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ABSTRACT
The rapid growth of big spatial data urged the research community
to develop several big spatial data systems. Regardless of their archi-
tecture, one of the fundamental requirements of all these systems
is to partition the data efficiently across machines. A widely-used
technique for big spatial indexing is to reuse existing search trees as-
is, e.g., the R-tree family, by building a temporary tree for a sample
of the input and use its leaf nodes as partition boundaries. However,
we show in this paper that this approach has major limitations that
make it unsuitable for the big data environment. This paper studies
the use of three popular trees from the R-tree family to index big
spatial data, namely, the original R-tree by Guttman, R*-tree, and
RR*-tree. We show that the entire family of R-trees is not ready
to grow in the big data forest due to fundamental limitations in
their design. To overcome these limitations, we propose three new
indexes, namely, R-Grove, R*-Grove, and RR*-Grove, which are
fundamentally modified to work with big data while inheriting the
main characteristics of their traditional index counterparts. With
all the proposed indexes publicly available as open source, we hope
that these new indexes will be adopted by the community to better
serve big spatial data research.
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1 INTRODUCTION
The recent few years witnessed a rapid growth of big spatial data
collected by different applications such as satellite imagery, social
media analytics, smart phones, and VGI. Traditional Spatial DBMS
technology could not scale up to these petabytes of data which led
to the birth of many big spatial data management systems such as
SpatialHadoop [3].
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A common need for all distributed big spatial data systems is
spatial indexing which partitions the data across machines in a
spatial-aware manner. A common method that we first introduced
in SpatialHadoop [3], is the sample-based STR partitioner. This
method picks a small sample of the input to determine its distribu-
tion, packs this sample using the STR packing algorithm [5], and
then uses the boundaries of the leaf nodes to partition the entire
data. Figure 1(a) shows an example of an STR-based index where
each data partition is depicted by a rectangle. The method was
later generalized to other types of indexes such as Quad-tree and
Hilbert R-trees. That STR-based index was very attractive due to its
simplicity and excellent load balancing which is very important for
distributed applications. Its simplicity urgedmany other researchers
to adopt it in different big spatial systems including systems for
in-memory processing, spatial SQL processing, visualization, and
spatial join.

Despite its wide use, the STR-based index has major limitations
in its quality as a spatial index which is apparent in Figure 1(a). In
fact, anyone who is familiar with spatial indexes would immediately
spot the very thin and very wide partitions which reduce the quality
of the index, i.e., the query performance. Therefore, we revisit the
distributed spatial indexing and study the use of three popular R-
tree-based indexes to index big spatial data, namely, the original
R-tree [4], the R*-tree [1], and its successor RR*-tree [2].

In this paper, we study two general approaches for adopting
existing R-trees, a black-box approach, and a gray-box approach.
In the black-box approach, we pick a sample of the input, load it
into any of the standard R-trees, and use its leaf nodes as Minimum
Bounding Rectangles (MBRs) of partitions for the big index. This
approach is simple to use and has the advantage of using the existing
tree with all its optimizations. However, it has twomajor limitations
that urged us for proposing the novel gray-box implementation
described shortly.

The first limitation of the black-box implementation is that all
R-trees, like most traditional tree-based indexes, can produce leaf
nodes with a huge variance in size which result in a load imbalance
in the distributed index. While some indexing techniques, including
STR, can overcome this limitation, they produce indexes of a low
quality such as the one in Figure 1(a). On the other hand, the R-tree
family can produce higher-quality indexes but they only guarantee
that the size of each node is in the range [m,M]. By design,m ≤
M/2 and m is usually set to a smaller number, e.g., m = 0.3M
in R*-tree and m = 0.2M in RR*-tree. This configuration results
in many underutilized nodes which were not bad in traditional
single-machine systems; in fact, they were even desirable as they
can accommodate future inserts efficiently. However, distributed
indexes do not support in-place inserts due to a common limitation
in distributed file systems. On the other hand, they result in a huge

https://doi.org/10.1145/3274895.3274984
https://doi.org/10.1145/3274895.3274984
https://doi.org/10.1145/3274895.3274984


SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA Tin Vu and Ahmed Eldawy

(a) STR-based index [3]. All the thin and wide partitions reduce the query efficiency. (b) The proposed R*-Grove index with square-like and balanced partitions

Figure 1: An OpenStreetMap dataset indexed with the existing STR-based index and the proposed R*-Grove index

variance in partition sizes which hurts the load balance. Therefore,
near 100% utilization of partitions is important for efficiency.

