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ABSTRACT

This paper presents Sphinx, a full-fledged distributedesystrhich
uses a standard SQL interface to process big spatial datanxSp
adds spatial data types, indexes and query processinggitts2
code-base of Cloudera Impala for efficient processing ofiapa
data. In particular, Sphinx is composed of four main compés)e
namely,query parser, indexer, query planner, andquery executor.
Thequery parser injects spatial data types and functions in the SQL
interface of Sphinx. Théndexer creates spatial indexes in Sphinx
by adopting a two-layered index design. Tduery planner utilizes
these indexes to construct efficient query plans for rangeycgnd
spatial join operations. Finally, thepiery executor carries out these
plans on big spatial datasets in a distributed cluster. Aesygro-
totype of Sphinx running on real datasets shows up-to thréers
of magnitude performance improvement over traditionaldtap

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
Spatial, Impala, SQL, Range Query, Spatial Join, Sphinx

1. INTRODUCTION

The recent explosion in the amounts of spatial data gertebgte
many applications, such as satellite images, GPS trackdicale
images, and geotagged tweets, urged researchers and mreelo
to extend big data systems to efficiently support spatia.dahis
includes Hadoop-GIS [1], SpatialHadoop [4], and ESRI tdots
Hadoop [12], among others. Unfortunately, all these systsuf-
fer from the following two limitations. (1) Despite SQL-Bklan-
guages, such as HiveQL, they lack an ANSI-standard SQLfater
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SELECT COUNT(*)
FROM  OSM_Points
WHERE x> X1 AND X < x2 AND

y > Yy1ANDy <y2;
(a) Range query in Impala

SELECT COUNT(*)
FROM OSM_Points
WHERE Contains(Rectangle(x1, y1, X2, y2),
OSM_Points.coords);
(b) Range query in Sphinx

Figurel: Rangequeryin Impalavs. Sphinx

which is much preferred by existing DBMS users, and (2) timey i
herit the limitations of the underlying systems, such asifizant
startup time, and materializing intermediate data to digkch im-
pede these system from reaching the full potential of theetiyithg
hardware.

In this paper, we introduce Sphinx; a full-fledged system for
distributed execution of interactive SQL queries on Big t&pa
Data. We have chosen to build Sphinx inside Impala [7] ratnen
any other open-source distributed big data system (e.glpbia
and Spark) as Impala has several advantages which incllijié: (
adopts the ANSI-standard SQL interface, (2) employs quptif o
mization, (3) C++ runtime code generation, and (4) low-alie
rect disk access. With these features, Impala achievesder or
of magnitude speedup [5, 7, 11] on standard TPC-H and TPC-DS
queries compared to other popular SQL-on-Hadoop systenfs su
as Hive [10] and Spark-SQL.

Figure 1 shows a range query example that gives the essence of
Sphinx. Figure 1(a) shows a range query expressed in Impaig u
primitive data types and operations, and it takes 21 minutesta-
ble of 2.7 Billion points with a cluster of 10 cores. As Impdaiees
not understand the properties of this spaital query, it baetform
a full-table scan with a very little room of optimization to.din
Sphinx, the same query is expressed as shown in Figure Ifb). |
addition to the expressive language, this query runs in enersl
on Sphinx, giving three orders of magnitude speedup oven-pla
vanilla Impala. The main reason behind this performancestoo
is the spatial indexes that we add in Sphinx and the spateiyqu
processing that is injected in the core of the query planndrex-
ecutor.

Figure 2 gives an overview of Sphinx which consists of four
components, all implemented inside the core of Impala. (1§ T
query parser (Section 2) enriches the SQL interface with spatial
data types (e.g., Point and Polygon), spatial functiorgs,(@©verlap
and Touch), and new commands to construct and import sjratial
dexes. (2) Théndexer (Section 3) constructs spatial indexes based
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Figure2: Overview of Sphinx

on grid, R-tree or Quad-tree, and organized in two layersnas o
global index and multiple local index. (3) Tlyeery planner (Sec-
tion 4) utilizes the spatial indexes to introduce new effitiguery
plans for theange query and spatial join operations. (4) Tlhgery
executor (Section 5) introduces thie-tree scanner andspatial join
operators, which use C++ runtime code generation to effigien
executespatial range and spatial join queries, respectively. We
conduct an experimental evaluation on the proposed system p
totype using a publicly available real dataset of 2.7 Billfmoints
extracted from OpenStreetMap. We show that Sphinx outpago
traditional Impala by up-to three orders of magnitude witiihb
range query and spatial join queries. In addition, we shaat th
Sphinx scales well with both the input size and the clustas.si

2. QUERY PARSER

To make it user-friendly and easy to use, Sphinx extends the
query parser of Impala to introduce spatial data types, functions,
and new commands to construct and import spatial indexes.
Spatial Data Types. Sphinx adds theéseonet ry datatype as
an abstraction for all standard spatial datatypes, sudPoast ,

Li nestring andPol ygon, as defined by the Open Geospa-
tial Consortium (OGC). We adopt the standard Well-KnowntTex
(WKT) format to be able to import text files from other systems
such as PostGIS and Oracle Spatial.

