
Large Scale Analytics of Vector+Raster Big Spatial Data∗

Ahmed Eldawy
Computer Science and Engineering
University of California, Riverside

eldawy@ucr.edu

Lyuye Niu
Computer Science and Engineering
University of California, Riverside

lniu001@ucr.edu

David Haynes
Program in Health Disparities

University of Minnesota, Twin Cities
dahaynes@umn.edu

Zhiba Su
Computer Science and Engineering
University of California, Riverside

zhsu@engr.ucr.edu

ABSTRACT
Significant increases in the volume of big spatial data have driven
researchers and practitioners to build specialized systems to process
and analyze this data. Existing efforts focus on either big raster data,
e.g., remote sensing data or medical images, or big vector data, e.g.,
geotagged tweets or trajectories. However, when raster and vector
data mix, one dataset must be converted to the other representation
requiring vector-to-raster or raster-to-vector transformation before
processing, which is extremely inefficient for large datasets. In this
paper, we advocate a third approach that mixes the raw representa-
tions of both vector and raster data in the query processor. As a case
study, we apply this to the zonal statistics problem, which computes
the statistics over a raster layer for each polygon in a vector layer.
We propose a novel method, called Scanline method, which does
not require a conversion between raster and vector. Experimental
evaluation on real datasets as large as 840 billion pixels shows up
to three orders of magnitude speedup over the baseline methods.

CCS CONCEPTS
• Information systems→ Database query processing;

KEYWORDS
Big Spatial Data, Raster, Vector, Satellite, Clipping
ACM Reference format:
Ahmed Eldawy, Lyuye Niu, David Haynes, and Zhiba Su. 2017. Large Scale
Analytics of Vector+Raster Big Spatial Data. In Proceedings of SIGSPATIAL’17,
Los Angeles Area, CA, USA, November 7–10, 2017, 4 pages.
https://doi.org/10.1145/3139958.3140042

1 INTRODUCTION
The rapid advancement in sensing technology resulted in a tremen-
dous amount of spatial data collected in various domains. For exam-
ple, NASA EOSDIS provided public access tomore than 17 petabytes
∗This work is supported in part by the University of California, Riverside and by the
National Institutes of Health under grant NIH 5T32CA163184

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5490-5/17/11. . . $15.00
https://doi.org/10.1145/3139958.3140042

(a) Input (b) Vectorize (c) Rasterize

Figure 1: Existing approaches

of Earth observational data, which is estimated to grow to more
than 330 petabytes by 2025 [5]. Similarly, the Sentinel-1A satel-
lite launched by the European Space Agency (ESA) collected five
petabytes of data in two years and expects to receive data con-
tinuously until 2030 [6]. Additionally, the European XFEL project
collects X-ray images of atoms at a rate of up to 10 petabytes per
year [15].

This growth urged many researchers to build new systems
for big spatial data including SpatialHadoop [3], Hadoop-GIS [1],
GeoSpark [17], Simba [16], SciDB [13], RasDaMan [2], and GeoTrel-
lis [11]. However, all these systems focus on processing either
big raster data [2, 11, 13], such as satellite images, or big vector
data [1, 3, 12, 14, 16, 17], such as map data or geotagged objects.
While these systems are very efficient in their core function, they
provide poor performance when users combine both vector and
raster data in the same query.

This paper addresses the zonal statistics problem, which aggre-
gates all the values from the raster layer that overlap with a set of
polygons, e.g., computes the average temperature for each state in
the US. This query has many applications including the study by
ecologists of the effect of vegetation and temperature on human
settlement [9, 10] and by geographers for analyzing terabytes of
socio-economic and environmental data [7, 8]. As depicted in Fig-
ure 1, the existing methods follow one of two approaches, vectorize
or rasterize. The vectorize method converts each pixel in the raster
layer to a point and runs a point-in-polygon query. On the other
hand, the rasterize method converts each polygon to a set of pixels
in a raster layer and runs an overlay method to combine it with the

https://doi.org/10.1145/3139958.3140042
https://doi.org/10.1145/3139958.3140042

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Ahmed Eldawy, Lyuye Niu, David Haynes, and Zhiba Su

raster layer. As the size of the raster layer increases, up to trillions
of pixels, the conversion step becomes very expensive and throttles
the performance of the query.

