
Detecting Skewness of Big Spatial Data in SpatialHadoop
Alberto Belussi

Dept. of Computer Science,

University of Verona

Italy

alberto.belussi@univr.it

Sara Migliorini

Dept. of Computer Science,

University of Verona

Italy

sara.migliorini@univr.it

Ahmed Eldawy

Dept. of Computer Science,

University of California Riverside

USA

eldawy@ucr.edu

ABSTRACT

In recent years several extensions of Hadoop system have been

proposed for dealing with spatial data and SpatialHadoop belongs

to this group. In the MapReduce paradigm a task can be parallelized

by partitioning data into chunks and performing the same operation

on them, eventually combining the partial results at the end. Thus,

the applied partitioning technique can tremendously affect the

performance of a parallel execution, since it is the key point for

obtaining balanced map tasks. However, when skewed distributed

datasets are considered, using a regular grid might not be the right

choice and other techniques have to be applied, which in turn are

more expensive to build. This paper illustrates an approach for

detecting the degree of skewness of a spatial dataset, based on the

box counting function. Moreover, given the degree of skewness and

some experimental observations, a heuristic is sketched in order to

decide which partitioning technique to apply in order to improve

as much as possible the performance of subsequent operations.

CCS CONCEPTS

• Information systems→ Geographic information systems;

KEYWORDS

SpatialHadoop, Skewed data, Partitioning, MapReduce, BigData

ACM Reference Format:

Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2018. Detecting Skew-

ness of Big Spatial Data in SpatialHadoop. In 26th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL ’18), November 6–9, 2018, Seattle, WA, USA. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3274895.3274923

1 INTRODUCTION

In recent years many efforts have been devoted to the implementa-

tion in MapReduce of many spatial operations. For instance, Spa-

tialHadoop [7] implements the well-known range query and spatial

join with several variants that in addition can be combined with

different strategies for data partitioning (i.e., global indexing). The

MapReduce paradigm is based on the fundamental principle that

the operation to be performed on a dataset can be parallelized by

partitioning the data into chunks and performing the same sub-

operation on them (map phase), eventually combining the partial

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5889-7/18/11.

https://doi.org/10.1145/3274895.3274923

results at the end (reduce phase). Thus, the data partitioning is

fundamental and has an impact on the effectiveness of the parallel

execution. A good partitioning strategy has to produce balanced

executions of the map tasks, i.e. they should require more or less

the same amount of resources.

For traditional (textual) datasets, the partitioning techniques

applied by Hadoop are based only on the data size, namely the goal

of the partitioning is to produce resulting chunks (called splits)

having almost the same size in bytes. This aseptic partitioning

technique may not be the best way to partition spatial data, since

while it provides a perfect load balance, it will result in a poor

performance as spatially nearby records will end up in two splits

[3]. For this reason, several spatial indexes have been implemented

in SpatialHadoop that take into account also spatial properties

during partitioning. For instance, indexes based on a regular grid,

Quadtrees and R-trees are available in SpatialHadoop [6] and can

be built on a dataset before applying a spatial join or a range query.

However, not all spatial indexes behave in the same way and in

different cases the best index to use can change according to the

spatial characteristics of the dataset at hand and the operations that

have to be applied afterwards. For example, the spatial index based

on a regular grid can be the optimal choice with uniformly dis-

tributed datasets, while other indexes (e.g., Quadtrees and R-trees)

require more time for their creation and this cost may be justified

only for dataset with skewed distribution. Without knowing any

details about the distribution of the geometries in the space covered

by the dataset, it is difficult to choose the right index (i.e., the right

partitioning technique). Moreover, the construction of the wrong

kind of index can affect the benefit of the MapReduce paradigm.

For instance, building a regular grid index on a very skewed dataset

can lead to very unbalanced map tasks.

