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ABSTRACT
Modern vehicles are increasingly being equipped with rich
instrumentation that enables them to collect location aware
data on a wide variety of travel related phenomena such as
the real-world performance of engines and powertrain, driver
preferences, context of the vehicle with respect to others
nearby, and–indirectly–traffic on the transportation network
itself. Combined with their increased access to the Internet,
these connected vehicles are opening up vast opportunities
to improve the safety, environmental friendliness, and the
overall experience of urban travel. However, significant spa-
tial computing challenges need to be addressed before we
can realize the full potential of connected vehicles. This
paper presents some of the open research questions under
this theme from the perspectives of query processing, data
science and data engineering.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
Spatial databases and GIS, Data mining
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1. VISION
Modern vehicles are increasingly becoming“smarter.” They

are typically equipped with rich instrumentation such as
GPS receivers, Internet access, wireless local area network
(e.g, a dedicated short range communications technology),
increasingly powerful electronic control units (ECUs), and
engine sensors to periodically measure sub-system proper-
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ties of the vehicle [11, 7, 9]. Collectively, these technolo-
gies enable a vehicle to get “connected” to its surroundings
(i.e., the transportation network and other vehicles on it)
and collect location-aware data on a wide range of travel
related aspects including real-world performance of engines,
driver preferences, road and traffic conditions (in an indirect
fashion) along the journey, etc. Combined with a poten-
tial to communicate with cloud computing infrastructure for
analytics, connected vehicles open an opportunity to make
urban travel safer, more efficient, environmentally friendly
and enjoyable. From a safety perspective, a connected vehi-
cle could talk to neighboring vehicles for mutual avoidance
of traffic accidents. For instance, DaimlerChrysler, Honda
Motors, and General Motors have recently conducted pilot
studies on using vehicle-to-vehicle communications for crash
avoidance [7, 19]. Similarly, a connected vehicle could also
perform prognostics on its engine performance (potentially
with the aid of a cloud computing infrastructure) to predict
engine failure events.

Connected vehicle technologies could also help in reduc-
ing fuel consumption and greenhouse gas (GHG) emissions,
thus promoting global economic and environmental stew-
ardship and helping bring the nation closer to the goal of
energy independence [3]. A recent research strategic plan
[21] from the US Department of Transportation also points
to this vision. Data coming from connected vehicles opens
up the potential to answer novel routing queries beyond the
traditional shortest-distance or earliest arrival path queries.
Some sample queries now made possible include: “What
route is the most fuel-efficient or has the least emissions?”;
“What route is the most eco-friendly for my style of driving?”
etc. This data can also be used to improve engines by provid-
ing the ability to adapt their real-world behavior to improve
fuel economy, emissions or drivability. For instance, engine
ECUs–a microprocessor which reads from sensors and con-
trols a series of actuators (e.g., throttle position and spark
plug timing) on the internal combustion engine–could use
rules learned from data to adapt its behavior according to
the situation (driving in a busy downtown versus suburban
regions, or driving with frequent stops, etc.). These rules
could be personalized for drivers as well (e.g., ECU rules for
gentle versus aggressive driving). Such adaptability of rules
is not available in current designs [20].

Apart from improved safety and environmental friendli-
ness, connected vehicles can also be used to improve travel-



ers’ overall mobility experience by helping to reduce traffic
congestion through better signal and traffic control [18]. For
instance, data from connected cars could be used to provide
advance alerts on traffic conditions and hazardous road con-
ditions as sensed by the cars up ahead in the transportation
network. Similarly, this data can also be used to study travel
patterns and traffic demand in urban environments, which in
turn could be used by policy makers to design more efficient
transportation networks.
Preliminary success stories of connected vehicles include

innovations like Uber, a taxi-hailing app which is estimated
to have already captured about 46% of all paid car rides in
the first quarter of 2015 [2]. It has an additional value ex-
ceeding hundreds of billions of dollars annually according to
reports [16, 14] from McKinsey, Cisco and others by develop-
ing services, vehicles and transportation networks which can
help consumers either avoid traffic congestion or make their
travel more economical and environmentally friendly (e.g.,
ride sharing, adapting the engine, autonomous cars [28]).
However, before we can fully realize the potential of con-