This paper proposes a new method, called scanline, which pro-
cesses the inputs in their raw format and does not require any
conversion to an intermediate form. The proposed method adopts
the polygon filling algorithm from the graphics community and
uses it to efficiently retrieve and process the relevant pixels in the
raster layer. While previous methods suggest a preprocessing step
to unify the representation of the two inputs, the proposed method
shows that we can avoid that preprocessing step altogether and deal
directly with the inputs in their raw format. While the proposed
method can be used as a building block in parallel and distributed al-
gorithms, this paper focuses on the single-machine implementation
and we leave parallel implementation as a future work.

This research is an invitation to the SIGSPATIAL community to
join our efforts in revisiting the existing operations that mix vector
and raster data to develop additional optimizations that will benefit
the entire community. We believe that it is important to reduce
the gap between vector and raster query processing to achieve the
full potential of the system’s capabilities. Our proposed algorithm
for the zonal statistics problem is a proof-of-concept showing how
combining the two datasets in the query processor can achieve
much higher performance. There is still additional effort required
to extend these approaches to other problems and other platforms,
such as parallel systems.

The rest of this paper is organized as follows. Sections 2 describes
the baseline methods and reviews the related work. Section 3 de-
scribes the proposed scanline method. Section 4 gives details of the
experimental evaluation. Finally, Section 5 concludes the paper.

2 BASELINE METHODS
This section defines the zonal statistics problem and gives two
baseline methods based on vectorization and rasterization.

2.1 Problem Definition
The input to the problem is a raster layer r , a vector layer v , and
an accumulator acc . The raster layer, consists of a two-dimensional
matrix of values, e.g., temperature, and a transformation function,
called grid-to-world (G2W). The G2W function maps the location
of each entry in the matrix, row and column, to a geographic loca-
tion, e.g., latitude and longitude. The inverse of (G2W) is called
(W2G). The vector layer v consists of a set of polygons which are
usually disjoint and each polygon is represented as a list of points
each defined by a geographic location. The accumulator acc is a
user-provided function which takes pixel values, one at a time, and
computes the statistics of interest. For example, one accumulator
can compute the average value while another accumulator can
compute a histogram for the values. The output is a value for the
accumulator for each polygon in the vector layer. For example, if
r represents the temperature in the world, v represents the 50 US
States, and acc is an average accumulator, the output of this problem
will be the average temperature for each state in the US.

2.2 Vectorization Method
There are several systems that focus on processing big vector data
such as SpatialHadoop [3], Hadoop-GIS [1], MD-HBase [12], ESRI
on Hadoop [14], GeoSpark [17], and Simba [16], among others. To
run the zonal statistics operation, these systems can run a vector-
ization based method that consists of three steps, vectorize, spatial
join, and grouped aggregate as described below.

The vectorize step converts the raster layer from the raster repre-
sentation to a vector representation. It converts each pixel to a point
where the location of the point is determined using the (G2W)
mapping. Each point is associated with the corresponding value
from the raster layer, e.g., temperature. The spatial join step runs
an inner-join operation between the set of polygons and the set
of vectorized points to produce polygon-point pairs for each point
that lies inside a polygon. Finally, the grouped aggregate step groups
all pairs by polygon ID and runs the user-defined accumulator on
the values in each group to produce the final result.

The main drawback of this method is that as the resolution
of the raster layer increases, more points will be created in the
vectorization step, hence, more point-in-polygon tests will occur
on the spatial join step. With hundreds of billions of pixels, this
method takes excessively long time as we show in Section 4.

2.3 Rasterization Method
Similar to the big vector data systems, there were several systems
that were designed to process big raster data such as SciDB [13],
RasDaMan [2], and GeoTrellis [11]. These systems can run the zonal
statistics problem in three steps, rasterize, clip, and aggregate, as
described below.

