
Raptor: Large Scale Analysis of Big Raster and Vector Data

Samriddhi Singla
Ahmed Eldawy

UC Riverside
Riverside, CA, USA

{ssing068,eldawy}@ucr.edu

Rami Alghamdi
University of Minnesota, Twin

Cities
Minneapolis, MN, USA

algha017@umn.edu

Mohamed F. Mokbel*
Qatar Computing Research

Institute
Doha, Qatar

mmokbel@hbku.edu.qa

ABSTRACT
With the increase in amount of remote sensing data, there
have been efforts to efficiently process it to help ecologists
and geographers answer queries. However, they often need
to process this data in combination with vector data, for ex-
ample, city boundaries. Existing efforts require one dataset
to be converted to the other representation, which is ex-
tremely inefficient for large datasets. In this demonstration,
we focus on the zonal statistics problem, which computes
the statistics over a raster layer for each polygon in a vec-
tor layer. We demonstrate three approaches, vector-based,
raster-based, and raptor-based approaches. The latter is a
recent effort of combining raster and vector data without a
need of any conversion. This demo will allow users to run
their own queries in any of the three methods and observe
the differences in their performance depending on different
raster and vector dataset sizes.

PVLDB Reference Format:
Samriddhi Singla, Ahmed Eldawy, Rami Alghamdi and Mohamed
F. Mokbel. Raptor: Large Scale Analysis of Big Raster and Vec-
tor Data. PVLDB, 12(12): 1950-1953, 2019.
DOI: https://doi.org/10.14778/3352063.3352107

1. INTRODUCTION
The rapid advancement in remote sensing technology has

led to a tremendous increase in the amount of spatial data
collected in various domains. For example, the NASA EOS-
DIS archive contains more than 17 petabytes of data with
an expectation to grow to 330 petabytes by 2025. Similarly,
the Sentinel-1A satellite collected five petabytes in two years
and is expected to continuously work until 2030.

This growth urged many researchers to build new sys-
tems for big spatial data including SpatialHadoop [5],
GeoSpark [12], Simba [11], SciDB [10], RasDaMan [2], and
GeoTrellis [8]. However, all these systems focus on process-
ing either big raster data [2, 8, 10], such as satellite images,
or big vector data [5,11,12], such as map data or geo-tagged

* Also affiliated with University of Minnesota, MN, USA.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352107

(a) Raster (b) Vector (c) Raptor

Figure 1: Processing models

objects. While these systems are very efficient in their core
function, they provide a poor performance for queries that
combine both vector and raster data.

This demonstration focuses on the zonal statistics prob-
lem, which aggregates all the values from the raster layer
that overlap with a set of polygons, e.g., computes the
average temperature for each state in the US. This query
has many applications including the study by ecologists of
the effect of vegetation and temperature on human settle-
ment [7] and by geographers for analyzing terabytes of socio-
economic and environmental data [6]. Traditional systems
for big spatial data follow one of two approaches, rasterize
and vectorize, as illustrated in Figures 1(a) and 1(b). The
rasterize method converts each polygon to a set of pixels in
a raster layer and runs an overlay method to combine it with
the raster layer. On the other hand, the vectorize method
converts each pixel in the raster layer to a point and runs a
point-in-polygon query. As the sizes of the raster and vector
layers increase (i.e., up to trillions of pixels and hundreds of
millions of line segments), the conversion step becomes very
expensive and throttles the performance of the query.

Recently, a new processing model, termed Raptor1,
emerged as a more efficient method for queries that require
the concurrent processing of raster and vector data. For ex-
ample, the scanline method [4], illustrated in figure 4, eval-
uates the zonal statistics problem by first finding the inter-
sections between the polygons and the raster data and then
using these intersections to compute the desired aggregate
functions, e.g., average. The key idea in this approach is
that it avoids the conversion step by making the core query
processor aware of the characteristics of the raster and vector

1Raptor stands for RAster Plus vecTOR



Point-in-Polygon test

(a) Näıve

Completely Inside

Completely Outside

(b) QSplit

Figure 2: Vector-based Methods

representations. For example, it minimizes the disk access
by following the representation format of the raster layer,
i.e., row-major, column-major, or tiled representation.