nected vehicles, significant spatial computing challenges need
to be met. For instance, a sample connected vehicle dataset
containing engine measurements of about 100 engine vari-
ables, once a minute, over the 100 million US vehicles in
existence [26, 27], may have 1015 data-items per year [24].
These datasets, which we refer to as vehicle measurement
big data (VMBD), contain a collection of trips on a trans-
portation graph such as a road map. Here, each trip is a
time-series of attributes such as vehicle location, fuel con-
sumption, vehicle speed, odometer values, engine speed in
revolutions per minute (RPM), engine load, and emissions of
criteria pollutants like smog-causing nitrogen oxides (NOX)
and GHGs like CO2.
Computationally, VMBD and other connected vehicle data

have spatio-temporal graph (STG) semantics [10, 8], where
road intersections can be modeled as vertices and the road
segments connecting adjacent intersections are represented
as edges. Properties of edges may record engine sub-system
measurements such as fuel-consumption, NOX emissions and
other vehicle measurements made while moving on that edge.
The rest of this paper is organized as follows. Section 2

details some spatial computing research problems associated
with the vision of connected vehicles. Specifically, Subsec-
tion 2.1 presents novel queries on connected vehicle data
(computationally modeled as a spatio-temporal graph) and
their challenges. Subsection 2.2 describes the challenges of
data science using these data. Data engineering challenges
are presented in Subsection 2.3. Finally, we conclude our
discussion in Section 3.

2. CHALLENGES AND OPPORTUNITIES
Realizing the full potential of connected vehicles raises

numerous computational challenges for the state-of-the-art
in spatio-temporal graph (hereafter referred to as “STG”)
query processing, data science and data engineering. Fig-
ure 1 summarizes the needs for further research in each of
these areas and this section describes them in detail.

2.1 STG Query Processing
2.1.1 Novel Preference Functions for Routing Ser-

vices
Traditional routing services identify a small set of routes
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Figure 1: Research needs for realizing future con-
nected vehicles (Best viewed in color)

based on limited route properties (e.g., travel-distance or
travel-time) available in traditional digital road map datasets.
By contrast, VMBD increases tremendously the number of
possible preference functions beyond travel-distance and travel-
time by allowing drivers to compare routes by their fuel
consumption or GHG emissions. However, identifying eco-
friendly routes requires addressing several research ques-
tions: “What is the computational structure of a fuel-efficient
route or a minimum emission route?”; “Does it follow the as-
sumptions of Dynamic Programming?”; “Can the routes be
explored in a Greedy fashion?”. These questions are chal-
lenging since measurements of fuel consumption or emis-
sions, when measured over a long journey, cannot be broken
down into corresponding values for single road segments,
thus violating an assumption behind traditional shortest-
path algorithms [8]. For instance, the fuel consumption or
emissions of a vehicle driven by a commuter on a road seg-
ment, as derived from his/her annotated GPS traces, would
depend on factors such as the initial velocity and accelera-
tion before entering the road segment [8]. Another example
illustrating this non-decomposability challenge can be ob-
served in electric hybrid engine powertrain vehicles. Here,
the vehicle stores energy via regenerative braking when com-
ing to a stop sign or driving downhill. This energy can later
be used for accelerating or climbing uphill leading to an un-
even distribution of fuel consumption along the journey.

2.1.2 Incorporating Real-Time Updates
Internet access and vehicle-to-vehicle communication tech-

nologies on modern connected vehicles can enable real-time
traffic information to be incorporated into routing and nav-
igation services. This can help vehicles avoid segments of
idling and congestion. However, it also raises several ques-
tions about the ability of current routing algorithms to han-
dle real-time updates. For instance, how much should the
algorithm trust traffic updates from each data source (e.g.



speeding or slowing down vehicles, loop detectors, etc.)?
Moreover, as new updates arrive, is the algorithm required
to re-compute the entire shortest path solution or can it ad-
just the current available solution? One possible approach
to avoid redundant computations would be to provide an
upper bound on the maximum time for which each returned
shortest path solution is still valid.