The rasterize step uses the traditional polygon filling algorithm
to produce a new raster layer, called the mask, which has the same
size of the input raster layer, called the data layer. In the mask
layer, pixels that are inside the polygon have values of one and
other pixels have the value zero. The clip step overlays the mask
and data layers, which have the same size, and removes all pixels
in the data layer that have corresponding zeros the mask layer by
giving them a special marker value, e.g., -1. Finally, the aggregate
step computes the desired aggregate function, e.g., average, on the
retained (non-removed) pixels. These steps are repeated for each
polygon in the vector layer.

The main drawback of the above algorithm is that the size of
the mask layer grows massively for high-resolution data which
requires extra storage and processing.

3 SCANLINE METHOD
In this section, we propose a new algorithm for the zonal statistics
problem called the scanline method. Unlike the baseline methods
described in Section 2, this method processes the two inputs in their
raw format and does not require an explicit conversion from raster
to vector or vice-versa.

Figure 2 shows a high-level overview of the scanline method
which runs in three steps. In step 1, the polygon boundaries are
scanned once to locate the lowest and highest points in the polygon,
e.g., the two points with the minimum and maximum latitudes.
These two points are mapped to the raster layer using the W2G
mapping to locate the range of rows to process in the raster layer.

Large Scale Analytics of Vector+Raster Big Spatial Data SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

(a) Input (b) Step 1: Locate first and last
row

(c) Step 2: Find intersections with scan
lines

(d) Step 3: Process the pix-
els

Figure 2: Scanline method

Step 2 runs several scanlines from the center of each pixel and
finds the intersections of each scanline with the polygon boundary.
More specifically, for each row in the range computed in step 1, it
uses the G2W mapping to find the corresponding y-coordinate in
the vector space. For each y-coordinate, it computes the intersec-
tion between the horizontal scanline at that y-coordinate and each
segment on the polygon. The intersections in each row are then
sorted by their x coordinates.

Step 3 maps each intersection to a pixel in the raster layer. Then,
the raster layer is processed row-by-row by processing every con-
secutive range of pixels between two intersections in each row. This
is the only step that actually requires access to the values in the
matrix of the raster layer. This means that the scanline method only
reads and processes the pixels that lie inside the polygon which
makes it optimal in terms of disk IO.

Notice that this algorithm assumes that all pixels in each row in
the raster layer map to a horizontal line, i.e., scanline, in the vector
layer. This property holds if both the vector and raster layers belong
to the same coordinate reference system (CRS). We guarantee this
by projecting the polygon to the same coordinate reference system
of the raster layer.

This algorithm overcomes the limitation of the two baseline
methods described in Section 2. First, it only requires a minimal
intermediate storage for the intersection points. Even these inter-
sections can be done row-by-row and we do not have to store all
intersections of all rows at the same time. Second, it only accesses
the pixels that are inside the polygon which improves disk IO for
very large raster layers. Third, it does not require any complicated
point-in-polygon tests which makes it much faster than the vec-
torization method. As we will show in Section 4 this method is
IO-bound which makes it optimal for the processing perspective.

4 EXPERIMENTS
This section provides an exhaustive experimental evaluation using
real data to show the efficiency of the proposed algorithms. Sec-
tion 4.1 describes the setup of the experiments while Section 4.2
provides the results.

Table 1: Vector and Raster Datasets

Vector datasets
Dataset Polygons Segments #seдments

#polyдons File Size
Counties 3,108 51,638 17 978 KB
States 49 165,186 3,370 2.6 MB
World 284 3,817,412 13,440 60 MB

Raster datasets
Dataset Resolution in Pixels File Size
glc2000 40,320×16,353 629 MB
MERIS 129,600×64,800 7.8 GB
US-Aster 208,136×89,662 35 GB
Tree cover 1,296,036×648,018 782 GB

4.1 Setup
We run all the experiments on a single machine with Intel Xeon
E3-1220 v5 3.00GHz quadcore processor, 64 GB of RAM, and a 2 TB
HDD running Ubuntu 16.04.2 and Oracle Java 1.8.0_102. The meth-
ods are implemented using the open source Geotools library 17.0.
The rasterization method is implemented using PostgreSQL 9.3 and
PostGIS 2.3.2. In all the techniques, we compute the four aggre-
gate values, minimum, maximum, sum, and count. We measure the
end-to-end running time as the performance metric which includes
reading both datasets from disk and producing the final answer.

