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ABSTRACT
The recent advances in remote sensing technology resulted in peta
bytes of data in raster format. To process this data, it is often com-
bined with high resolution vector data that represents, for example,
region boundaries. One of the common operations that combine
big vector and raster data is the zonal statistics which computes
some aggregate values for each polygon in the vector dataset. This
paper proposes a novel and scalable algorithm for zonal statistics
that can scale to peta bytes of raster and vector data. The proposed
method does not require any preprocessing or indexing making it
perfect for ad-hoc queries that scientists usually want to run. We
implement a prototype for the proposed method and the initial
preliminary results show that the proposed method can scale up-to
a trillion pixels.
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1 INTRODUCTION
Remote Sensing Data is of vital importance to various research
domains, such as, agriculture, environmental studies, and oceanog-
raphy. It has been used to study climate change, map land and
vegetation change and has numerous other applications. Recently,
there has been a tremendous increase in the amount of this data
with the advancements in remote sensing technology. NASA EOS-
DIS provides public access to more than 17 petabytes of Earth
Observational data, which is estimated to grow to more than 330
petabytes by 2025 [3]. European Space Agency(ESA) has collected
over five petabytes of data within two years of the launch of the
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Sentinel-1A satellite and is expected to receive data continuously
until 2030 [4].

The remote sensing data is in the raster format, and its use re-
quires it to be often processed in combination with vector data.
Zonal Statistics is a fundamental operation which requires to pro-
cess the combination of raster and vector data to compute aggregate
values for a zone defined by the vector data using the values pro-
vided by the raster data. It is used in many applications, including
the study by ecologists on the effect of vegetation and tempera-
ture on human settlement [7, 8] and by geographers for analyzing
terabytes of socio-economic and environmental data [5, 6].

To make use of the ever-growing amount of spatial data, there is
a need of scalable distributed techniques that can efficiently process
it. The existing systems for big spatial data include SpatialHadoop,
GeoSpark, Simba, SciDB [10], RasDaMan [1], and GeoTrellis [9].
The above mentioned systems are very efficient, however, they
focus on either processing big raster data or big vector data, and
provide a poor performance when the combination of vector and
raster data needs to be processed.

Traditional methods to process the zonal statistics problem fo-
cused on either vectorizing the raster dataset [11] or rasterizing
the vector data [6]. Both suffer from the drawback of running a
costly conversion process which makes them unscalable to high-
resolution raster and vector data. To overcome this drawback, the
ScanLine [2] method was proposed recently which processes the
two datasets in their native format without a need for a conversion
process. It proved to be very efficient in producing the best perfor-
mance on a single machine but it was still limited to the resources
available on a single machine.

In this paper, we study the problem of distributed zonal statis-
tics on high-resolution raster and vector data. The basic ScanLine
method relies on loading the entire vector layer in memory and
hence cannot scale to large vector layers. To overcome the above
limitation, we propose an efficient MapReduce implementation
(EMI) for the zonal statistics problem. The algorithm runs in two
phases, namely, preparation and aggregation phases. The prepara-
tion phase runs on a single machine and efficiently performs the
common logic that is needed by all the machines. At the same time,
it gets the chance to look into the metadata of the raster and vector
files and decide how to efficiently split the job across machines.
The second aggregation phase is then launched as a MapReduce
job that scans the relevant parts of the raster files and computes
the desired aggregate values efficiently.

In this paper, we implement a prototype of the proposed idea and
run some preliminary experiments to study its applicability. The
results are promising and show that the proposed idea can overcome
some of the limitations of the state-of-the-art ScanLine method.
The experiments also reveal a new bottleneck in the intersection
computation that we plan to address in the future.
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Figure 1: System Overview

2 DISTRIBUTED ZONAL STATISTICS
The input to the zonal statistics problem is a raster layer, a vector
layer that comprises a set of polygons, and an aggregate function.
The output is the value of the aggregate function when applied to
all pixels that overlap with each polygon separately. For example,
this operation can compute the average temperature of each state in
the US on a specific date. In this case, the raster layer represents the
temperature values on the selected date, the vector layer represents
the polygon boundaries of the US states, and the aggregate function
is the average.