2.1.3 Dynamic Geo-Fencing
By allowing vehicles to communicate over dedicated chan-

nels, a vehicle can detect when a nearby vehicle has come too
close and thus start coordinating its motion with the nearby
vehicle to avoid a crash accident. This continuous monitor-
ing of a vehicle’s surrounding space is referred to as“dynamic
geo-fencing” and is important to ensure driver and vehicle
safety. To allow vehicles to collaboratively coordinate their
operation to avoid geo-fence crossings, vehicles must be able
to accurately identify their location. Location determination
systems that rely on GPS signals might not be adequate in
tunnels or other regions with weak satellite reception. In
those areas, many systems would rely on “dead reckoning”
methods to extrapolate the vehicle’s current location from
the last available reading for the vehicle’s location and speed.
However, that might not be sufficient in severe weather con-
ditions (e.g. snow, hail, etc.) where vehicles could suddenly
change their speeds and become more vulnerable to crash-
ing. Another challenge for allowing motion coordination is
the need for richer maps that reveal more detailed infor-
mation about the different lanes (e.g. lane center-lines) as
compared to traditional road maps.

2.2 STG Big Data Science
2.2.1 Lagrangian Pattern Mining on Road Networks
Traditional electronic control units (ECUs) calibrate the

engine performance using a pre-selected rule-set that is cho-
sen and fixed by the manufacturer (or after-market mod-
ifiers). These rule-sets are designed in laboratories using
the engine and vehicle dynamometer experimentation and
physics-based forward models [23, 13] to meet fuel efficiency
and GHG regulations using a reference “drive-cycle” mim-
icking on-road driving conditions. By contrast, future con-
nected vehicles will rely on smarter ECUs that allow the
selection of appropriate rules based on historic performance
and real-time readings from engine on-board sensors and
other environmental variables (e.g. weather and real-time
traffic conditions) to adapt and optimize the engine behav-
ior for the current real-world conditions. Adaptive engine
calibration rules can be developed by identifying relevant
patterns in VMBD such as spatio-temporal graph hotspots
of high engine emissions or low fuel efficiency. However, this
is a challenging task since events of low fuel efficiency and/or
high GHG emissions are also dependent on vehicle and driver
specific factors such as the driving style or the current en-
gine load. For example, while a road segment might repre-
sent a hotspot of high emissions at a given time for a certain
driving style (e.g. aggressive acceleration/braking), it might
not be the same for a driver moving along the same road
segment with a different (e.g. gentler) acceleration/braking
pattern. Current related work has only focused on linear
hotspots of aggregated counts such as hotspots of road fatal-
ities or crime incidents [22]. Hence, it cannot identify driver
or vehicle-dependent patterns. Developing engine calibra-
tion rules will require analyzing the data from a traveler’s

perspective. That is to say, instead of a snapshot view, the
data will need to be analyzed from a Lagrangian frame of
reference [8] which captures the spatio-temporal perspective
of a single vehicle as it travels over the road network. For in-
stance, adaptive calibration rules would require identifying
sub-trips on the road network in terms of space, time and
engine behavior (i.e, variations in engine-power, gear trans-
mission, brake-torque, etc.) that typically lead to events of
high emissions or fuel consumption. In addition, several re-
search questions need to be addressed for identifying such
patterns. For instance: “What interest measures can be used
to balance the statistical interpretation of the pattern and
the scalability of the mining algorithm?”; “How can these
rules be learned in a near real-time manner for adapting
the engine to the vehicle’s real-world conditions?”; “Can the
search space for engine calibration rules be reduced by lever-
aging the physical constraints that govern engine behavior?”;
“How would the sampling rate of the data and the duration
of the physical phenomenon under investigation influence
the choice of the appropriate learning method?”.

2.2.2 Online Vehicle Prognostics
VMBD provides unique opportunities for predicting en-

gine malfunctions and forecasting any required maintenance.
This can reduce the down-time and effort on behalf of the
vehicle’s owner. Examples of vehicle prognostics include
the ability to predict the occurrence of gasoline engine pre-
ignition (i.e., knocking), an engine event that causes reduced
engine fuel efficiency due to the sub-optimal placement of
combustion [25]. Vehicle prognostics can also be used for the
automatic detection of vehicle battery performance degrada-
tion and the need for a battery replacement. However, these
malfunctions might not be well represented in the training
data available (i.e. rare-class problem). Hence, predicting
these rare events represents a major challenge for traditional
spatio-temporal classification methods.