Tab. 1 shows the result of the execution in SpatialHadoop of the

Distributed Join (DJ) [8] applied to two datasets, where the first one

is uniformly distributed and indexed using a regular grid, while

the second one vary from a uniform to a skewed distribution and

has been indexed using different techniques, namely regular grid,

Quadtree and R-tree. As expected, when both datasets are uniformly

distributed the response time of the DJ is similar regardless of the

used index, while, when a skewed distributed dataset is considered,

then the differences are significant and in this particular case are

in favor of the R-tree. This is mainly due to the fact that when the

distribution is skewed, the partitioning of the geometries based on

a regular grid does not produce balanced splits, while the Quadtree

and the R-tree indexes perform better and produce more balanced

splits. This is evident from columns 4, 5 and 6 of Tab. 1, which report

the characteristics of the map tasks in the different cases. It is clear

that balancing the cost of the single map tasks is crucial for the

total cost of the MapReduce job.

https://doi.org/10.1145/3274895.3274923
https://doi.org/10.1145/3274895.3274923


SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA A. Belussi et al.

Table 1: Execution of the DJ in SpatialHadoop with different

kind of indexes (i.e., Gr = regular grid, Qt = Quadtree, Rt =

R-tree) and different distribution of the datasets (i.e., Uni =

uniform distribution, Skw = skewed distribution).

Dataset Dataset Tot. time Map tasks

distribution index (mills) # tasks AVG time %RSD

(mills) time

Uni/Uni Gr/Gr 145,307 37 15,833 4%

Uni/Uni Gr/Qt 150,458 51 18,902 9%

Uni/Uni Gr/Rt 147,646 54 16,231 7%

Uni/Skw Gr/Gr 125,327 33 22,710 90%

Uni/Skw Gr/Qt 96,001 52 11,209 50%

Uni/Skw Gr/Rt 40,205 21 18,087 28%

The aim of this paper is to provide a way to easily detect some

hints about the dataset distribution, so that the more effective par-

titioning technique (index) can be applied to it. We will also empir-

ically study the effects of the various types of indexes on datasets

with different distributions.

The proposed technique for determining the characteristics of

the dataset distribution is based on the concept of box-counting

that was first proposed in [5] for computing the fractal dimension

of a dataset of points. The behavior of the box-counting function

measured in a restricted range of values (representing the cell side

of the grid) can be described by a power law and it was used in [5]

for estimating the selectivity of self-join and range query, then ex-

tended in [9] to the spatial join on distinct datasets. In general this

technique can be applied to any real dataset of multidimensional

data. We propose its application in the context of big spatial data

in particular for the following reasons: (i) it is an efficient tech-

nique for detecting information about the dataset distribution; (ii)

it produces just one number characterizing the data distribution

and does not require to store auxiliary structures, like histograms;

(iii) the box-counting function can be computed in parallel, since

it calculates a uniform histogram storing the counts and this can

be easily implemented in MapReduce. Moreover, according to the

degree of skewness, some heuristics are proposed that allow one

to decide which kind of index can be more effective to balance the

cost of the MapReduce execution of the subsequent operations.

Related works mainly regards the sampling-based methods, like

SATO [11], SpatialHadoop [6, 7], ScalaGiST [10], and Simba [12],

or histogram-based methods, like AQWA [1].

2 EVALUATION OF DATASET SKEWNESS

This section presents the definition of the box-counting function

BC
q
D (r ) for a given dataset D containing 2D geometries of type

point, line or polygon embedded in the Euclidean plane. This is

an extension of the box-counting function proposed in [5] which

applies only to finite set of points.Wewill see later that this function

can provide some hints about the skewness of the dataset.