Table 1 lists the datasets that used in the experiments. The vector
layers represent the US continental counties and US continental
states with 3000 and 49 features respectively. The Large-Scale In-
ternational Boundaries (LSIB) includes geographic national bound-
aries for 249 countries and disputed areas. The raster datasets come
from various government agencies. The GLC2000 and MERIS 2005
datasets are from the European Space Agency with pixel resolutions
of 0.0089 decimal degrees (1km) 0.0027 (300m) respectively. The
US Aster dataset originates from the Shuttle Radar Topography
Mission (SRTM) and covers the continental US. Hansen developed
the global Tree Cover change dataset which covers the entire globe.
Both datasets have a spatial resolution of 0.00028 decimal degrees
(30m).

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Ahmed Eldawy, Lyuye Niu, David Haynes, and Zhiba Su

 1

 10

 100

 1000

 10000

Counties

States
World

Counties

States
World

Counties

States
Counties

States
World

10 sec

1 min

10 min

1 hour

10 hours

T
im

e
(s

ec
)

-
L

o
g

 s
ca

le

Tree CoverUS AsterMERISglc2000

Vectorize Rasterize Scanline

(a) Overall running time

0%

20%

40%

60%

80%

100%

Counties

States

W
orld

Counties

States

W
orld

Counties

States

W
orld

Counties

States

W
orld

Ti
m

e
(%

)

Tree CoverUS AsterMERISglc2000

Intersection Processing

(b) Time breakdown

Figure 3: Experimental results

4.2 Experimental Results
Figure 3(a) gives the overall comparison between the two baseline
methods and the proposed scanline method. Scanline is several or-
ders of magnitude faster than the baselines. Furthermore, it was able
to process the high-resolution datasets, US Aster and Tree Cover,
where the baseline methods failed. Notice that the performance
of scanline is almost the same with US counties and states which
both cover the same pixels in the continental US. The reason is that
the running time of the scanline algorithm is dominated by disk
IO while the CPU overhead is negligible. This makes the scanline
method optimal for the case where the raster file has to be loaded
from disk. The running time can still be improved in the future
using the following two methods. (1) Preprocessing the raster file to
provide partial aggregates for big chunks that can minimize disk IO
as was done earlier in [4]. (2) Running in a distributed environment
where multiple disks can be accessed simultaneously.

Figure 3(b) shows the breakdown of the scanline method running
time into two phases, intersection and processing. The intersection
phase contains all the processing shown in Figure 2 except for
reading the pixels from the raster file. The processing phase is the
one that reads the pixel values and accumulates them. All numbers
are normalized to the overall running time for readability. This
experiment shows that as the size of the raster layer increases,
the processing phase dominates the running time. This makes the
scanline approach near optimal as it is dominated by disk IO for
reading only the pixels that need to be processed.

5 CONCLUSION
In this paper, we discussed the zonal statistics problem which com-
bines both vector and raster datasets. We showed that the two base-
line methods that convert the raster to vector or the vector to raster
layers provide a subpar performance due to the massive amount
of intermediate data. Alternatively, we proposed a novel method,
termed scanline, which achieves orders of magnitude speedup by
processing the two inputs in their raw format without the need of
an intermediate representation. This paper is just a proof of con-
cept for the combination of vector and raster datasets in the query
processor and researchers can follow up with similar algorithms
for other problems.

REFERENCES
[1] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong

Zhang, and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data
Warehousing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert
Widmann. 1998. The Multidimensional Database System RasDaMan. In SIGMOD.
Seattle, WA, 575–577.

[3] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
Framework for Spatial Data. In ICDE. Seoul, South Korea, 1352–1363.