The state-of-the-art ScanLinemethod [2] runs by first calculating
all the intersections between the polygons boundaries in the vector
layer and the centers of the scan lines in the raster layer. Then, it
uses these intersections to scan over the raster layer exactly once
while incrementally computing the aggregate functions for all the
polygons in the vector layer. This method proved to be very efficient
in minimizing the memory footprint and disk IO. However, it had
a major limitation of running on a single machine which makes it
limited to the capabilities of that machine. This section describes
the proposed distributed algorithm for zonal statistics.

2.1 Overview
The proposed Efficient MapReduce Implementation (EMI) takes a
novel approach to parallelize the ScanLine method. Figure 1 pro-
vides an overview of the proposed algorithm. While analyzing the
baseline method, we observed that the bottleneck is in the IO cost of
the aggregation phase that reads the big raster data. Therefore, as a
first step for parallelizing this method, we decided to keep the first
phase (intersection computation) as a single machine process while
only distributing the aggregation phase over multiple machines
using MapReduce. As shown in Figure 1, the proposed algorithm
runs in two phases, namely, a single-machine preparation phase and
a distributed MapReduce aggregation phase both outlined below.

• Preparation Phase: As illustrated in Figure 1, this phase runs
on a single machine and performs two tasks. First, it computes
the intersections of the geometries in the vector file with the
raster layer similar to the ScanLine method. These intersections
are written to binary files called the Intersection files, which are
broadcast to all the machines. Second, it defines a logical parti-
tioning for the raster and vector files and creates RAster Plus
vecTOR splits, termed Raptor Splits, which define the smallest
units of work and are then distributed to the machines during
the second phase.

• Aggregation Phase: This phase runs as a MapReduce job, where
each mapper receives a Raptor Split that defines a subset of
raster tiles and polygons to process. The map function reads
the specified tiles and the intersection file that corresponds
to the polygons and computes a partial answer for the zonal
statistics. The partial answers are combined by polygon ID and
the reducers combine them to produce the final aggregate.

2.2 Preparation Phase
The goal of this phase is to prepare and create the MapReduce job
that computes the zonal statistics. It runs on a single machine on
the head node of the cluster and performs two tasks, namely, inter-
section file generation and raptor split generation. The intersection
file generation step computes a common structure, called intersec-
tion file, which is broadcast to all the machines to be used in the
second distributed aggregation phase. The raptor split generation
step creates a list of tasks that is distributed among machines to
perform the parallel computation. Below, we describe the two tasks
in more details.

Intersection File Generation
From our previous work, we showed that the intersection compu-
tation part requires a minimal overhead as compared to statistics
computation phase. Therefore, running it once on a single machine
is more efficient than running it thousands of times on multiple
machines. To compute the intersections, a chunk of the vector file
is loaded into memory and only the metadata of the raster file is
loaded, e.g., resolution and coordinate reference system (CRS). For
each chunk of polygons, we run the first phase of the scan line
algorithm which computes the intersections between the polygons
and each row of pixels in the raster layer. For each row, the intersec-
tions are represented as a list of pairs ⟨x ,pid⟩ sorted by x , where x
is the coordinate of an intersection and pid is the ID of the polygon
intersecting at that position. All these intersections are then writ-
ten to a compact binary file called the intersection file. If multiple
raster files are given in the input, this step uses multithreading
to compute the intersections with each raster file in parallel. For
efficiency, each thread writes its part of the intersection file to an
interim file independently and they are finally concatenated in one
intersection file. Each intersection file has a footer which stores
the range of polygon IDs covered by the corresponding chunk of
vector file and a list of offsets in the file for the sections in that file,
one for each raster file. Writing the interim files immediately is
crucial to reduce the memory overhead as both the polygons and
computed intersections can be evicted from memory right after.
Once all threads finish, one thread concatenates the sections that
correspond to one file and adds the footer to it. The concatenation
step does not add a huge overhead and it makes the organization
of these files easier.