The second limitation is that R-trees are constructed on a sample
which does not necessarily cover the entire input space. As a result,
while partitioning the actual data, there will be records that do not
fall in any of the partitions and cannot be assigned. Assigning these
records to any of the existing partition will cause these partitions
to expand and they are likely to produce overlapping partitions.
While this is not a serious issue for simple operations such as range
query and kNN, some operations require disjoint partitioning for
correctness such as visualization and computational geometry.

In order to overcome the limitations of the black-box imple-
mentation, this paper also proposes a gray-box method for R-tree,
R*-tree, and RR*-tree that inherit their main characteristics while
overcoming the above limitations; we call them R-Grove, R*-Grove,
and RR*-Grove, to distinguish them from the traditional trees. Fig-
ure 1(b) gives an example of an R*-Grove index which avoids all
the thin and wide partitions that degraded the performance of the
previous STR-based index. In addition, the R*-Grove produces an
excellent load balancing between the partitions and disjoint parti-
tions.

The key idea of the R-Grove index is to start with one partition
that contains all sample points and then use the node split algorithm
in the corresponding R-tree to split it into smaller partitions. While
splitting, we introduce new constraints to ensure that the utilization
of leaf nodes will not fall below a prespecified threshold, e.g., 95%.
In addition, instead of computing the MBR of the leaf nodes based
on the sample, we keep track of the history of all node splits in an
efficient and concise in-memory data structure that guarantees any
record is always assigned to a partition while keeping the partitions
disjoint.

Given the wide adoption of our previous STR-based index, we
believe the proposed indexes will be widely used for standard spa-
tial indexes in big spatial data systems and for distributed spatial
algorithms such as spatial join, visualization, and computational
geometry.

The rest of this paper is organized as follow. Section 2 gives a
background about big spatial indexing then provides the black-box
R-tree indexes. Section 3 describes the gray-box R-Grove indexes.
Section 4 gives some preliminary results of the proposed work.
Finally, Section 5 concludes the paper.

2 BLACK-BOX R-TREE INDEXING
In this paper, all the indexing algorithms rely on sampling-based in-
dexing method, which consists of three phases: sampling, boundary
computation, and physical partitioning. Phase 1 draws a random
sample of the input to infer its distribution. Phase 2 uses this sam-
ple to divide the space and define partition boundaries. Phase 3
partitions the data by assigning each record to one of the partitions.
More details can be found in [3]. The work in this paper focuses on
Phases 2 and 3.

In this section, we propose a first-cut solution to using R-tree in-
dexes for big data. This method customizes Phase 2 in the sampling-
based indexing by using any existing R-tree index as a black box. It
starts by initializing an empty R-tree (or R*-tree or RR*-tree) while
setting the maximum node capacity M = C . The minimum node
capacitym is set to 0.5M , 0.3M , and 0.2M for R-tree, R*-tree, and
RR*-tree, respectively, as recommended for each index structure.

All the R-tree implementations share two common limitations.
First, the leaf nodes can contain any number of points in the range
[m,M]. For example, in RR*-tree m = 0.2M which means that
the ratio of the size between the largest and smallest leaf nodes
can be up-to 0.2. By R-tree design, the largest allowed value for
m is ⌊M/2⌋. If m is set to a larger value, the node split method
will always fail when splitting a node of sizeM + 1. In traditional
single-machine systems this is usually a desirable feature as all the
partially filled nodes can accommodate future inserts without any
need for splitting. However, since big-spatial indexes are static by
nature, a near 100% utilization of all nodes is desirable as it ensures
an optimum balance load across machines.

The second limitation is that all those indexes are data-
partitioning indexes. This means that each record belongs to one
leaf node which results in potential overlap between leaf nodes.
This is fine for simple database operations such as range query,
kNN, and spatial join. However, for some analytical jobs that run
on big-data systems, disjoint space partitioning is required. For
example, many computational geometry operations rely on disjoint
partitions to be able to merge the partial answers in each partition.
Similarly, big-spatial data visualization requires disjoint partition-
ing to smooth the data in each partition without worrying about
overlapping regions.
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3 GRAY-BOX R-TREE INDEXING
This section describes the novel gray-box method to implement the
three indexes, R-tree [4], R*-tree [1], and RR*-tree [2]; for clarity,
we call them R-Grove, R*-Grove, and RR*-Grove. First, all three
indexes overcome the first limitation (huge disparity in partition
sizes) by employing a novel improvement that allows us to freely
set the minimum split size m to any value in the range (0,M),
even larger thanM/2. Second, the R*-Grove and RR*-Grove employ
an additional improvement that allows them to produce disjoint
indexes while maintaining the high quality of the indexes. Below,
we describe the two key ideas that we propose to support the three
Grove indexes.