Spatial Functions Sphinx adds OGC-compliant spatial functions
which are implemented as either user-defined functions (UiDF
user-defined aggregate functions (UDAF). It is imperatovenen-
tion that all those functions only work in Sphinx as the inpotl/or
the output of each function is of tHeeonet r y datatype, which

is supported only in Sphinx. These functions inclussic func-
tions, e.g.,MakePoi nt , spatial predicates, e.g.,Touch, spatial
analysis functions, e.g.Uni on, andspatial aggregate functions,
e.g.,Envel ope which computes the minimum-bounding rectan-
gle (MBR) of a set of objects.

Spatial Indexing Sphinx also adds new commands to constructs
spatial indexes, and import existing indexes from Spagalbbp.

/+ Create R-tree index on the coords attribute */
CREATE | NDEX Poi nt sl ndex

ON Poi nts USI NG RTREE (coords);
/+ lmport an index built on the coords attribute */
CREATE EXTERNAL TABLE OSM Poi nts

(... /* Schema definition /)

| NDEXED ON coords AS RTREE

LOCATI ON(‘ / osm poi nts’);

e Shuffle Local
ITZ%% —>| Partition |—>| Index @
©)
Table

Broadcast
cell boundaries

Subdivide ©)

Figure 3: Indexing plan in Sphinx

3. SPATIAL INDEXER

In this section, we describe how Sphinx constructs spatial i
dexes on HDFS-resident tables. The main goal is to store the
records in a spatial-aware way by grouping nearby recordstm-
ing them physically together in the same HDFS block. Whielitr
tional Impala already providespartitioned table feature, where a
table is hierarchically partitioned based on a sequencelahms,
Sphinx employs spatial indexes which overcome the follgwin
three limitations in partitioned table: (1) While Impalasags one
value per partition, e.g., dpartment ID, Sphinx assignsgiore
i.e., a rectangle, to each partition which is more suitablepatial
data. (2) While Impala assigns each record to exactly ong- par
tion, Sphinx can replicate a record to multiple partitiortsiai can
be used to index polygons which span multiple partition$.Ir{8
pala puts the burden of choosing partition boundaries omsee,
which is not suitable for skewed spatial data. Sphinx presid
one-statement index command which takes care of definirtg par
tion boundaries based on the data distribution. In the regti®
section, we first describe how the index is stored in Sphing, a
then we explain how Sphinx builds this spatial index effitien

3.1 Index Layout

Sphinx employs a two-layered design for spatial indexes in
HDFS [1,4,12], where thglobal index s stored in the master node
and defines how records are partitioned across machinelg hahi
cal indexes are stored inside slave nodes and define how records are
internally organized inside that node. This design wellfiith the
architecture of Impala and Sphinx where the global indexdeesl
in the catalog server on the master and the local indexes are stored
in HDFS data nodes, and are processed by tiygal ad processes
running on the slaves. This also allows Sphinx to easily ifhao
index which was built in SpatialHadoop by simply importirget
global index into the catalog server.

3.2 Index Construction in Sphinx

Sphinx provides an efficient algorithm for constructing atsd
index on a user-selected attribute in a table. We focus ocdhe
struction of R-tree and R+-tree as examplesaf-replicated and
replicated indexes, respectively. Figure 3 illustrates the index con-
struction plan in Sphinx. When the user issSuU€REATE | NDEX
statement, Sphinx creates this query plan which is exedntealr-
allel using its query execution engine. The indexing aliponicon-
sists of four phases, namelsampling, subdivision, partitioning,
andlocal indexing, described below.