This demonstration provides a comparison test bed for the
three processing methods, namely, raster, vector, and rap-
tor. The demonstration will use world-wide satellite data
for temperature and vegetation over a course of five years
(2014-2018). This big raster data will be combined with
a vector data that represents all countries, states, counties,
and cities (or their counterparts) in the entire world. The at-
tendees will be able to get answers for questions like: “What
was the average temperature in my home city over the last
month?”, or “How did the average vegetation change in my
country over the last year?” In addition to the query an-
swer, the demonstration will help database researchers get
deeper insight of the results by providing several perfor-
mance metrics, e.g., computation time, memory, and IO,
for the demonstrated methods to express the power of the
three approaches.

2. TECHNIQUES
This section provides a quick overview of the process-

ing approaches for the zonal statistics problem. This work
is categorized in three categories, vector-based approaches,
raster-based approaches, and raptor-based approaches.

2.1 Vector-based Approaches
In this section, we describe the näıve point-in-polygon

technique, followed by an improved algorithm which re-
duces the complexity of testing the point-in-polygon query
by splitting complex polygons into smaller simple ones.

2.1.1 Naı̈ve Point-in-Polygon Method
This approach [13] converts each pixel to a point and runs

a traditional point-in-polygon test for it, as illustrated in
Figure 2(a). First, it computes the minimum bounding rect-
angle (MBR) of the polygon. Then, it projects the MBR to
the raster space, to find the corresponding range of pixels.
After that, it scans all pixels in the projected MBR and for
each pixel, it projects the pixel to a point in the vector space.
After that, it tests if the point is inside the polygon. If the
point is inside the polygon, it reads and processes the cor-
responding pixel value; otherwise, the pixel is skipped. The

(a) Clipping

0 0 0 0 0

000

0 0 0

000

0 0 0

00

0

0

00

00

00

0

0 0

0

0

0

1

1 1 1

1 1 1

111

1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1
(b) Masking

Figure 3: Raster-based methods

pixels found to be inside the polygon are grouped together
and the desired aggregate function is run on them.

2.1.2 Quadratic-Split (QSplit) Method
The drawback of the Näıve Point-in-Polygon Method is

that it has to test each pixel against the input polygons. For
complex polygons which consist of hundreds of thousands of
edges, a single point-in-polygon test can be costly. With
very large raster datasets with trillions of pixels, the Näıve
Point-in-Polygon approach is impractical.

To improve this approach, the Quadratic Split (QSplit) al-
gorithm employs a spatial-join-inspired technique [9] which
splits the polygon into four quadrants similar to the Quad-
tree splitting algorithm. Then, it recursively process each
split, as shown in Figure 2. The final result will be the same
because the center of each pixel will lie in exactly one of the
four quadrants.

This algorithm is faster because running a point-in-
polygon test for each of the smaller polygons can be much
faster than testing the original polygon. Also, as shown in
Figure 2, we can skip testing pixels in quadrants that are
completely outside, and directly process all pixels in quad-
rants that are denoted as completely inside.

2.2 Raster-based Approaches
In this section, we describe the raster-based clipping and

masking methods, which convert the vector dataset to raster
to run the zonal statistics query.

2.2.1 Clipping Method
The clipping method [8], as shown in figure 3, uses the

polygon to clip the raster layer by removing pixels that are
outside the polygon. Since a raster layer is typically repre-
sented as a two-dimensional array, clipping is implemented
by setting all clipped pixels to a special NoData value, e.g., -1.
The clipped raster is represented as a new raster layer which
is then processed using the desired aggregate function. The
aggregate function skips all clipped pixels with the NoData

marker and processes the values in other pixels. If the vector
layer contains more than one polygon, each one is processed
independently to generate one clipped raster per polygon.
This method is implemented using PostGIS.



