall points in this partition are dominated by at least one point
in another partitionc j, in which case we say thatc j dominatesci. For
example in Figure 2,c1 is dominated byc5 because the top-right corner
of c1 (i.e., best point) is dominated by the bottom-left corner ofc5 (i.e.,
worst point). The transitivity of the skyline domination rule implies
thatanypoint inc5 dominatesall points inc1. In addition, the partition
c4 is dominated byc6 because the top-right corner ofc4 is dominated
by the top-left corner ofc6 which means that any point along the top
edge ofc6 dominates all points inc4. Since the boundaries of each
partition are tight, there has to be at least one point along each edge.
Convex Hull. In the convex hull operation, the input is a set of points
P, and the output is the points that form the minimal convex polygon
that contains all points inP. To apply the pruning step in convex hull,
we utilize a property which states that a point on the convex hull must
be part of one of the four skylines (min-min, min-max, max-min, and
max-max). Therefore, we apply the skyline pruning technique four
times for the four skylines, and prune partitions that do not contribute
to any of the four skylines. Apparently, if a partition does not con-
tribute to any of the four skylines, it cannot contribute to the convex
hull.

7. 4 Spatial Data Mining Operations
Most data mining techniques rely on iterative processing where the
answer is refined in each iteration until an answer of an accepted qual-
ity is reached. For a long time, Hadoop was the sole player in the
area of big data. Unfortunately, Hadoop is ill-equipped to run iterative
algorithm due to the significant overhead associated with each itera-
tion [20]. Therefore, there is no much work in this area for Hadoop.
The K-Means clustering algorithm is implemented in a straight for-
ward manner in MapReduce where each iteration is implemented as
a separate MapReduce job [71]. However, the performance was very
poor due to the overhead imposed by Hadoop in each iteration. Al-
though Spark was proposed as an alternative system with better sup-
port to this kind of algorithms, we did not find any notable work for
spatial data mining with Spark which leaves this area open for re-
search.

7. 5 Raster Operations
All the operations described above are vector operations which deal
with point, lines and polygons. Another class of operations are the
raster operations which are used with raster data such as images. Un-
like vector operations, raster operations are much easier to parallelize
due to their locality in processing. Most of these operations deal with
a single pixel or a few pixels that are close to each other. This makes
these operations embarrassingly parallel and can be easily parallelized
in a shared-nothing system. In [36], GeoTrellis, a system for raster
data processing, is combined with Spark to parallelize the computa-
tion over a cluster of machines. In [52, 59], raster operations are par-
allelized using SciDB, an array database, where each raster dataset is
represented as a two-dimensional array. Each of these systems imple-
ment specific raster operations but it would be interesting to build a
system that supports a wide range of raster operations over a cluster of
machines.

8. Visualization
The visualization process involves creating an image that describes

an input dataset. This is a natural way to explore spatial datasets as it
allows users to spot interesting patterns in the input. Traditional visu-
alization techniques rely on a single machine to load and process the

8



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

(a) No-cleaning (b) Cleaned data

Figure 3: Single level visualization

data which makes them unable to handle big spatial data. GPUs are
used to speed up the processing but they are still limited to the mem-
ory and processing capacity of a single machine and cannot scale out
to multiple machines. We can categorize the visualization techniques
based on the structure of the generated image into two categories,sin-
gle level imagesand multilevel images. In single level images, the
produced image consists of one file that contains an image of a speci-
fied resolution. In multilevel images, the generated image consists of a
set ofimage tilesat different zoom levels which allows users to zoom
in to see more details.

8. 1 Single Level Image Visualization
In single level image visualization, the input dataset is visualized as a
single image of a user-specified image size (width × height) in pixels.
Existing visualization algorithms for single level image can be cate-
gorized based on the partitioning technique they apply intopixel-level
partitioning andgrid-levelpartitioning.