The Sampling Phase. The job of this phase is to summarize the
data so that it fits on a single machine while preserving g&idi
bution, to some level. This summary will be used in the neap st
to decide how to partition the space across machines whieba
ing the load. To summarize the data, this phase scans the inpu
parallel, and reads a sample of 1% of the records. Each résord
converted to a point by taking the centroid of the index kegaRy,

all sample points are grouped in one machine for the nextgphas
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Figure 4: Spatial Join Query Plans

The Subdivision Phase. This phase runs on a single machine, and
it subdivides the space intocells, which will be used to partition
the input records as one partition per cell. The objectivte isal-
ance the load across partitions while fitting each partitiansingle
HDFS block, typically 128MB. Sphinx adjusts number of cell®
number of HDFS blocks in the indexed dataset which ensuegs th
the average partition size is equal to HDFS block capactgnT it
subdivides the space intocells, each containing roughly the same
number of sample points, by bulk loading the sample into areR-
using the sort-tile-recursive (STR) algorithm [8]. Theflrades of
the STR-tree are used as cell boundaries, which are braadadb
nodes to be used in the next phase.

The Partitioning Phase. This phase scans the input table and as-
signs each record to overlapping cell(s). The main chaléago
handle boundary objects which overlap more than one ceflin®p
employs either distribution or replication strategy, for R-tree and
R+-tree, respectively. Thdistribution strategy assigns a record to
exactly one cell and expands the cell boundaries to fullytaan
the record. Theeplication strategy replicates a record to all over-
lapping cells, and the query executor will have to handleréipi-
cation to ensure a correct answer as described in Sectiomis. T
step is implemented as l@oadcast join where the smaller table
(cell boundaries) is replicated to all machines and the join predi-
cate uses either thastribution or replication strategies.

ThelLocal Indexing Phase. In the final phase, records are shuffled
across machines and grouped by @eflID column. The contents
of each cell are processed separately where they are budkdoa
into an in-memory local index, e.g., R-tree, and the indexritten

to HDFS as one file. Since the size of each partition is expeote
be within the HDFS block capacity, this step can handle iy
large files. If one partition goes beyond the HDFS block capac
it is split into chunks, each fits in one HDFS block.

4. QUERY PLANNER

Thequery planner in Sphinx is responsible on generatinguery
plan for a user query, which is later executed by thery execu-
tor. In general, thejuery planner first generates a single-machine
logical plan, which is never executed. Then, it translates it into a
distributedphysical plan which is executed in parallel. Sphinx in-
troduces new query plans for both ttenge query andspatial join
operations, as described below.

4.1 Range Query Plans

In range query, the input is a query rang@nd a spatial attribute
x in atableR, while the output is all records € R wherer.x over-
laps A. Traditional Impala supports only one plan for range query
which employs &ull table scan and compares each record to the
query area. If the input tabl® is indexed on the search column
x, Sphinx utilizes the spatial index to build a more effici®dtree
search plan. This plan improves over tliel| scan plan by two new

features. (1) Thearly pruning feature which utilizes thglobal
index to prune partitions that are outside the query area. (2)el$ us
R-tree scanners which utilize thelocal indexes in selected parti-
tions to quickly select matching records. The details ofRhee
scanner will be described in Section 5.

4.2 Spatial Join Plans

In spatial join, the input is composed of two tabl&sand.S, with
designated geometric columr®,z andS.y, and a spatial predicate
0, such agouch or overlap. The output is a tabl& that contains all
recordst = (r, s), where the predicat@ s true for(r.xz, s.y), r €
R, ands € S. Figure 4(a) shows the logical query plan of spatial
join. Traditional Impala can translate this plan into oneg/gbal
plan that uses the naive spatial join algorithm which corapthe
cross joinR x S, followed by a spatial filter on the predicafe
Sphinx improves on this approach by introducing three adttéve
physical plans based on whether the two tables are indexed, o
table is indexed, or none of them are indexed, all descrilegal\b

(1) Overlap Join: This plan, shown in Figure 4(b), is used if
the two input tables are indexed on the join columns. Thecbasi
idea is to find pairs of overlapping partitions and perforningile-
machine spatial join between every pair of partitions. Talire
this plan, Sphinx introduces the nosphtial multicast connection
patterns which creates a communication stream between pair
of machines which are assigned overlapping partitions. oifo &
pair of partitions, Sphinx uses tigpatial join operator which will
be described in Section 5.

(2) Partition Join: This plan, shown in Figure 4(c), is employed
if only one input table is indexed. In this case, the non-kede
table, sayR, is partitioned to match the other (indexed) table. Once
the tableR is partitioned, there will be a one-to-one correspondence
between the partitions d® andS where each pair of partitions are
joined using thespatial join operator.

(3) Co-partition Join: If none of the input files are indexed,
sphinx employs theco-partition join which is a port of the tradi-
tional partition-based spatial-merge (PBSM) join algorithm [9]. In
this plan, shown in Figure 4(d), both input files are panti&d us-
ing a common uniform grid, and the contents of each grid cethf
the two files are spatially joined.