[4] Ahmed Eldawy, Mohamed F. Mokbel, Saif Alharthi, Abdulhadi Alzaidy, Kareem
Tarek, and Sohaib Ghani. 2015. SHAHED: A MapReduce-based System for
Querying and Visualizing Spatio-temporal Satellite Data. In ICDE. Seoul, Korea,
1585–1596.

[5] EOSDIS 2017. The Common Metadata Repository: The Foundation of
NASA’s Earth Observation Data. (2017). https://earthdata.nasa.gov/
the-common-metadata-repository.

[6] ESA 2017. The ESA Earth Observation Payload Data Long Term
Storage Activities. (2017). https://www.cosmos.esa.int/documents/
946106/991257/13_Pinna-Ferrante_ESALongTermStorageActivities.pdf/
813babe0-58db-4e23-b710-3bd9d6b58b12.

[7] David Haynes, StevenManson, and Eric Shook. 2017. Terra Populus’ Architecture
for Integrated Big Gepspatial Services. Transactions on GIS (2017).

[8] David Haynes, Suprio Ray, Steven M. Manson, and Ankit Soni. 2015. High
Performance Analysis of Big Spatial Data. In Big Data. Santa Clara, CA, 1953–
1957.

[9] G Darrel Jenerette, Sharon L Harlan, Anthony Brazel, Nancy Jones, Larissa
Larsen, and William L Stefanov. 2007. Regional Relationships Between Sur-
face Temperature, Vegetation, and Human Settlement in a Rapidly Urbanizing
Ecosystem. Landscape Ecology 22 (2007), 353–365. Issue 3.

[10] G. Darrel Jenerette, Sharon L. Harlan, William L. Stefanov, and Chris A. Martin.
2011. Ecosystem Services and Urban Heat Riskscape Moderation: Water, Green
Spaces, and Social Inequality in Phoenix, USA. Ecological Applications 21 (2011),
2637–2651. Issue 7.

[11] Ameet Kini and Rob Emanuele. 2014. Geotrellis: Adding Geospatial Capabilities
to Spark. (2014).

[12] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013.
MD-HBase: Design and Implementation of an Elastic Data Infrastructure for
Cloud-scale Location Services. DAPD 31, 2 (2013), 289–319.

[13] Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. 2013. SciDB:
A Database Management System for Applications with Complex Analytics. Com-
puting in Science and Engineering 15, 3 (2013), 54–62.

[14] Randall T. Whitman, Michael B. Park, Sarah A. Ambrose, and Erik G. Hoel. 2014.
Spatial Indexing and Analytics on Hadoop. In SIGSPATIAL. Dallas, TX, 73–82.

[15] XFEL 2017. European XFEL: Data Handling. (2017). http://www.xfel.eu/research/
data_handling/.

[16] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:
Efficient In-Memory Spatial Analytics. In SIGMOD.

[17] Jia Yu, Mohamed Sarwat, and JinxuanWu. 2015. GeoSpark: A Cluster Computing
Framework for Processing Large-Scale Spatial Data. In SIGSPATIAL. Seattle, WA,
70:1–70:4.

https://earthdata.nasa.gov/the-common-metadata-repository
https://earthdata.nasa.gov/the-common-metadata-repository
https://www.cosmos.esa.int/documents/946106/991257/13_Pinna-Ferrante_ESALongTermStorageActivities.pdf/813babe0-58db-4e23-b710-3bd9d6b58b12
https://www.cosmos.esa.int/documents/946106/991257/13_Pinna-Ferrante_ESALongTermStorageActivities.pdf/813babe0-58db-4e23-b710-3bd9d6b58b12
https://www.cosmos.esa.int/documents/946106/991257/13_Pinna-Ferrante_ESALongTermStorageActivities.pdf/813babe0-58db-4e23-b710-3bd9d6b58b12
http://www.xfel.eu/research/data_handling/
http://www.xfel.eu/research/data_handling/

	Abstract
	1 Introduction
	2 Baseline Methods
	2.1 Problem Definition
	2.2 Vectorization Method
	2.3 Rasterization Method

	3 Scanline Method
	4 Experiments
	4.1 Setup
	4.2 Experimental Results

	5 Conclusion
	References