Definition 2.1 (Box-counting function). Given a dataset D, con-
taining 2D geometries (i.e, points, lines or polygons), and a scale r ,
representing the cell size of a grid covering the reference space of

D (i.e., the MBR of the whole dataset D), the function Box-counting

BC
q
D (r ) is defined as follows:

BC
q
D (r ) =

∑
i
pi (D)

q with q , 1 (1)

where pi (D) = count(geometries of D intersecting the i cell).1

In [5] the author shows that the box-counting function is useful

for computing the generalized fractal dimension of a finite set

of points, where q represents the exponent in Eq. 1 and r is the

considered scale (i.e. the cell side of the grid). Intuitively, given

a grid with cells of side r , the box-counting function with q = 0

counts the number of cells that are intersected by at least one point

of D, similarly here the function BC0

D (r ) counts the number of cells

that are intersected by at least one geometry ofD. In this way, when
exponents q is greater than 1, the box-counting becomes the sum

of the number of geometries intersecting a cell raised to q.
As we will show shortly, this function can be used to detect the

skewness of a dataset by computing it for q = 0 and q = 2 while

varying the value of r . More specifically, the level of skewness of a

dataset depends on how this value changes while increasing r .
Notice that with respect to the definition given in [5], which ap-

plies only to set of points and counts the number of points contained

in a cell, here we count the number of geometries that intersect a

cell. This extension of the box-counting function from set of points

to generic geometric datasets could also be obtained in other ways.

(i) A first option could be to choose a representative point for each

geometry of the dataset (e.g., its centroid) and then apply the clas-

sical box-counting function. This can be the simplest solution, but

it does not ensure to always detect the real behavior of the dataset.

For instance, considering a set of big polygons covering almost the

whole reference space, their centroids would be clustered in a small

region, thus producing a point set that does not describe at all the

original dataset layout. (ii) Another solution could be to substitute

the geometries with their vertices; again, there could be regions

covered by geometries that are not covered by their vertices, with

the same effect described in the previous case.

The adopted solution, namely to count the number of geometries

intersecting a cell, is equivalent to suppose that each geometry д is

converted to a set of points P(д) covering the same space with a

granularity that satisfies the following hypothesis: if д intersects a
cell i , then there exists at least one pointp ∈ P(д) such thatp intersects
the cell i . With this hypothesis, we can extend the box-counting

function from point sets to sets of geometries and apply to our

case the results of [5]. Notice that if this solution can produce an

over-estimation for the selectivity, it does not have negative effects

for the problem considered in this paper, namely the estimation of

the dataset distribution, conversely it leads to a more precise result.

Definition 2.2. Given a dataset D, containing 2D geometries (i.e,

points, lines or polygons), and a fixed exponent q the Box-counting
plot is the plot of BCqD (r ) versus r in logarithmic scale. Now, we

can consider such plot and exploit the following observation of

[5]: for real datasets the box-counting plot reveals a trend of the

box-counting function that, in a large interval of scale values r ,
behaves as a power law:

BC
q
D (r ) = α · rEq (2)

1
The case q = 1 is excluded, since it always produces a fixed number which is equal

to the total number of geometries in the input.



Detecting Skewness of Big Spatial Data in SpatialHadoop SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA

where α is a constant of proportionality and Eq is a fixed exponent

that characterizes the power law.

The Box-counting plot is vital for the computation of the expo-

nent Eq for a given datasetD, since this exponent becomes the slope

of the straight line that approximates BC
q
D (r ) in a range of scales

(r1, r2), thus it can be computed by a linear regression procedure.

Eq characterizes the dataset distribution as explained below.

(i) For q = 0, E0 is negative and the power law, given the length

of the cell side r , computes the number of cells that are intersected

by the dataset D. Notice that, if D is uniformly distributed in the

reference space (the Euclidean plane in our case), then the number

of cells intersecting D coincides with the total number of cells of

the grid, thus the more r increases the more this number decreases.

As a consequence, in case of an uniform distribution, E0 is equal to
minus the dimension of the embedding space, in our case E0 = −2.

(ii) For the datasets F representing fractals (like the Sierpinski’s

triangle), it is known from the theory that Eq coincides with the

fractal dimension of F for each q (it is a consequence of the self

similarity property), thus for the Sierpinski’s triangle E0 = −1.585.