Raptor Split Generation
The second task, Raptor Split Generation, performed by this phase,
generates Raptor Splits using the RaptorInputFormat. In Hadoop, the
InputFormat is the component that splits the input file into equi-
sized splits to be distributed on the worker nodes. These splits are
mapped one-to-one to mappers. Therefore, each split defines a unit
of work. A corresponding record reader uses the split to extract key-
value pairs that are sent to the map function for processing. Since



Distributed Zonal Statistics of Big Raster and Vector Data SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA

our unit of work is a combination of raster plus vector data, we
define the new RaptorInputFormat, RaptorSplit, RaptorRecordReader,
and RaptorObject. Starting with the smallest one, the RaptorObject
contains vector chunk ID, a raster file ID, and a tile ID in that raster
file. In the next phase, the map function processes one RaptorObject
at a time. The RaptorSplit stores a vector chunk ID, a raster file ID,
and a range of tile IDs in that raster file. The RaptorSplit defines a
unit of work given to a mapper. We can control the amount of work
given to each mapper by adjusting the number of tiles in the range.
The RaptorRecordReader takes one RaptorSplit and iterates over
all the RaptorObjects that it represents. Finally, the RaptorInput-
Format takes all the input to the problem, i.e., the raster files and
all intersection file, and produces a list of RaptorSplits that define
the map tasks given to worker nodes. Notice that the preparation
phase only deals with the RaptorInputFormat and generates a list
of RaptorSplits out of the input. Therefore, this single-machine step
is extremely fast as it does not involve any processing of either
vector or raster data.

The information needed to logically partition the raster file is
generated when the intersection of a raster file with a vector chunk
is computed. The definition of the tiles is part of the metadata of the
raster file which is loaded to compute the intersections. Moreover,
for efficiency, while computing the intersections, we keep track of
the tiles that actually overlap the polygons and we make sure to
generate RaptorSplits that cover only those tiles. In other words,
this step prunes all the tiles that do not contribute to the answer.

The number of generated RaptorSplits depends on the total num-
ber of Intersection files, raster tiles, and number of tiles. For effi-
ciency, each RaptorSplit is limited to one vector chunk and one
raster file. This ensures that each mapper will need to load exactly
one section of the intersection file and open one raster file only.

2.3 Aggregation Phase
This phase is implemented as one MapReduce job, where each ma-
chine runs a map function to compute partial Zonal Statistics for
the RaptorSplit assigned to it. The RaptorSplit is a set of RaptorOb-
jects, where each object contains a vector chunk ID, a rater file
ID, and a tile ID. The mapper starts by reading the section of the
intersection file identified by the chunk ID and raster file ID. A
copy of it is cached to process future tiles in the same raster file.
Then, the mapper processes the tile identified by the tile ID by
loading and aggregating the pixels identified by the ranges in the
intersection file. The output is a set of pairs ⟨pi ,ai ⟩, where pi is the
polygon ID and ai is the statistics computed for pi in the given tile.
The reduce function merges the partial statistics ai belonging to
the same polygon pi and outputs the final aggregation

∑
ai .

2.4 Hadoop Vs Spark
Even though the Efficient MapReduce Implementation could have
been implemented using both Spark and Hadoop, we chose to do
it in Hadoop. The strength of the proposed implementation lies in
parallelizing the costly I/O aggregation step. While Spark can be
slightly faster by improving the computation, Hadoop is expected
to be on par with it as it follows the same logic.

Table 1: Vector and Raster Datasets

Vector datasets
Dataset Polygons Segments #seдments

#polyдons File Size
Counties 3,108 51,638 17 978 KB
States 49 165,186 3,370 2.6 MB
Boundaries 284 3,817,412 13,440 60 MB
TRACT 74,133 38,467,094 519 632 MB
ZCTA5 33,144 52,894,188 1596 851 MB

Raster datasets
Dataset Resolution File Size
glc2000 40,320×16,353 629 MB
MERIS 129,600×64,800 7.8 GB
US-Aster 208,136×89,662 35 GB
Tree cover 1,296,036×648,018 782 GB

3 PRELIMINARY RESULTS
This section provides an experimental evaluation of the Efficient
MapReduce Implementation (EMI) as compared to the Scanline
Method using real data. Section 3.1 describes the setup of the exper-
iments and the datasets used, while Section 3.2 provides the results.

3.1 Setup
We run all the experiments on a cluster with one head node and 12
worker nodes. The head node has Intel(R) Xeon(R) CPU E5 − 2609
v4 @ 1.70GHz processor, 128 GB of RAM, and 2x8-core processors
running CentOS and Oracle Java 1.8.0_131. The worker nodes have
Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz processor, 64 GB of
RAM, and 2x6-core processors running CentOS and Oracle Java
1.6.0_31-b04. The methods are implemented using the open source
Geotools library 17.0.