In pixel-levelpartitioning, records are partitioned according to the
image pixel they affect in the final image. This technique is used
to render 3D triangles [60] using Hadoop and to visualize satel-
lite data [52] using SciDB. In [60], 3D triangles are partitioned and
grouped by the pixel they affect in the image. In other words, a parti-
tion is created for every pixel in the generated image and it contains all
triangles that could possibly determine the color of that pixel. In each
partition, triangles are sorted by theirz-dimension and the color of the
pixel is determined based on the triangle on the top. In [52], satel-
lite data from multiple raster layers are partitioned and grouped using
pixel-level-partitioning. For each partition, the values are combined
together, using some user-defined logic, into an RGB value which rep-
resents the color of the corresponding pixel. Finally, all pixel values
are compiled into the final image. The pixel-level-partitioning tech-
nique is suitable for applications where there is some complex compu-
tation associated with each value that needs to be done for each pixel
separately. The drawback is that it might create too many partitions,
as one per pixel, which can be overwhelming for large images.

In grid-levelpartitioning, records are partitioned according to a uni-
form grid such that each grid cell covers a part of the image. In [29],
a MapReduce algorithm is proposed to visualize satellite data (e.g.,
temperature) as a heat map. Records are first partitioned using a uni-
form grid. For each grid cell, a preprocessing step is applied to recover
missing values in the input data which are caused due to clouds block-
ing satellite sensors or misalignment of satellites. Figure 3 shows an
example of a heat map for temperature before and after recovery of
missing points. The recovery technique uses a two-dimensional in-
terpolation function which estimates missing values based on other
nearby values. After that, a partial heat map is created for each grid
cell by mapping each point to a pixel in the image and coloring it ac-
cording to the temperature value. Finally, the partial heat maps are
stitchedtogether to form the final image. This technique reduces the
number of partitions by applying the coarser-grained grid partitioning.
Furthermore, it allows the interpolation technique to be applied as it

Level 0

Level 1

Level 2

p

y

x

z

Figure 4: Mutlilevel Image

groups many points in one partition. The drawback is that the grid size
must be chosen carefully to ensure load balancing and avoid too many
records in one partition.

8. 2 Multilevel Image Visualization

The quality of a single level image is limited by its resolution which
means users cannot zoom in to see more details. On the other hand,
multilevel images provide multiple zoom levels which allows users to
zoom in and see more details in a specific region. Figure 4 gives an
example of a multilevel image of three zoom levels 0, 1, and 2, where
each level contains 1, 4, and 16 image tiles, respectively. Each tile
is a single image of a fixed resolution256 × 256. Most modern web
maps (e.g., Google Maps and Bing Maps) use this technique where all
image tiles are generated in an offline phase while the web interface
provides a convenient way to view the generated image by allowing
the user to zoom in/out and pan through the image. The goal of the
multilevel image visualization algorithm is to generate all these image
tiles efficiently for an input dataset.

The input to this algorithm is a dataset and a range of zoom levels
[zmin, zmax] and the output is all image tiles in the specified range of lev-
els. A näıve approach is to use any of the single level image algorithms
to generate each tile independently but this approach is infeasible due
to the excessive number of jobs to run. For example, at zoom level
10, there will be more than one million images which would require
running one million jobs to generate all of them. A more efficient
MapReduce algorithm is provided in [29] where the map function par-
titions the data using apyramid-partitioningtechnique where it repli-
cates each point to every overlapping tile in all zoom levels. For exam-
ple, in Figure 4, the pointp is replicated to three tiles in the three zoom
levels. The reduce function groups points by tile and generates a sin-
gle image that corresponds to that tile. A drawback to this technique
is that tiles at lower zoom levels (e.g., zoom level zero) would have
too many records as they cover larger regions in the input. To solve
this problem, an adaptive sampling technique [29] is applied which
down-samples the data according to the zoom level such that there is
an average of one point per pixel in each tile. This ensures that each
tile contains roughly the same number of records while covering the
whole space.

9. Applications
This section provides a few case studies of applications that use

some of the techniques described throughout this paper to handle big
spatial data. These applications help readers understand how these
systems are used in a real end-user application.