2.2.3 Ensuring Statistical Significance of Patterns
Due to the large volume of connected vehicle data, cur-

rent spatio-temporal data science may lead to many spuri-
ous patterns that are difficult to interpret using the laws of
physics [17]. Such false positives have a high societal cost
since they can be used for deciding the engine operation
modes at real-time scenarios and can also lead to a waste of
time and resources allocated to engine maintenance and de-
sign optimization. To avoid this cost, STG big data science
needs to ensure the statistical significance of the output pat-
terns. This is a challenging problem since in many scenarios
it requires rigorous statistical simulations (e.g. Monte Carlo
simulation). Furthermore, one has to decide on a suitable
null hypothesis for performing these simulations when the
data is generated through a physical process that is gov-
erned by known laws. For example, this may require the
use of sophisticated physical models for generating multi-
dimensional physics-compliant datasets under the null hy-
pothesis. Moreover, connected vehicle data exhibits a big-
zero inflation problem in which routinely gathered data show
a lot of non-events, that is, where nothing of importance or
significance has happened. In popular statistical measures
(e.g. correlation), large volumes of non-event data may lead
to a near complete wash-out of significant but rare events
(e.g. engine malfunctions or non-compliance with predic-
tions from physical models) causing the low-count events to



be missed.

2.3 STG Big Data Engineering
Cloud computing platforms are essential to scaling up

STG data analytics for handling the huge volume of con-
nected vehicle data. However, STGs used to model con-
nected vehicle data violate the assumption underlying cur-
rent spatial cloud computing environments (e.g., ESRI GIS
Tools for Hadoop [6], SpatialHadoop [5], HadoopGIS [1]
that data is embedded in a geometric space (e.g., Euclidean
or Spherical). This leads to inconvenience in representing
STG operations using the current spatial cloud comput-
ing programming models (e.g., SpatialHadoop Pigeon [4],
Pregel [15], GraphLab [12]). Furthermore, it reduces the ef-
fectiveness of data-partitioning methods (e.g, R-tree) due to
the reduced load-balancing. Hence, an STG-aware computa-
tional infrastructure is needed to simplify the representation
and improve the computational scalability of STG data ana-
lytics. This infrastructure should support STG data analyt-
ics on both data partitioning and programming model levels.
Data partitioning methods need to account for the spatial,
temporal and connectivity aspects of STG data to improve
load balancing and minimize I/O operations. For instance,
an STG-aware data partitioning method may group together
nodes that are expected to be visited consecutively on a
shortest path query. Novel programming models are also
needed to facilitate the representation of STG abstract data
types, predicates and operations.

3. CONCLUSION
In this paper, we introduced a vision of future connected

vehicles equipped with rich instrumentation and Internet ac-
cess enabling them to communicate with nearby vehicles and
the transportation network infrastructure. Connected vehi-
cles have the potential to improve almost every aspect of
roadway travel. They can minimize vehicle crashes, help
drivers avoid congestion and traffic jams based on real-time
traffic conditions, and provide greener navigation choices.
This vision cannot be fully realized without significant com-
putational advances in spatio-temporal graph query process-
ing, data science and data engineering. We encourage the
spatial computing community to take on these challenges
and research needs to help ensure the vision of connected
vehicles becomes a reality.

4. ACKNOWLEDGEMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1029711, IIS-
1320580, 0940818, and IIS-1218168, the USDOD under Grant
No. HM0210-13-1-0005, and the University of Minnesota
under the OVPR U-Spatial. We are particularly grateful to
Kim Koffolt for her help in editing this paper.

5. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop gis: a high performance spatial data warehousing
system over mapreduce. Proceedings of the VLDB
Endowment, 6(11):1009–1020, 2013.

[2] A. Bender. Uber’s astounding rise: Overtaking taxis in key
markets. Forbes http://goo.gl/PFnVyB, April 2015.

[3] U. Congress. Energy independence and security act of 2007.
http://en.wikipedia.org/wiki/Energy_Independence_and_
Security_Act_of_2007, Public Law, (110-140), 2007.