(iii) Finally, we can observe that E0 and E2 could be chosen as

descriptors for the distribution of a dataset D. Indeed, E0 can be

an indicator of the cases where the dataset leaves empty some

areas of the reference space, while E2 can also be affected by the

concentration of the datasets in some areas with respect to other

ones, i.e. the situations where there are no empty areas, but different

concentrations in different areas.

In order to practically use E0 and E2 as indicators of distribution
for real datasets, it is necessary to find and easy and efficient way

for computing them given a dataset D. Due to space constraints the
presentation of the MapReduce implementation of an algorithm for

computing both E0 and E2 is skipped.

3 PARTITIONING TECHNIQUES

This section briefly describes the partitioning techniques that char-

acterize the indexes available in SpatialHadoop and we show their

effects on skewed distributed datasets.

Hadoop divides the input of a MapReduce job into fixed-size

blocks, called splits, and instantiates and executes one map task for

each split, which applies the map function on each record in its split.

The split size is generally set equal to the size of an HDFS (Hadoop

Distributed File System) block, that is 128 Mbytes by default. The

main idea behind the MapReduce paradigm is that, since the time

required to process one split is smaller than the time required to

process the whole input, it is convenient to execute the map tasks

in parallel so that the total execution time will be reduced. If all map

tasks can be executed in parallel, then such cost depends on the

map task that takes longer. Therefore, the faster parallel executions

can be obtained when the map task are well balanced.

The partitioning of data into splits is a crucial operation for

obtaining well balanced map tasks. Moreover, the data partitioning

is usually applied randomly and this might produce balanced tasks

for uniformly distributed datasets, but not in general. Indeed, as

we have shown in Tab. 1, when skewed distributed datasets are

considered the cost of the map tasks is often unbalanced, causing a

performance degradation.

When a global index is built on an input file of a MapReduce

job, this means that you subdivide such file into splits by using

a criterion that is different from the random choice. For spatial

data the partitioning criterion is based on the locality property, i.e.

geometries that are closed in space will be placed in the same split.

Therefore, in order to guarantee that splits contains more or less the

same number of geometries, we should use different types of grids

according to the dataset distribution. In SpatialHadoop we have

three types of grid for data partitioning at global level: Regular grid:
based on space partitioning, it identifies the cells by dividing the 2D

space in both axes by a constraint measure; it is suitable for uniform

distributions. Quadtree-based grid: based on space partitioning, it

identifies the cells by recursively subdividing a cell (starting from

the whole space) in 4 equal cells until the number of geometries

per cell reaches a threshold; it is suitable for skewed distributions.

Rtree-based grid: based on partitioning of geometries, it identifies

the cells by recursively aggregating the geometries of the dataset

until the number of geometries per cell reaches a threshold; again

this grid is more effective for skewed datasets.

Now, in order to choose the right index type, we need to in-

troduce some criteria for assessing the effectiveness of the data

partitioning techniques with respect to the operations that we want

to perform on the indexed data. Considering the range query and

the spatial join, we define two descriptors of the partitioning pro-

duced by the index. These descriptors have to be minimized in

order to improve the effectiveness of an index on a dataset D: (i) the
%RDS (relative standard deviation with respect to the mean) of the

split cardinality (i.e. the number of geometries), denoted as d1(D);
(ii) the percentage of the reference space covered by the grid cells

that represents dead space, i.e. space containing no data (d2(D)).
Notice that, d1 affects the cost of a single map task, while d2 has

an impact on the total number of map tasks to be instantiated by the

range query or the spatial join. Considering some synthetic and real

datasets, we apply the three partitioning techniques and we obtain

the results shown in Tab. 2 which confirm the theoretical behavior

of E0 and E2. Indeed, for the uniform distribution the obtained

partitions are very similar for all indexing techniques; in this case

the regular grid can be the best choice, since its creation cost is less.

For the diagonal with buffer we can see that, the Quadtree-based

and the Rtree-based grids adapt best to the dataset distribution.