9



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

(a) SHAHED (b) EarthDB (c) TAREEG (d) TAGHREED

Figure 5: Application case studies

9. 1 SHAHED
SHAHED [29] is a MapReduce system for analyzing and visualizing
satellite data. It supports two main features, spatio-temporal selection
and aggregate queries, and visualization. It makes these features avail-
able through a user-friendly web interface as shown in Figure 5(a). In
this interface, users can navigate to any area on the map and choose
either a specific point or a rectangle on the map. In addition, they can
choose a time range from the date selectors. Based on user choice,
the system runs a spatio-temporal selection query to retrieve all values
(e.g., temperature) in the specified range, a spatio-temporal aggregate
query to retrieve the minimum, maximum, and average in the range, or
visualizes all values in the specified range as a temperature heat map.

SHAHED internally uses SpatialHadoop where all input datasets
are indexed using a uniform grid index as the data is uniformly dis-
tributed. A SpatialHadoop MapReduce job constructs the indexes ef-
ficiently while the queries are processed directly on the index, without
MapReduce, to provide real-time answers while avoiding the over-
head of MapReduce. For example, it runs an aggregate query for a
small area over a dataset of total size 2TB in less than a second. Tem-
perature heat maps are generated using the visualization component
of SpatialHadoop. If one day is selected, the generated heat map is
visualized as a still image, while if a range of dates is selected, an im-
age is created for each day and they are then compiled into a video.
The efficiency of the visualization component allows it to visualize a
dataset of 6.8 Billion points in around three minutes.

9. 2 EarthDB
EarthDB [52] is another system that deals with satellite data and it uses
SciDB as an underlying framework. It uses the functionality provided
by SciDB to process satellite data and visualize the results as an image
(Figure 5(b)). It supports two queries, (1) it reconstructs the true-color
image by combining the values of the three components RGB, (2) it
generates a vegetation heat map from raw satellite data. In both ex-
amples, the query and visualization are expressed in SciDB’s Array
Query Language (AQL) which processes the data in parallel and gen-
erates the desired image. The use of AQL allows users to play with the
query in an easy way to make more advanced processing techniques
or produce a different image.

9. 3 TAREEG
TAREEG [18] is a MapReduce system for extracting Open-
StreetMap [1] data using SpatialHadoop. It provides a web inter-
face (Figure 5(c)) in which the user can navigate to any area in the
world, select a rectangular area, and choose a map feature to extract
(e.g., road network, lakes, or rivers). TAREEG automatically retrieves
the required data and sends it back to the user via email in standard
data formats such as CSV file, KML and Shapefile. The challenge
in this system is extracting all map features from a single extremely
large XML file provided by OpenStreetMap, called Planet.osm file.
The Planet.osm file is a 500GB XML file which is updated weekly by

OpenStreetMap. Using a standard PostGIS database to store and index
the contents of that file takes days on a single machine. To process it
efficiently, TAREEG uses Pigeon, the spatial high level language of
SpatialHadoop, to extract all map features using MapReduce in stan-
dard format (e.g., Point, Line, and Polygon). The extracted files are
then indexed using R-tree indexes to serve user requests more effi-
ciently. The extraction and indexing steps happen once in an offline
phase and it takes only a few hours on a 20-node cluster instead of
days. In the online phase, the system issues range queries on the cre-
ated indexes based on user request. The retrieved values are then put in
standard file format and is sent back to the user in an email attachment.

9. 4 TAGHREED
TAGHREED [44] is a system for querying, analyzing and visualiz-
ing geotagged tweets. It continuously collects geotagged tweets from
Twitter [13] and indexes them using SpatialHadoop. Since Spatial-
Hadoop does not support dynamic indexes, it creates a separate index
for each day and periodically merges them into bigger indexes (say,
weekly or monthly) to keep them under control. In addition to the
spatial index, TAGHREED also constructs an inverted index to search
the text of the tweets. The users are presented with a world map (Fig-
ure 5(d)) where they can navigate to any area of the world, choose a
time range and a search text. TAGHREED automatically retrieves all
tweets in the specified spatio-temporal range matching the search text,
and runs some analyses on the retrieved tweets, such as, top hashtags
and most popular users. Both the tweets and the analyses are visu-
alized on the user interface where users can interact with them, e.g.,
choose a tweet to see more details.