3.1 Key Idea 1: Balanced Partitions
The first key idea is used to produce balanced partitions by allowing
theminimum node sizem to be set to any values includingm > M/2
which is not allowed in traditional R-trees. This idea is employed in
the three Grove indexes to produce balanced partitions by setting
m = 0.95M , for example. The limitationm < M/2 in traditional
R-trees is required only to ensure that the node splitting algorithm
would succeed. For example, if M = 10 then a node is split when
it contains 11 records. In this case, to split it into two nodes, at
least one of them should have five elements or less, i.e.,m ≤ 5. To
overcome this limitation, we observe that we do not have to insert
records one-by-one. Rather, we can partition the space in a top-
downmanner where we look at all the (sample) points and partition
them recursively until we produce the leaf partitions. Therefore, we
add a condition while splitting the data to ensure that we eventually
produce leaf partitions that are in the range [m,M]. For example,
assume that we have 28 points and we would like to partition them
into three partitions withm = 9 andM = 10. Obviously, there is a
correct answer with three partitions of sizes 9, 9, and 10. However, if
we apply the traditional node splitting algorithm as-is, it might start
by producing two partitions each of size 14 which is considered
incorrect because they cannot be further split. In this case, we say
that the size S = 28 is valid because it can be partitioned correctly,
while S = 1 is invalid because it cannot be further partitioned. In
the same way, we can say that according to m = 9 and M = 10,
the partition sizes 26 and 62 are invalid while 27 and 63 are valid.
Obviously, if we keep the partition size valid as we recursively
partition the sample points, we will end up with valid partitions
with sizes in the range [m,M]. For a partition size S to be valid, it
has to satisfy the inequality ⌈S/M⌉ ≤ ⌊S/m⌋. The proof is omitted
for the space limitation.

To apply this idea in the three Grove indexes, we start with all
the sample points in one large partition. If the sample size is invalid
according to the validity test, the algorithm fails right-away as there
is no valid partitioning for the size. In this case,m might need to
be reduced to relax the validity condition. Otherwise, we apply the
appropriate node splitting algorithm.

For R-Grove, we use the linear-time node splitting algorithm [4]1.
After the node splitting algorithm is done, we test the two partition
sizes for validity. If any of them is invalid, we start moving records
one-by-one from the larger partition to the smaller partition until

1We also tried the quadratic-cost algorithm but it was impractical due to the large
sample size.

100

1000

10000

0 16 32 48 64 80

T
im

e 
in

 s
ec

on
ds

 (
lo

g-
sc

al
e

)

Dataset size in GB

R-Tree-BB
R*-Tree-BB

RR*-Tree-BB
R-Grove

R*-Grove
RR*-Grove

STR

(a) Total indexing time

1

10

100

1000

10000

0 16 32 48 64 80

T
im

e 
in

 s
ec

on
ds

 (
lo

g-
sc

al
e

)

Dataset size in GB

R-Tree-BB
R*-Tree-BB

RR*-Tree-BB
R-Grove

R*-Grove
RR*-Grove

STR

(b) Phase 2: Boundary computation
time

Figure 2: Indexing time as the index size increases

both are valid. Since the original non-partitioned size was valid,
it is guaranteed that this technique will terminate with two valid
partitions.

For R*-Grove and RR*-Grove, we employ their node splitting
algorithms. For both, the algorithm works by first choosing a split
axis and then a split point. The split-axis algorithm is used as-is
with no changes. However, the split-point algorithm is changed
to produce two valid partitions. The split-point algorithm simply
scans over the points along the chosen axis and gives a cost to each
possible split. Finally, it chooses the split with the minimum cost.
We modify this algorithm to increase the cost to∞ if at least one
of the two partition sizes is invalid. This way, the algorithm will
always produce two valid partitions.

