
Sphinx
Distributed Execution of Interactive

SQL Queries on Big Spatial Data
Ahmed Eldawy     Mohamed F. Mokbel

Computer Science and Engineering
University of Minnesota

Mostafa Elganainy    Ammar Bakker    Ahmed Abdelmotaleb
KACST GIS Technology Innovation Center

Umm Al-Qura University, Saudi Arabia

University of Minnesota This work is supported in part by KACST GIS Technology Innovation Center at Umm Al-Qura University, Saudi Arabia

Existing Big Spatial Data Systems

Satellite DataMedical ImagesSpace ImagesSocial Networks

ESRI Tools
for Hadoop

Hadoop-GIS
MD-HBase

Limitaitons of Existing Systems
1. Lack of standard SQL query interface
2. Inherent limitations of they underlying
systems (e.g., Hadoop)

Sphinx Architecture

Global/Local
Indexes

R-tree Scanner
Spatial Join

Range Query Plans
Spatial Join Plans

Query Parser

Query Planner

Query Executor

Storage

HDFS

Spatial Data Types
Spatial Functions
Index commands

Impala Sphinx

Indexing

Spatial Indexing

Objective: Extend the core of Impala
to support spatial data types, indexing
and query processing efficiently

SQL compliance

Runtime code
generation

Query optimization

No spatial datatypes

No spatial indexes

Only supports relational
datatypes such as numbers,
Booleans and strings

Spatial data is naturally skewed
No natural sorting order
Extended objects, like polygons,
might overlap multiple partitions

No spatial operations
Impala only provides native
query plans for simple selection
or equi-joins, but lacks spatial
operations such as range query
or spatial join

Cloudera Impala

Global Index
(master)

Name
Node

Local Indexes (slaves)

HDFSSphinx

Catalog
Server

impalad impalad impalad Data
Node

Data
Node

Data
Node

Global Index
Stays in the catalog server and
stores how a table is partitioned
into HDFS blocks

Local Indexes
Stored in slave nodes, as one local
index per HDFS block. Determines
how records are organized inside
each HDFS block

GIS Innovation Center

Range Query

Spatial Join Plans

Query Range

Case 0
A partition is completely
outside the query range
Early pruned by the
query planner

Case 1
A partition is completely
contained in the query range
All records are returned
without further processing

Case 2
Most of the partition overlaps
the query range
Skip the local index and scan
all records in the partition

Case 3
A small portion of the partition
overlaps the query range
Use the local index to speed up
the range query processing

The optimized code is produced using
runtime code generation

Query Parser
1. New GEOMETRY primitive data type
2. New spatial operations and
    spatial predicates
3. New CREATE INDEX command to
    construct R-tree and Quad tree
4. Extend CREATE EXTERNAL TABLE
    command to import SpatialHadoop
    indexes

Spatial Join

Scan: R

Hash(r.cID)

Fragment 1

Fragment 3

Partition

Scan: S

Fragment 2

Partition

Hash(s.cID)

GridGrid
Spatial Join

Scan: R

Scan: S

Spatial  Multicast

Fragment 1

Fragment 2

Spatial Join

Scan: R

Scan: S

Hash(r.pID)

Fragment 1

Fragment 2

Partition

Catalog

Global
Index(S)

Two indexes (Overlap join)
The query planner finds
overlapping partitions
The query executor joins
every pair of partitions

One indexes (Partition join)
Partition the non-indexed table
to match the indexed one
Join each pair of matching
partitions

No indexes (Co-partition join)
Co-partition the two files using
a common grid
Match the contents of each
grid cell

Performance

10

100

0.001 0.1 1 10

T
im

e 
in

 s
ec

Impala
SpatialHadoop

Sphinx/HDFS
Sphinx/Parquet

20
30
40
50
60
70
80
90

100

5 10 20

T
im

e 
in

 m
in

PartitionJoin
OverlapJoin
CoPartition

0

20

40

60

80

100

120

25 50 75 100

T
im

e 
in

 m
in

SpatialHadoop
Sphinx/Text

Sphinx/Parquet

20

22

24

26

28

30

32

34

Text Avro SeqFileRCFileParquet

T
im

e 
in

 m
in

Range Query with selectivity

Indexing time with input size

Cluster Size

Storage formats

Spatial Join