10. Conclusion
In this paper, we surveyed the state-of-the-art work in the area of

big spatial data. We studied the existing system from three different
angles,implementation approach, underlying architecture, andspa-
tial components. We categorized the spatial components of a system
for big spatial data into four components, namely,language, index-
ing, query processing, and visualization. For each component, we
highlighted the recent work and described the different approaches to
support each one. We also identified several open research problems
which could be highly important for researchers pursuing research in
this area. Finally, we provide some real applications that use those
systems to handle big spatial data and provide end-user functionality.

Acknowledgment
This work is supported in part by the National Science Foundation,

USA, under Grants IIS-0952977 and IIS-1218168.

[Bibliography]
[1] http://www.openstreetmap.org/ .
[2] Accumulo.

10



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

[3] Apache. Hadoop.http://hadoop.apache.org/ .

[4] ESRI Tools for Hadoop. http://esri.github.io/
gis-tools-for-hadoop/ .

[5] GeoServer.http://geoserver.org/ .
[6] GeoTrellis.http://geotrellis.io/ .
[7] GnipBlog. https://blog.gnip.com/tag/

geotagged-tweets/ .
[8] HBase.http://hbase.apache.org/ .
[9] Impala. http://impala.io/ .

[10] Open Geospatial Consortium.
http://www.opengeospatial.org/ .

[11] PostGIS.http://postgis.net/ .
[12] Telescope Hubbel site: Hubble Essentials: Quick Facts.

http://hubblesite.org/the_telescope/
hubble_essentials/quick_facts.php .

[13] Twitter. The About webpage.https://about.twitter.
com/company .

[14] European XFEL: The Data Challenge, Sept. 2012.http:
//www.eiroforum.org/activities/scientific_
highlights/201209_XFEL/index.html .

[15] MODIS Land Products Quality Assurance Tutorial:
Part:1, 2012. https://lpdaac.usgs.gov/sites/
default/files/public/modis/docs/MODIS_LP_
QA_Tutorial-1.pdf .

[16] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.
Hadoop-GIS: A High Performance Spatial Data Warehousing
System over MapReduce. InVLDB, 2013.

[17] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Sha-
habi. Voronoi-based Geospatial Query Processing with MapRe-
duce. InCLOUDCOM, 2010.

[18] L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel.
TAREEG: A MapReduce-Based System for Extracting Spatial
Data from OpenStreetMap. InSIGSPATIAL, Dallas, TX, Nov.
2014.

[19] A. Auchincloss, S. Gebreab, C. Mair, and A. D. Roux. A Review
of Spatial Methods in Epidemiology: 2000-2010.Annual Review
of Public Health, 33:107–22, Apr. 2012.

[20] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: effi-
cient iterative data processing on large clusters.Proceedings of
the VLDB Endowment, 3(1-2):285–296, 2010.

[21] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on
Processing Spatial Data with MapReduce. InSSDBM, 2009.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A Distributed Storage System for Structured Data.ACM Trans.
Comput. Syst., 26(2), 2008.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters.Communications of ACM, 51, 2008.

[24] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J. Yu. Client-
Server Paradise. InVLDB, pages 558–569, 1994.

[25] J. Dittrich and B. Seeger. Data Redundancy and Duplicate Detec-
tion in Spatial Join Processing. InICDE, pages 535–546, 2000.

[26] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan. CGHadoop:
Computational Geometry in MapReduce. InSIGSPATIAL, 2013.

[27] A. Eldawy and M. F. Mokbel. Pigeon: A Spatial MapReduce
Language. InICDE, 2014.

[28] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce
Framework for Spatial Data. InICDE, 2015.

[29] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and
S. Ghani. SHAHED: A MapReduce-based System for Querying
and Visualizing Spatio-temporal Satellite Data. InICDE, 2015.

[30] J. Faghmous and V. Kumar.Spatio-Temporal Data Mining for
Climate Data: Advances, Challenges, and Opportunities. Ad-
vances in Data Mining, Springer, 2013.