However, the partitioning produced by the Rtree-based grid has

more balanced cells w.r.t. the Quadtree-based partition, in terms of

number of geometries per cells. Finally, when a clustered dataset

is considered, we obtain the best partitioning with the Quadtree-

based grid, while the Rtree-based grid produces a partition with

lots of dead space.

At this point the idea is to exploit the exponent E0 and E2 for
choosing the right grid for data partitioning, without building all

kinds of indexes. Notice that d1 and d2 are only known after an

index has been constructed, while E0 and E2 are index-independent.
Our goal is to use E0 and E2 to choose a good index that will have

good (small) values for d1 and d2.

Property 1 (Dataset diffusion). Given a dataset D, when its
exponent E0 is close to −2.0, then the descriptor d2 for any index is
close to zero, i.e. no dead space exists.



SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA A. Belussi et al.

Table 2: Datasets used in the experiments: UD = uniform

distribution, DL = diagonal line, DLB = diagonal line with

buffer, DCB = double cluster with buffer, PRUSA = USA pri-

mary roads, PRAUS = Australian primary roads, WAUSA =

USA water areas and STAUS = Australian states. In the 6th

column: RT = Rtree, QT = Quadtree, and RG = regular grid.

Dataset Size E0 E2 d1/d2 d1/d2 d1/d2 Index

GB RG QT RT

UD 1.0 -2.00 2.00 0.1%/0.0% 0.2%/0.0% 0.5%/0.0% RG

DL 1.0 -1.13 1.07 123%/94% 122%/70% 2%/93% RT

DLB 1.0 -1.76 1.18 119%/49% 98%/28% 1%/36% RT

DCB 1.0 -1.60 0.04 155%/33% 97%/25% 2%/44% QT

PRUSA 1.0 -1.27 1.03 128%/36% 53%/49% 7%/57% RT

WAUSA 2.2 -1.84 1.60 101%/13% 62%/10% 11%/15% RG

PRAUS 1.2 -1.55 0.67 156%/27% 137%/27% 21%/22% QT

STAUS 0.3 -1.73 1.69 39%/32% 27%/26% 54%/20% RG

Property 2 (Dataset distribution). Given a dataset D, when
its exponent E2 is close to 2.0, then the descriptor d1 of a regular grid
is close to zero, i.e. every cell of the grid contains the same number of
geometries belonging to D.

Now we add to the above presented formal properties some ex-

perimental observations. Given a dataset D: (1) when the computed

E0 is around 1.0, then the dataset is skewed, has some dead space

and is located around a curve, thus it is usually connected. In this

case, the regular grid will have high values for both d1 and d2, since
the dataset cannot occupy all cells and be uniformly partitioned

into regular cells, while the Rtree-based grid will have the lowest

value for d1, because it is the technique that starts from geometries

and not from the space for clustering data, but also a good value for

d2, since data cover a connected region. Finally, the Quadtree-based
grid will have a good value for d2, but a higher value for d1 w.r.t.
Rtree-based grid. (2) When the computed E0 is around 0.0, then the

dataset is skewed, has lots of dead space and is located around two

or more points, thus it is usually not connected. In this case, the

regular grid will have high values of d1 and d2, as before; the Rtree-
based grid will have the lowest value for d1 but a higher value for
d2, since the connectivity is lost, while the Quadtree-based grid will
have better values for both d1 and d2, since it adapts better to the

clustered datasets. Similar considerations are valid for the values of

E2, where instead of dead space it detects regions of lower/higher

concentration, thus affecting more deeply the descriptor d1.
By applying Prop. 1 and 2 and the above listed observations,

we can derive a heuristic, based on the decision tree in Fig. 1, for

choosing the more effective index suitable for a given dataset D.
Notice that in the tree we use threshold values equal to −1.5, −0.5

for the choices regarding E0, while we use threshold values equal

to 1.0, 1.5 for E2, since we consider E2 only when the dataset is

spread throughout the reference space or when E0 is around 1.0,

thus in this case the values near to 0.0 cannot be reached by E2.
Experiments performed on the datasets in Tab. 2 confirm that

the heuristic produces the best index suggestion for both the spatial

join and the range query operations. For instance, when a join

is performed between PRUSA and WAUSA using the suggested

E0 ≤ −1.5

t1

E2 > 1.5

t2

E0 > −0.5

t3

Regular Grid E2 > 1.0

t4

R-tree

Quadtree

Quadtree E2 < 1.0

t5

Quadtree
R-tree

true false

true
false

true
false

true
false

true
false

Figure 1: Decision tree for data indexing in SpatialHadoop.

indexes, the time required is about 316 seconds versus about 450/550

seconds required using all the other index combinations.