(a) Scanline (b) AggQuadTree

Figure 4: Raptor-based method

2.2.2 Masking Method
This method [1] as illustrated in figure 3 runs in three

steps, rasterize, overlay, and grouped-aggregate. The raster-
ize step, creates a mask layer for the input polygon where
each pixel that lies inside the polygon is marked with the
ID of the polygon, and pixels that are outside the poly-
gon are marked with zero. The overlay step, combines the
input raster layer with the mask layer to create one layer
where each pixel has a pair of values, the pixel value from
the input raster layer, and the polygon ID from the mask
layer. The final grouped-aggregate step groups pixels by the
polygon ID and computes the desired aggregate function on
the pixel values, e.g., average. This method is implemented
using SciDB.

2.3 Raptor-based Approaches
This section describes two raptor-based methods, scanline

and aggregate quad-tree. Unlike the raster and vector-based
methods, these method processes the two inputs in their raw
format and do not require an explicit conversion from raster
to vector or vice-versa.

2.3.1 Scanline Method
The scanline method [4] runs in three steps as shown in

Figure 4. Step 1, calculates the Minimum Bounding Rectan-
gle (MBR) of the input polygon(s) and maps its two corners
to the raster layer to locate the range of rows to process in
the raster layer.

Step 2 computes the intersections of each of the scan-
lines with the polygon boundaries.It converts each scan line
to vector space and stores their y-coordinates in a sorted
list. Each polygon is scanned for its corresponding range
of scanlines, which are then used to compute intersections
with the polygon. These intersections are then sorted by
their x-coordinates for each scan line.

Step 3 finds the pixels that lie inside the polygons and pro-
cess them. It maps the x-coordinates of the intersections to
raster space and accumulates the corresponding pixel val-
ues. For multiple polygons, all intersections in one row are
processed before moving to the next row.

This approach tries to reduce the intermediate storage for
the intersection points. It also minimizes disk IO by scan-
ning the raster data exactly once and by reading only the
pixels that overlap the polygons. This method is IO-bound
which makes it optimal for the processing perspective.

 1

 10

 100

 1000

 10000

 100000

Counties

States

Boundaries

Counties

States

Boundaries

Counties

States

Boundaries

Counties

States

Boundaries

10 sec

1 min

10 min

1 hour

10 hours

Ti
m

e 
(s

ec
) 

- 
L

o
g

 s
ca

le

Tree CoverUS AsterMERISGLC2000

Naïve Qsplit Clipper Masking Scanline

Figure 5: Performance experiments of all methods

2.3.2 Aggregate Quad-tree Method
The scanline approach is efficient yet IO-bound. The ag-

gregate quad-tree approach reduces the disk IO by providing
partial aggregations on the raster data. These partial aggre-
gates are stored in an aggregate quad-tree similar to the one
used in [3] for rectangular queries.

Figure 4(b) portrays how the aggregate quad-tree method
works. It first uses the scanline method to find all over-
lapping pixels that need to be processed. Then, based on
the aggregate quad-tree structure, it fetches partial aggre-
gates from aggregate quad-tree nodes that are completely
contained in the query polygon. The method starts at the
root node and tests if it is completely contained. If it is con-
tained, its aggregate value is fetched and the search stops.
Otherwise, its four child-nodes are recursively tested for con-
tainment. When the search reaches leaf nodes that are not
completely contained, the underlying pixels from the orig-
inal dataset are processed similar to the scanline method.
All these values, i.e., partial aggregates and pixel values,
are further combined together to produce the final result.

2.4 Discussion
Figure 5 compares the total running times of these meth-

ods. This experiment runs on vector datasets having upto
3 million segments and raster datasets having upto 800 bil-
lion pixels (782 GB). Each of the vector datasets comprises
multiple polygons. More information about these datasets
can be found in [4]. We omit running times for methods
which failed to run or took too long. As shown in the Fig-
ure, the scanline method is able to scale to big raster and
vector datasets while the other methods do not. Among the
vector-based methods, QSplit methods performs better than
the näıve method and scales to larger raster datasets. For
the raster-based methods, both clipper and masking meth-
ods have almost the same performance and scalability.

3. DEMONSTRATION SCENARIO
During the demonstration, we will host the web applica-

tion on a university web-server and make it accessible to the
public audience. We will set up a laptop and a tablet for
the audience to interact with the system and they can also
access it from their smart devices. The web server will be
pre-loaded with global raster datasets of temperature and
vegetation over a period of 5 years, each having a different
spatial resolution. The vector datasets loaded on the web
server will include regional boundaries of countries, states,
and cities (or their counterparts) all over the world.