5. QUERY EXECUTOR

The query executor is the component that executes the physical
query plans, created by thgiery planner, in the distributed en-
vironment. Sphinx introduces two new components in theyquer
executor, namelyR-tree scanner for range queries, argbatial join
operator. These components are completely written in C++ an
make use of the Impala runtime code generation [11], whicagi
a higher performance compared to other big data systemtemrit
in Java.
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Figure5: Experimental results of Impala and Sphinx

5.1 R-tree Scanner

The R-tree scanner takes as input one locally-indexed partition
P and a rectangular query rangde and returns all records iR that

6. EXPERIMENTS

Sphinx is implemented inside Impala 1.2.1 and deployed on an
Amazon EC2 cluster of 20 single-core nodes. Figure 5(a) steow
nice linear scale up of the index construction time as thetitable
increases from 25GB to 100GB. Figure 5(b) shows three ofers
magnitude speedup of Sphinx over Impala when running a range
query. Even with high selectivity ratios, Sphinx gives ainthe
same performance as Impala which indicates a low index eaerh

Figure 5(c) compares the performance of the spatial joimyque
in Impala and Sphinx, where the two input tables are of theesam
size. In this experiments, we only use therlap join algorithm in
Sphinx which is executed when the two input files are indexed.
shown in the figure, the naive algorithm in Impala is not duialat
all as it quickly fails, even for small input sizes. Figur@pshows
the performance of the spatial join in Sphinx with much larfjes
while increasing the cluster size from 5 to 20 nodes. Thisexp
iments shows the great performance and scalability of tha¢iap
join operation in Sphinx.

7. CONCLUSION

In this paper, we introduced Sphinx, the first and only system
that extends the core of Impala to provide real-time queog@ss-
ing of SQL queries on spatial data. Sphinx modifies doery
planner by injecting standard spatial data types, spatial funstion
as well as a new command to construct spatial indexes. Ittadop

overlapA. The R-tree scanner starts by computing the estimated two-layered approach to build a spatial index which corsi$bne

selectivity o using the equatiom = Area(A N P)/Area(P),
where A and P are the MBRs of the query range and processed
partition, respectively. The MBR aP is available as part of the
global index which is stored in the main memory of the master
node. Based on the selectivity, the R-tree scanner hasthodes

of operation.

(1) Match All (c = 1.0): If the P is completely contained in
A, all records are added to the answer without testing thenmstga
the queryA. (2) Full Scan (6 < o < 1.0): If the selectivity is
larger than a thresholi] the R-tree is known to impose a significant
overhead on the search query. Thus, the R-tree scannertbkips
index and compares each record against the query rang®) R-
tree search (o < §): If the selectivity is lower thaid, the R-tree
index is utilized to quickly retrieve matching records.

If the index is replicated, e.g., R+-tree, a fimliplicate avoid-
ance step is carried out to remove duplicate answers.

5.2 Spatial Join Operator

The spatial join operator joins two partitiond; and P- re-
trieved from the two input files and returns every pair of tser
ping records in the two partitions. This operator also haseth
modes of execution based on the local indexes in the twodoine
partitions.

(1) R-tree Join: If both partitions are locally indexed using R-
tree, this execution mode the synchronized traversalidigo{2,6]
to concurrently traverse both trees while pruning disjdime
nodes. (2)Bulk Index Join: If only one partition is locally in-
dexed, this execution mode uses gk index join algorithm [3, 6]
which partitions the non-indexed partition according te Rrtree
of the indexed partition, and then joins each pair of comesp
ing partitions. (3)Plane-sweep Join: If none of the partitions are
indexed, the spatial join operator performs a plane-sweipg-
gorithm [6] which works efficiently with non-indexed data.

Similar to the R-tree scanner, the spatial join operatotiep@a
duplicate avoidance step if the input partitions are indexed using a
replicated index.

global index, stored in &atalog, which partitions records across
machines, and multiple local indexes, stored in HDFS blothet
organize records contained in each partition. We also dxtka
query planner by building efficient query plans for range and spa-
tial join queries. These plans utilize the global index torg un-
wanted partitions from the input. We also implemented twe ne
components in thquery executor, namely, R-tree scanner and spa-
tial join operator, which use runtime code generation toegaie
optimized machine code that runs natively on the systemallyjn
we provided an experimental study on large scale real daia th
show the efficiency and scalability of Sphinx as it compacelsrt-
pala.
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