4 CONCLUSION

This paper considers the impact of a skewed distribution on the per-

formances of range query and spatial join, considering as reference

framework SpatialHadoop and its partitioning techniques: regular

grid, Quadtree-based grid and R-tree based grid. We proposed a new

technique based on the Box-counting function [5] for efficiently

estimating a dataset distribution and accordingly choose the more

suitable partitioning technique. Future work regards the application

of the knowledge about dataset distribution to reduce-side joins,

the application of the box-counting function for estimating the

skewness of multidimensional and spatio-temporal datasets [2, 4].

ACKNOWLEDGMENTS

This work was partially supported by the Italian National Group

for Scientific Computation (GNCS-INDAM) and by “Progetto di

Eccellenza” of the Computer Science Dept., Univ. of Verona, Italy.

REFERENCES

[1] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy,

and T. Qadah. 2015. AQWA: Adaptive Query Workload Aware Partitioning of

Big Spatial Data. Proc. VLDB Endow. 8, 13 (2015), 2062–2073.
[2] A. Belussi, O. Boucelma, B. Catania, Y. Lassoued, and P. Podestà. 2006. Towards

similarity-based topological query languages. In 10th International Conference on
Extending Database Technology, EDBT 2006. Springer, Berlin, 675–686.

[3] A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti. 2018. What Makes

Spatial Data Big? A Discussion on How to Partition Spatial Data. In 10th Int. Conf.
on Geographic Information Science. LIPIcs, Dagstuhl, Germany, 1–15.

[4] A. Belussi, C. Combi, and G. Pozzani. 2008. Towards a formal framework for

spatio-temporal granularities. In Proceedings of the 15th Int. Workshop on Temporal
Representation and Reasoning. 49–53.

[5] A. Belussi and C. Faloutsos. 1998. Self-spacial Join Selectivity Estimation Using

Fractal Concepts. ACM Trans. Inf. Syst. 16, 2 (1998), 161–201.
[6] A. Eldawy, L. Alarabi, and M. F. Mokbel. 2015. Spatial Partitioning Techniques in

SpatialHadoop. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1602–1605.
[7] A. Eldawy and M. F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for

spatial data. In 2015 IEEE 31st Int. Conf. on Data Engineering. 1352–1363.
[8] A. Eldawy and M. F. Mokbel. 2017. Spatial Join with Hadoop. Springer Interna-

tional Publishing, 2032–2036.

[9] C. Faloutsos, B. Seeger, A. Traina, and C. Traina, Jr. 2000. Spatial Join Selectivity

Using Power Laws. SIGMOD Rec. 29, 2 (2000), 177–188.
[10] P. Lu, G. Chen, B. C. Ooi, H. T. Vo, and S. Wu. 2014. ScalaGiST: Scalable Gen-

eralized Search Trees for Mapreduce Systems. Proc. VLDB Endow. 7, 14 (2014),
1797–1808.

[11] H. Vo, A. Aji, and F. Wang. 2014. SATO: A Spatial Data Partitioning Framework

for Scalable Query Processing. In Proc. of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. 545–548.

[12] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. 2016. Simba: Efficient In-Memory

Spatial Analytics. In Proc. of the 2016 Int. Conf. onManagement of Data. 1071–1085.


	Abstract
	1 Introduction
	2 Evaluation of dataset skewness
	3 Partitioning techniques
	4 Conclusion
	Acknowledgments
	References