[31] R. A. Finkel and J. L. Bentley. Quad Trees: A Data Structure for
Retrieval on Composite Keys.Acta Inf., 4:1–9, 1974.

[32] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon. Spatio-
temporal Indexing in Non-relational Distributed Databases. In
International Conference on Big Data, Santa Clara, CA, 2013.

[33] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subrama-
niam, and M. Mohania. Processing multi-way spatial joins on
map-reduce. InProceedings of the 16th International Confer-
ence on Extending Database Technology, EDBT, pages 113–124,
New York, NY, USA, 2013.

[34] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. InSIGMOD, 1984.

[35] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized
search trees for database systems. InVLDB, pages 562–573,
1995.

[36] A. Kini and R. Emanuele. Geotrel-
lis: Adding Geospatial Capabilities to Spark.
http://spark-summit.org/2014/talk/
geotrellis-adding-geospatial-capabilities-
to-spark .

[37] R. Kothuri and S. Ravada. Oracle spatial, geometries. InEncy-
clopedia of GIS., pages 821–826. 2008.

[38] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A
Simple and Efficient Algorithm for R-Tree Packing. InICDE,
pages 497–506, 1997.

[39] H. Liao, J. Han, and J. Fang. Multi-dimensional Index on
Hadoop Distributed File System.ICNAS, 0, 2010.

[40] J. Lu and R. H. Guting. Parallel Secondo: Boosting Database
Engines with Hadoop. InICPADS, 2012.

[41] P. Lu, G. Chen, B. C. Ooi, H. T. Vo, and S. Wu. ScalaG-
iST: Scalable Generalized Search Trees for MapReduce Sys-
tems.PVLDB, 7(14):1797–1808, 2014.

[42] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient Processing of
k Nearest Neighbor Joins using MapReduce.PVLDB, 2012.

[43] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query Processing of
Massive Trajectory Data Based on MapReduce. InCLOUDDB,
2009.

[44] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. Ghanem,
S. Ghani, and M. F. Mokbel. Taghreed: A System for Querying,
Analyzing, and Visualizing Geotagged Microblogs. InSIGSPA-
TIAL, Nov. 2014.

[45] H. Markram. The Blue Brain Project.Nature Reviews Neuro-
science, 7(2):153–160, 2006.

[46] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive Analysis of
Web-scale Datasets.Commun. ACM, 54(6):114–123, 2011.

[47] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File:
An Adaptable, Symmetric Multikey File Structure.TODS, 9(1),
1984.

[48] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi.MD-
HBase: Design and Implementation of an Elastic Data Infras-
tructure for Cloud-scale Location Services.DAPD, 31(2):289–
319, 2013.

[49] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A Not-so-foreign Language for Data Processing. In
SIGMOD, pages 1099–1110, 2008.

[50] J. Patel and D. DeWitt. Partition Based Spatial-Merge Join. In
SIGMOD, 1996.

[51] L. Pickle, M. Szczur, D. Lewis, , and D. Stinchcomb. The Cross-
roads of GIS and Health Information: A Workshop on Develop-
ing a Research Agenda to Improve Cancer Control.International
Journal of Health Geographics, 5(1):51, 2006.

[52] G. Planthaber, M. Stonebraker, and J. Frew. EarthDB: Scalable
Analysis of MODIS Data using SciDB. InBIGSPATIAL, 2012.

[53] J. Sankaranarayanan, H. Samet, B. E. Teitler, and M. D. L. J.
Sperling. TwitterStand: News in Tweets. InSIGSPATIAL, 2009.

[54] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil,
P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A
Column-oriented DBMS. InProceedings of the 31st Interna-
tional Conference on Very Large Data Bases, Trondheim, Nor-
way, August 30 - September 2, 2005, pages 553–564, 2005.

11



Invited Paper
DBSJ Journal Vol. 13, No. 1

March 2015

[55] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The Ar-
chitecture of SciDB. InSSDBM, 2011.

[56] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A
Database Management System for Applications with Complex
Analytics.Computing in Science and Engineering, 15(3):54–62,
2013.

[57] Y. Thomas, D. Richardson, and I. Cheung. Geography and Drug
Addiction. Springer Verlag, 2009.

