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ABSTRACT
Ubiquitously connected devices, e.g., Internet of Things (IoT),
space telescopes, social networks, and GPS-enabled gadgets,
are contributing to the perpetual and swift growth of the
data. 2.5 exabytes of daily-produced data, of which 60 − 80%
is geo-referenced. Space telescopes broadcast about 140 GB
of data weekly. Availability of such large amount of data
calls for new scalable query processing techniques. One of
the techniques that is getting attention is sketching which
summarizes the data and computes an approximate answer
on the sketch. This general technique is used in partition-
ing [3], clustering [1], selectivity estimation [2], and visual-
ization [4], among others. This paper introduces a sketching-
based framework for big spatial data which provides four
sketching methods and uses them to implement three com-
mon operations, namely, partitioning, clustering, and selec-
tivity estimation. The framework is executed in three phases,
sketching, local operation, and generalization, which can
apply to a wide range of operations on big spatial data.

Sampling is a widely used sketching technique, but there
exist other techniques such as uniform and non-uniform his-
tograms which are not well-studied due to two challenges.
First, each sketching method has a different representation
and creation parameters, e.g., sampling ratio or number of
histogram cells, which make it hard to compare their per-
formance. Second, while existing algorithms can be used
as-is with samples, other sketching methods might require
some tweaks to the algorithms to work. This work provides
a comprehensive evaluation to understand the trade-offs in
the different sketching techniques for big spatial data.
In this paper, we present a three-phase sketching-based

framework for big data processing. The first phase uses Spark
to efficiently compute four types of data sketches, namely,
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sampling, uniform, non-uniform, and enhanced histograms.
To make the sketching methods comparable, we define a
parameter B which indicates the memory budget. Regardless
of their representation, all sketching methods are designed
to use up-to that memory budget. The second phase uses
a single-machine to process the sketch and provide a par-
tial answer to three popular and diverse operations, namely,
partitioning, clustering, and selectivity estimation. Previous
work mostly applied these techniques with sample-based
sketches except for selectivity estimation which also used
histograms. In this paper, we propose histogram-based spa-
tial partitioning and K-means clustering and show that they
can outperform sampling-based methods. The third phase
takes the partial answer and scans all the data in parallel to
generalize the answer to the entire dataset.

In our experiments, we use both real and synthetic datasets
of up-to 2.7 billion records and 100 GB of data. We vary the
memory budget that we use for sketching and study its effect
in both the execution time and quality of the results.
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