In all the techniques, the aggregate function computes the four
aggregate values, minimum, maximum, sum, and count and per-
form comparison based on end-to-end running time. Table 1 lists
the datasets that are used in the experiments. The vector layers rep-
resent the US continental counties and US continental states with
3,000 and 49 features respectively. The Large-Scale International
Boundaries (LSIB) includes geographic national boundaries for 249
countries and disputed areas. The TRACT and ZCTA5 dataset are
a part of TIGER 2017 dataset. The raster datasets come from vari-
ous government agencies. The GLC2000 and MERIS 2005 datasets
are from the European Space Agency with pixel resolutions of
0.0089 decimal degrees (1km) 0.0027 (300m) respectively. The US
Aster dataset originates from the Shuttle Radar Topography Mis-
sion (SRTM) and covers the continental US. Hansen developed the
global Tree Cover change dataset which covers the entire globe.
Both datasets have a spatial resolution of 0.00028 decimal degrees
(30m).

3.2 Overall Comparison
Figure 2 provides a comparison of the Efficient MapReduce Imple-
mentation (EMI) and the Scanline Method [2]. It can be observed
that the Efficient MapReduce Implementation is scalable for larger
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Figure 2: Overall comparison of ScanLine and EMR algo-
rithms for different vector and raster datasets

vector datasets (TRACT and ZCTA5), while the single-machine
ScanLine Method fails (runs out of memory) for them. For large
raster datasets, the proposed EMI algorithm is much faster than
the Scanline algorithms with up-to an order of magnitude speedup.
There is an expected decrease in performance for smaller raster
datasets due to the additional overhead incurred in setting up a
MapReduce job in Hadoop. Its performance is at par to ScanLine
method for the MERIS dataset and Boundaries dataset, and then
increases as size of one of the raster or vector datasets increases.

The scalability of the proposed algorithm can be attributed to
decision of creating vector chunks and interim files. Its gain in per-
formance over single-machine ScanLine Method for larger datasets
is due to the distributed computation of Zonal Statistics.

3.3 Breakdown of Total Running Time
Figure 3 shows the breakdown of the total running time for EMI
into two phases, preparation phase and aggregation phase. All the
numbers shown in Figure 3 are normalized to the overall running
time for comparison. The actual numbers are same as in Figure 2.

This experiment reveals a new bottle neck in the preparation
phase that only appeared after parallelizing the aggregation phase.
As shown in the figure, the running time is dominated by the prepa-
ration phase for the combination of smaller raster datasets (GLC200
and MERIS) with the larger vector datasets (TRACT and ZCTA5).
For all other combinations of raster and vector datasets, the running
time is dominated by the aggregation phase. The reason for the dom-
ination of preparation phase for GLC200 andMERIS against TRACT
and ZCTA5 datasets is because of the large number of geometries
in the vector files for whom the intersections with the raster file
must be computed. Also, the small size of raster files lead to a small
number of logical partitions for which the zonal statistics must be
computed, hence the aggregation phase takes less time than the
preparation phase, for these datasets. Moreover, the computation of
Zonal Statistics require reading the required pixel values from disk
for each Raptor Split. This makes the aggregation phase dominated
by disk IO for reading only the required pixel values. This leads to
the running time for aggregation phase becoming dominant over
that for preparation phase for large raster files.
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Figure 3: Breakdown of running time for EMI

4 CONCLUSION AND FUTUREWORK
In this paper, we presented a distributed MapReduce algorithm
for the zonal statistics problem. The proposed algorithm provides
key ideas that can carry on to other distributed algorithms for
processing big vector and raster datasets. It runs in two phases, a
single-machine preprocessing step that computes a common data
structure to be used in parallel, and defines the tasks that will be
executed in parallel. The second phase runs in parallel and aims at
reading and processing the big raster files efficiently. Our exper-
iments show that the proposed algorithm can scale to very large
data whereas the baselines could not handle big vector or raster
data. We intend to study in future the effect of RaptorInputFormat
and creation and compression of intersection files on the proposed
algorithm. We also intend on exploring the parallelization of prepa-
ration phase and using indexing techniques to spatially partition
vector data and(or) raster data, to provide a better distribution of
work among machines.
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