[58] A. Thusoo, J. S. Sen, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing Solu-
tion over a Map-Reduce Framework.PVLDB, pages 1626–1629,
2009.

[59] J. VanderPlas, E. Soroush, K. S. Krughoff, and M. Balazinska.
Squeezing a Big Orange into Little Boxes: The AscotDB System
for Parallel Processing of Data on a Sphere.IEEE Data Eng.
Bull., 36(4):11–20, 2013.

[60] H. T. Vo, J. Bronson, B. Summa, J. L. D. Comba, J. Freire,
B. Howe, V. Pascucci, and C. T. Silva. Parallel Visualization
on Large Clusters using MapReduce. InIEEE Symposium on
Large Data Analysis and Visualization, LDAV, 2011.

[61] G. Wang, M. A. V. Salles, B. Sowell, X. Wang, T. Cao, A. J.
Demers, J. Gehrke, and W. M. White. Behavioral Simulations in
MapReduce.PVLDB, 3(1):952–963, 2010.

[62] K. Wang, J. Han, B. Tu, J. D. amd Wei Zhou, and X. Song. Ac-
celerating Spatial Data Processing with MapReduce. InICPADS,
2010.

[63] R. T. Whitman, M. B. Park, S. A. Ambrose, and E. G. Hoel. Spa-
tial Indexing and Analytics on Hadoop. InSIGSPATIAL, 2014.

[64] S. You, J. Zhang, and L. Gruenwald. Large-Scale Spatial Join
Query Processing in Cloud. Technical report, The City College
of New York, New York, NY.

[65] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. pages 15–28, 2012.

[66] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. 2010.

[67] C. Zhang, F. Li, and J. Jestes. Efficient Parallel kNN Joins for
Large Data in MapReduce. InEDBT, 2012.

[68] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial Queries
Evaluation with MapReduce. InGCC, 2009.

[69] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: Paral-
lelizing spatial join with MapReduce on clusters. InCLUSTER,
2009.

[70] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng. An efficient
multi-dimensional index for cloud data management. InCIKM,
pages 17–24, Hong Kong, China, 2009.

[71] W. Zhao, H. Ma, and Q. He. ParallelK-Means Clustering Based
on MapReduce. InCloudCom 2009, pages 674–679, 2009.

Ahmed ELDAWY
is a fifth year PhD candidate at the department of Computer Science
and Engineering, University of Minnesota. He obtained his B.Sc. and
MS in Computer Science from Alexandria University in 2005 and
2010, respectively. His research interest lies in the broad area of data
management systems. Ahmed released his ongoing PhD work, Spa-
tialHadoop, as an open source project which has been used by sev-
eral companies, organizations and research institutes around the world.
During his PhD, he visited IBM T.J. Watson research center, Microsoft
Research in Redmond, Qatar Computing Research Institute, and GIS
Technology Innovation Center in Saudi Arabia. He has been awarded
the University of Minnesota Doctoral Dissertation Fellowship in 2014.

Mohamed F. MOKBEL
(Ph.D., Purdue University, USA, MS, B.Sc., Alexandria University,
Egypt) is an associate professor at University of Minnesota. He is
also the founding Technical Director of the KACST GIS Technology

Innovation Center, Umm Al-Qura University, Saudi Arabia. His cur-
rent research interests focus on database systems, GIS, and big spatial
data. His research work has been recognized by four best paper awards
and by the NSF CAREER award 2010. Mohamed is/was general co-
chair of SSTD 2011, program co-chair of ACM SIGSPATIAL GIS
2008-2010, and IEEE MDM 2011, 2014. He is in the editorial board
of ACM Transactions on Spatial Algorithms and Systems and ACM
Transactions on Database Systems. Mohamed has held various visit-
ing positions at Microsoft Research, USA and Hong Kong Polytech-
nic University. Mohamed is a founding member of ACM SIGSPA-
TIAL and is currently serving as an elected chair of ACM SIGSPA-
TIAL for the term 2014-2017. For more information, please visit:
www.cs.umn.edu/˜mokbel

12