[4] A. Eldawy and M. F. Mokbel. Pigeon: A spatial mapreduce
language. In Data Engineering (ICDE), 2014 IEEE 30th
International Conference on, pages 1242–1245. IEEE, 2014.

[5] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce
framework for spatial data. In Proceedings of the IEEE Intl
Conference on Data Eng., 2015.

[6] ESRI GIS Tools for Hadoop: Big Data Spatial Analytics for the
Hadoop Framework.
http://esri.github.io/gis-tools-for-hadoop/.

[7] T. Geller. Car talk. Communications of the ACM, 58(3):16–18,
Mar 2015.

[8] V. Gunturi and S. Shekhar. Lagrangian xgraphs: A logical
data-model for spatio-temporal network data: A summary. In
Advances in Conceptual Modeling, volume 8823 of LNCS,
pages 201–211. Springer, 2014.

[9] J. Harding and e. al. Vehicle-to-vehicle communications:
Readiness of v2v technology for application. Technical Report
Report No. DOT HS 812 014, National Highway Traffic Safety
Administration, Washington, DC, August 2014.

[10] E. G. Hoel, W.-L. Heng, and D. Honeycutt. High performance
multimodal networks. In Advances in Spatial and Temporal
Databases, pages 308–327, 2005. Springer. LNCS 3633.

[11] H. Kargupta, V. Puttagunta, M. Klein, and K. Sarkar.
On-board vehicle data stream monitoring using minefleet and
fast resource constrained monitoring of correlation matrices.
New Generation Computing, 25(1):5–32, 2006. Springer.

[12] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein. Graphlab: A new framework for parallel
machine learning. arXiv preprint arXiv:1408.2041, 2014.

[13] B. Lumpp, M. Tanimou, M. McMackin, E. Bouillon, E. Trapel,
M. Muenzenmay, and K. Zimmermann. Desktop simulation and
calibration of diesel engine ecu software using
software-in-the-loop methodology. Technical report, SAE
Technical Paper, 2014.

[14] A. Mai and D. Schlesinger. A business case for connecting
vehicles. Cisco http://goo.gl/u4ngwF, April 2011.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM Intl Conf. on
Management of data, pages 135–146, 2010.

[16] J. Manyika et al. Unlocking the potential of the internet of
things. McKinsey Global Institute http://goo.gl/qzq5mV, June
2015.

[17] G. Marcus and E. Davis. Eight (no, nine!) problems with big
data. The New York Times, 2014.

[18] P. Marshall. Can transportation agencies call on smartphones
for traffic data? Government Computer News
http://goo.gl/fd8zO7, Feb 2014.

[19] P. Marshall. Connected cars: Apps, networks and storage on
wheels. Government Computer News http://goo.gl/MNc5QE, Feb
2014.

[20] H. Nanjundaswamy and e. al. Development and calibration of
on-board-diagnostic strategies using a micro-hil approach.
Technical Report 2011-01-0703, SAE Technical Paper, 2011.

[21] U. D. of Transportation. Us dept of transportation research,
development, and technology strategic plan fiscal year
2013–2018. http://goo.gl/wzVu8P, 2013.

[22] D. Oliver, S. Shekhar, X. Zhou, E. Eftelioglu, M. R. Evans,
Q. Zhuang, J. M. Kang, R. Laubscher, and C. Farah. Significant
route discovery: A summary of results. In Geographic
Information Science, pages 284–300. Springer, 2014.

[23] A. Palladino, G. Fiengo, and D. Lanzo. A portable
hardware-in-the-loop (hil) device for automotive diagnostic
control systems. ISA Transactions, 51(1):229–236, 2012.

[24] J. I. Speed. Iot for v2v and the connected car.
http://goo.gl/3b5NSy, 2014.

[25] J. M. Spelina, J. C. P. Jones, and J. Frey. Recent advances in
knock analysis, simulation, and control. SAE International
Journal of Engines, 7(2014-01-1349):947–955, 2014.

[26] D. Sperling and D. Gordon. Two billion cars. Oxford
University Press, 2009.

[27] H. Statistics. Federal highway administration. HM-63, HM-64,
2008.

[28] B. Zhang. Autonomous cars could save the us $1.3 trillion
dollars a year. Business Insider http://goo.gl/8i7KQD, 2014.