3.2 Key Idea 2: Disjoint Partitions
All the three indexes that we consider in this paper are data parti-
tioning indexes. This means that each record is assigned to exactly
one leaf node while the boundaries of the nodes are allowed to
overlap. In some big data analytics algorithms, it is required to
produce disjoint partitions while replicating some records to all
overlapping partitions; this is sometimes known as space parti-
tioning. Unfortunately, this requirement cannot be easily satisfied
because the partition boundaries are built on sample points which
do not necessarily cover the entire input space. In other words,
while partitioning the actual records in Phase 3, there will be some
records that do not overlap any of the existing partitions but they
still need to be assigned to at least one partition without producing
any overlaps.

To overcome this limitation, we employ an idea that does not
use partition boundaries during the partitioning phase. Rather, it
keeps the history of all the split-axis and split-point algorithms
employed during Phase 2. This history of splits is kept in an efficient
data structure that is similar to the K-d tree index structure. While
partitioning the records, if a disjoint partitioning is desired, the
minimum bounding rectangle (MBR) of each record is compared
to the split data structure to find all the overlapping partitions.
Unlike the partition boundaries which do not necessarily cover the
entire input space, this auxiliary search data structure is designed
to always cover the entire input space. Hence, it can always be used
to produce disjoint partitions.
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Figure 3: Index quality as the input size increases

4 PRELIMINARY RESULTS
In this section, we carry out some preliminary results to verify
the advantages of the proposed indexes. We choose the STR index
as the baseline since it is widely used in many big spatial data
indexing systems. Based on that baseline, we will compare the
performance of the six indexes proposed in this paper, the three
black-box indexes, R-tree, R*-tree, and RR*-tree, and the three gray-
box indexes, R-Grove, R*-Grove, and RR*-Grove. We used a 84-GB
OSM Point dataset and a 12-node cluster running on Hadoop 2.9.0.

In this experiment, we vary the input dataset size by using ran-
dom samples of different sizes and measure the total time to index
the entire dataset. Figure 2(a) shows the indexing time for the STR
as a baseline and the six proposed R-tree implementations. Except
for RR*-Grove, all indexes provide a similar indexing time as they
are driven mainly by the parallel Phases 1&3 which are very similar
for all of them. To further investigate the behavior of the indexing
time, Figure 2(b) provides the running time for Phase 2, boundary
computation, which runs on a single machine. This figure clearly
highlights the difference between the various techniques. R-Grove
is clearly the fastest as it builds on the linear-time R-tree splitting
algorithm. The STR algorithm requires two rounds of sorting, one
for each dimension. The R*-Grove and RR*-Grove indexes require
multiple rounds of sorting which is clear in their performance.

Figure 3 shows the index quality in terms of Q1: total area, Q3:
total margin, and Q4: disk utilization, and Q5: standard deviation
of partition sizes. In Q1, Q3, and Q5, the lower the value the bet-
ter, while in Q4, the higher the better. Glancing through the four
figures, it is hard to identify one index that is a clear winner. For
example, while the RR*-Grove is the best in Q1, it is the worst in
Q3. There are three interesting observations, though. First, both
R-tree and R-Grove indexes do not seem to be competitive which
is expected given the superiority of the R*-tree and RR*-tree. Sec-
ond, the black-box techniques seem to behave better than their
gray-box counterparts especially in Q3, total margin. The reason is
that the black-box implementation compacts all the partitions to
the contained sample points while the gray-box implementation
uses the auxiliary search structure which implicitly enlarges some
partitions to cover the entire space. The third observation is that
the gray-box techniques provide the best disk utilization thanks to
the highm/M ratio.

5 CONCLUSION
This paper addresses the problem of building R-tree-based indexes
for big spatial data. We proposed two approaches, a black-box
approach which deals with existing R-tree indexes as a black-box,
and gray-box techniques, which utilizes the characteristics of the
R-tree indexes while adopting them for big data. We employed
both techniques to implement R-tree, R*-tree, and RR*-tree black-
box indexes, and R-Grove, R*-Grove, and RR*-Grove, as the gray-
box indexes. We highlighted two limitations in black-box indexes,
namely, low disk utilization due to the inherently smallm/M ratio,
and the lack of support for disjoint indexes. We showed that we can
overcome both limitations in the gray-box indexes in addition to
improving the performance. An extensive experimental evaluation
was carried out on big spatial datasets which showed that the
proposed indexes can scale well to big data with the gray-box
indexes overcoming the two limitations discussed above. In general,
we found that, while not always the best, the R*-Grove index is
pretty stable across the different experiments and we believe that
it can replace the baseline STR algorithm that is currently widely
used in big spatial data systems.
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