Query Selector
Result

Figure 6: Raptor demonstration web interface

Web Interface: Figure 6 depicts the web interface which
has selectors on the top-left to allow audience members to
choose a query method, a raster dataset, a temporal range
for the raster dataset, a vector dataset and the required
statistics. The query results will be shown on the top-right
along with a few performance metrics. The performance
metrics will include the total running time for the query as
well as a breakdown of the time in different steps, number of
files accessed, number of pixels accessed, and the disk I/O.

The attendees can run queries like: “Which state in my
country recorded the highest average temperature this year?”,
using either of the techniques. It will allow them to compare
and observe the variations among the different techniques,
using the performance metrics. They can also run this query
using two different resolutions of temperature dataset and
observe the effect of increased resolution on the running
times for the techniques. Queries involving different poly-
gons, such as region boundaries for a big state, e.g., Califor-
nia, or a small state, e.g., Wyoming, will help the attendees
observe the advantage of the QSplit method over the näıve
point-in-polygon method. California makes a very complex
polygon as compared to Wyoming, hence making the point-
in-polygon test very expensive to run. Since, QSplit method
deals with complex polygons, it will show a performance gain
for California while there will not be a major difference in
performance for Wyoming.

The attendees can also run queries like: “Calculate the
average rainfall for each county in my country.” using ei-
ther of the techniques. They may also choose any other
statistic like maximum or minimum, or may choose to see
these statistics for each year over a range of years, and for
different regional levels in the world.

4. FUTURE WORK
This demo provides a comparison of the three approaches,

namely, raster, vector and raptor for the zonal statistics
problem. The raptor approach provides an efficient method
that processes raster and vector data in their native forms.

In future, we plan to show that this approach can be easily
adapted for other raptor queries like areal interpolation.

Acknowledgment
This work is supported in part by the National Science Foun-
dation (NSF) under grant IIS-1838222 and by the USDA
National Institute of Food and Agriculture, AFRI project
2018-07212.

5. REFERENCES
[1] Zonal Statistics in ArcGIS. http://bit.ly/arcgiszs, 2017.

[2] P. Baumann et al. The multidimensional database system
rasdaman. In SIGMOD, pages 575–577, 1998.

[3] A. Eldawy et al. SHAHED: A MapReduce-based System
for Querying and Visualizing Spatio-temporal Satellite
Data. In ICDE, pages 1585–1596, Seoul, Korea, Apr. 2015.

[4] A. Eldawy et al. Large scale analytics of vector+raster big
spatial data. In SIGSPATIAL, pages 62:1–62:4, 2017.

[5] A. Eldawy and M. F. Mokbel. SpatialHadoop: A
MapReduce Framework for Spatial Data. In ICDE, 2015.

[6] D. Haynes et al. Terra Populus’ Architecture for Integrated
Big Gepspatial Services. Transactions on GIS, 2017.

[7] G. D. Jenerette et al. Ecosystem Services and Urban Heat
Riskscape Moderation: Water, Green Spaces, and Social
Inequality in Phoenix, USA. Ecological Applications, 2011.

[8] A. Kini and R. Emanuele. Geotrellis: Adding Geospatial
Capabilities to Spark, 2014.

[9] S. Ray et al. Skew-resistant Parallel In-memory Spatial
Join. In SSDBM, pages 6:1–6:12, 2014.

[10] M. Stonebraker et al. SciDB: A Database Management
System for Applications with Complex Analytics.
Computing in Science and Engineering, 15(3):54–62, 2013.

[11] D. Xie et al. Simba: Efficient In-Memory Spatial Analytics.
In SIGMOD, 2016.

[12] J. Yu et al. GeoSpark: A Cluster Computing Framework
for Processing Large-Scale Spatial Data. In SIGSPATIAL,
pages 70:1–70:4, 2015.

[13] J. Zhang, S. You, and L. Gruenwald. Efficient Parallel
Zonal Statistics on Large-Scale Global Biodiversity Data on
GPUs. In BIGSPATIAL, pages 35–44, 2015.


